This is the author’s version of the paper.
The final publication has appeared in Acta Arithmetica 128 (2007), 193-200.

Prime numbers of the form p = m? + n? + 1 in
short intervals

Kaisa Matomaki*
(Department of Mathematics, Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom,)

1 Introduction

In 1960 Linnik [5] proved an asymptotic formula for

> rlp—a)

p<N

where the summation runs over primes, a is a fixed non-zero integer and r(n)
is the number of representations of n as a sum of two squares. This implies
the first unconditional proof that there are infinitely many primes of the form
p = m2+n?+1. Huxley and Iwaniec [1] considered primes of the form m?+n2+1
with (m,n) = 1 in the short interval (z, z+2Y]. They proved that for § = 99/100
this interval contains primes of this type for every sufficiently large x and more
precisely that the number of them is of the expected order of magnitude, that
is > 2%/(log2)3/2. Wu [7] improved this result to § = 115/121 =~ 0.9504. In
this paper, we prove the following theorem.

Theorem 1. For every 6 > 10/11 = 0.9090... and = > x¢(0), we have
Y. -1 > a%/(logz)*?, (1)
r<p<z+x?

where
1, if a =m?+n? with (m,n) = 1,

b*(a) =
(@) {O, otherwise.

Since the set {m? + n? | (m,n) = 1} consists of numbers with no prime
factors belonging to P3 = {p | p = 3 (mod 4)}, it is natural to attack this
problem by applying the half dimensional sieve to the set

A={p—1|z<p<z+2’ p=3 (mod3)}
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As usual, we write for a finite set 7 C N and a set of primes P

P(z)= ][] p and S(F,P.z)={acF|(a,P(z)) =1}

pEP,p<z

Then
Z b*(p—1)=S(A,P3,z + xe). (2)

z<p<z+zxf

As in previous works, we write for z = 2!/, a € [2,4),
S(A, Ps, x4+ 2%) = S(A, Ps,2) — T. 3)

A lower bound for S(A, Ps, z) is obtained by the half dimensional sieve as in
[1] and [7]. To get an upper bound for T' we use the method of [7] but take
advantage of an averaging over a parameter [ by using a more flexible error term
in the linear sieve. The described idea of the proof goes back to Iwaniec [2].

Since each element a € A has an even number of prime factors belonging to
Ps and 2||a, we have for a < 4

T= Y 1

z<p<z—+z’
p=1+2npip2

where py,ps € P3, p1 > pp > 2/
of the form p =1 (mod 4). Define

and n is an integer divisible only by primes

L={l=npy | n<az"%% p|n = p=1 (mod 4),
#!/* < py < (x/n)"/?,pa € Ps}

and for each | € £
MD) ={m=2lp +1 | z/2<pl < (xz+2%)/2,lpy=1 (mod 4)}.
Then T is at most the number of primes in Uje M(1). Thus

T <> (S(M(1),P(1),2%) + O(")), (4)

lel

where P(1) = {p | (p,2l) = 1}.

2 Auxiliary results

To get an upper bound for T" we need two lemmata. The first one is the linear
sieve with a flexible error term, and the second one gives the required estimation
for the error term arising from the sieve.



Before stating these lemmata we introduce some more sieve notation. For a
squarefree d with prime factors in P, we let Fy = {n | dn € F}. Let

Fal = Lgd)x +r(F,d),

where X > 1 is independent of d and w(d) is a multiplicative function. Define

further
viz)= ][ (1“’21’)).

p<z,pEP

Now we are ready to state the upper bound of the linear sieve. It follows as
Theorem 1 of [4] by an obvious modification to the argument in Section 3 of [4].

Lemma 2. Assume that
-1
1 K
(=) < () () g
P log w log w

w<p<z
peEP

holds for all z > w > 2 with some constant K independent of w and z. Let
further s =log Q/logz. Then

S(F,P,2) < XV(2)(F(s) +ox(1))+ Y. agr(F,d)
d<Q,d|P(z)

where ag < 1 depend only on @ but not on |F|, P orw. If 1 < s < 3, then
F(s) =2¢e"/s, where v is Euler’s constant.

The next lemma is a generalisation of the Bombieri-Vinogradov theorem in
short intervals. It follows from Theorem 2 of [6].

Lemma 3. Let g(I) be an arithmetic function satisfying g(1) < 1 and let

1 (z'+h)/1
H(‘rlvh7Q7a’Z): Z 1_7/ at

o' <lpee’+h (q) Ja 1 logt
lp=a (mod q)

Then for every A > 0 there exists a positive constant B = B(A) such that

xG
(log )"~

max max Imax DH(z' h,q,a,1)| <
<Q(a,q):1h§19m/2<x’§x| lgl:, g() ( q )’

(l,g)=1

for Q = 2912 (logz)™ P and L = 29=3)/2=¢ with 3/5+¢ <0 < 1.

To evaluate the upper bound for 7" which we get from the linear sieve, we
need two more lemmata. The first one is Lemma 3 of [7].



Lemma 4. Let u(n) be the characteristic function of integers having all prime

factors of the form 4m + 1. Let f(n) = Hp‘n7p>2(1 — p%l)_l. Then

A x x
Z u(n) f(n) = C, (log z)'/2 +0 ((1ng)3/2) ’

where

A

1 ( 1)1/2 1 1
- 1— = and C, = (1—).
2 _ 2
2v/2 (mod 4) p (mod 4) (p—1)

p=3 p=1

The second lemma corresponds to Lemma 4 of [7].

