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1 Introduction

In 1960 Linnik [5] proved an asymptotic formula for∑
p≤N

r(p− a),

where the summation runs over primes, a is a fixed non-zero integer and r(n)
is the number of representations of n as a sum of two squares. This implies
the first unconditional proof that there are infinitely many primes of the form
p = m2+n2+1. Huxley and Iwaniec [1] considered primes of the form m2+n2+1
with (m,n) = 1 in the short interval (x, x+xθ]. They proved that for θ = 99/100
this interval contains primes of this type for every sufficiently large x and more
precisely that the number of them is of the expected order of magnitude, that
is � xθ/(log x)3/2. Wu [7] improved this result to θ = 115/121 ≈ 0.9504. In
this paper, we prove the following theorem.

Theorem 1. For every θ ≥ 10/11 = 0.9090... and x ≥ x0(θ), we have∑
x<p≤x+xθ

b∗(p− 1) � xθ/(log x)3/2, (1)

where

b∗(a) =

{
1, if a = m2 + n2 with (m,n) = 1,

0, otherwise.

Since the set {m2 + n2 | (m,n) = 1} consists of numbers with no prime
factors belonging to P3 = {p | p ≡ 3 (mod 4)}, it is natural to attack this
problem by applying the half dimensional sieve to the set

A = {p− 1 | x < p ≤ x + xθ, p ≡ 3 (mod 8)}.
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As usual, we write for a finite set F ⊂ N and a set of primes P

P (z) =
∏

p∈P,p<z

p and S(F ,P, z) = |{a ∈ F | (a, P (z)) = 1}|.

Then ∑
x<p≤x+xθ

b∗(p− 1) = S(A,P3, x + xθ). (2)

As in previous works, we write for z = x1/α, α ∈ [2, 4),

S(A,P3, x + xθ) = S(A,P3, z)− T. (3)

A lower bound for S(A,P3, z) is obtained by the half dimensional sieve as in
[1] and [7]. To get an upper bound for T we use the method of [7] but take
advantage of an averaging over a parameter l by using a more flexible error term
in the linear sieve. The described idea of the proof goes back to Iwaniec [2].

Since each element a ∈ A has an even number of prime factors belonging to
P3 and 2‖a, we have for α < 4

T =
∑

x<p≤x+xθ

p=1+2np1p2

1,

where p1, p2 ∈ P3, p1 ≥ p2 ≥ x1/α and n is an integer divisible only by primes
of the form p ≡ 1 (mod 4). Define

L = {l = np2 | n ≤ x1−2/α, p | n =⇒ p ≡ 1 (mod 4),

x1/α ≤ p2 < (x/n)1/2, p2 ∈ P3}

and for each l ∈ L

M(l) = {m = 2lp1 + 1 | x/2 ≤ p1l < (x + xθ)/2, lp1 ≡ 1 (mod 4)}.

Then T is at most the number of primes in ∪l∈LM(l). Thus

T ≤
∑
l∈L

(S(M(l),P(l), xθ0) + O(xθ0)), (4)

where P(l) = {p | (p, 2l) = 1}.

2 Auxiliary results

To get an upper bound for T we need two lemmata. The first one is the linear
sieve with a flexible error term, and the second one gives the required estimation
for the error term arising from the sieve.
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Before stating these lemmata we introduce some more sieve notation. For a
squarefree d with prime factors in P, we let Fd = {n | dn ∈ F}. Let

|Fd| =
ω(d)

d
X + r(F , d),

where X > 1 is independent of d and ω(d) is a multiplicative function. Define
further

V (z) =
∏

p<z,p∈P

(
1− ω(p)

p

)
.

Now we are ready to state the upper bound of the linear sieve. It follows as
Theorem 1 of [4] by an obvious modification to the argument in Section 3 of [4].

Lemma 2. Assume that∏
w≤p<z

p∈P

(
1− ω(p)

p

)−1

<

(
log z

log w

) (
1 +

K

log w

)
(5)

holds for all z > w ≥ 2 with some constant K independent of w and z. Let
further s = log Q/ log z. Then

S(F ,P, z) ≤ XV (z)(F (s) + oK(1)) +
∑

d<Q,d|P (z)

adr(F , d)

where ad � 1 depend only on Q but not on |F|, P or ω. If 1 ≤ s ≤ 3, then
F (s) = 2eγ/s, where γ is Euler’s constant.

The next lemma is a generalisation of the Bombieri-Vinogradov theorem in
short intervals. It follows from Theorem 2 of [6].

Lemma 3. Let g(l) be an arithmetic function satisfying g(l) � 1 and let

H(x′, h, q, a, l) =
∑

x′≤lp<x′+h
lp≡a (mod q)

1− 1
φ(q)

∫ (x′+h)/l

x′/l

dt

log t
.

Then for every A > 0 there exists a positive constant B = B(A) such that

∑
q≤Q

max
(a,q)=1

max
h≤xθ

max
x/2<x′≤x

∣∣ ∑
l≤L

(l,q)=1

g(l)H(x′, h, q, a, l)
∣∣ � xθ

(log x)A
,

for Q = xθ−1/2(log x)−B and L = x(5θ−3)/2−ε with 3/5 + ε ≤ θ ≤ 1.

To evaluate the upper bound for T which we get from the linear sieve, we
need two more lemmata. The first one is Lemma 3 of [7].
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Lemma 4. Let u(n) be the characteristic function of integers having all prime
factors of the form 4m + 1. Let f(n) =

∏
p|n,p>2(1−

1
p−1 )−1. Then

∑
n≤x

u(n)f(n) =
A

C1

x

(log x)1/2
+ O

(
x

(log x)3/2

)
,

where

A =
1

2
√

2

∏
p≡3 (mod 4)

(
1− 1

p2

)1/2

and C1 =
∏

p≡1 (mod 4)

(
1− 1

(p− 1)2

)
.

The second lemma corresponds to Lemma 4 of [7].

Lemma 5. Let L, f(n), A and C1 be defined as above. Then∑
l∈L

f(l)
l log(x/l)

=
1 + o(1)
(log x)1/2

A

2C1

∫ α

2

log(t− 1)
t(1− t/α)1/2

dt. (6)

Proof. We follow the proof of Lemma 4 of [7]. Our situation is just easier,
because we have log(x/l) instead of (log(x/l))2. Write Y for the left hand side
of (6) and let u(n) be defined as above. Then

Y = (1 + o(1))
∑

n≤x1−2/α

u(n)f(n)
n

∑
x1/α≤p2<(x/n)1/2

p2≡3 (mod 4)

1
p2 log(x/(np2))

.

By the Siegel-Walfisz theorem∑
p≤t

p≡3 (mod 4)

1 = π(t; 4, 3) =
1
2

∫ t

2

dv

log v
+ O(te−

√
log t).

Thus by partial integration

Y = (1 + o(1))
∑

n≤x1−2/α

u(n)f(n)
n

∫ (x/n)1