Lemma 5. Let £, f(n), A and Cy be defined as above. Then
Z J)  1+40(1) i/o‘ log(t — 1) @t (6)
2 Tog(afD) ~ (ogw) 220, Jy 11— i7"

Proof. We follow the proof of Lemma 4 of [7]. Our situation is just easier,
because we have log(z/1) instead of (log(x/1))?. Write Y for the left hand side
of (6) and let u(n) be defined as above. Then

o u(n)f(n) S
V=(1+ (1))719012_2/& n $1/a<p§m/n)1/2 p2log(x/(np2))”

p2=3 (mod 4)

By the Siegel-Walfisz theorem

t
> 1:7r(t;4,3):1/ Wy e VioET).
2

2 logv
p<t
p=3 (mod 4)

Thus by partial integration

wn) Fin) @M i
Y=(1—|—0(1)) Z ( )f( )/ d (t7473)

n 1/a tlog(x/(nt))

ngml—2/a

_(tol) g~ umfm) /W“)” dt

2 <ot/ n 1/a tlogtlog(z/(nt))

(1+0(1)) u(n)f(n) log(ah(n) — 1)
2logx Z n h(n) ’

ngxl—z/a
where h(n) =1 —logn/logx. Define
U(t) = Zu(n)f(n) and K(t) = wg(cil}ll(é))_”.

n<t



Then we have for z > 10 and 1 < t < g1—2/@

K'(t) = tQ}}( ) log(ah(t) — 1)+ O (t21(1)gaj>

because h'(t) = —1/(tlogx) and 2/a < h(t) < 1 under these restrictions.
Since U(1—) = K(2'~%/®) = 0, by partial integration the last sum in (7)
equals

pl=2/a pl—2/a
/ K(v)dU (v) = f/ U(v)K'(v)dv
- 1
A (77 log(ah(v) - 1)
og(a
= — OB ) gy 4 0
CTh e o
log (¢
—\/log / 71/2dt+0( ),
where the last equality is due to the change of variables ¢ = ah(v). O

3 Application of sieves
First we state a lower bound for S(A, P, z).

Proposition 6. Let 1 <0<1 and <a< 29%1. Then

T
1/ 2’
S(A P, 2'1) 2 (Wi(0,0) +0(1) g,
where
Wi (0, a) = / TGy
\/497 tt—1)

C3=[Ip=5 (moa 0y(1 — ﬁ) and A is defined as above.

Proof. The proof is an application of the half dimensional sieve [3]. The esti-
mation of the error term comes from the Bombieri-Vinogradov theorem in short
intervals (Lemma 3). For details, see 7, Proposition 1]. O

Next we find an upper bound for 7.

Proposition 7. Let 3/5 < 6 <1 and 2 < o < min{4,2/(5 —50),6/(5 — 46)}.
Then

£E0
T < (Wa(0, ) +0(1))W’
where
AC3 [ log(t—1)
W2 (6, @) = 29—31/ i1 - tja) 2



Proof. For each | € L, choose in Lemma 2

1 (z+x?%) /21 dt 0
/ L (11 o(1))

F=M@), P=P(), X =3 e logt  4llog(x/l)

and

0 otherwise.

o(p) = {p/@—n if p € P(1)

Let d be a square-free integer with all the prime factors belonging to P(l). Let
a’y be the unique (mod 4d) solution to the system of congruences

{ 2r = -1 (mod d)
x = 1 (mod 4).
Then
IM(1)q] = > 1, r(M(),d) = H(x/2,2°/2,4d, a3,1).

z/2<p1l<(z+z%)/2
pil=a) (mod 4d)

By Lemma 2 we obtain
0o 0o log Q
S, P02 <XV ) (F (B2 ) +o)

+ Z agH (z/2,2%/2,4d, a}, 1), (8)
d<Q,d|P(l,z%)

where

P(l,z)= H .

peEP(l),p<z

The implied constant here does not depend on [ since we can choose the constant
K in (5) independently of I: We simply drop out the condition (p,2l) = 1 when
we look for this constant.

Now

vty = ] <1 - 1) =2(L+0(1)CiCaf (1) ] (1 _ 1)

-1
p<z90,(p,21)=1 b p<z% b

Oy Cae= £(1
= (14 o(1)) 212G ) 190?’12glf()

(9)

by Mertens’ formula.
By choosing Q = z~1/2/(log z)® and 6y = ( — 1/2)/3, and summing over
all [ € £, we get from (4), (8) and (9) by Lemma 5

a2’
(logx)3/2
+) > agH(x/2,2°/2,4d,a},1).

1€L d<Q,d|P(l,a%)

T < (Wa(6, @) + o(1)) +0(|L|x")



Here the second term 1is

< xl—l/a-ﬂ% < wl—(5—49)/6—6+(9—1/2)/3 _ O(xe/(log x)3/2).

The third term is

>

d<Q,2fd

> H(z/2,2%/2,4d,a},1)| = o(z’ /(log )*/?)
leL,(l,d)=1

by choosing ¢g(l) to be the characteristic function of £ in Lemma 3. Here we
have noticed that |£| < 2!~/ < p1= 550 —e — p(56-3)/2—¢ 0

4 Proof of the theorem

Assume that 3/5 < 6 <1 and 2/(20 — 1) < a <min{4,2/(5 — 56),6/(5 — 40)}.
Then by equations (2) and (3) and Propositions 6 and 7

0

z<p<z+zxf

where

a(6—1/2) log(t — 1)

dt
W(H,oz):\/é‘—l/Q/1 it_l / 1—t/a1/2

The choice § = 10/11 and o = 11/4 satisfies the assumptions. Evaluation of
the integrals gives

dt.

W (42, 1) > 0.005,

which completes the proof. O
Numerical calculation gives max, W(0.908, &) < 0. So there is no possibility
to improve the exponent substantially without a new idea.
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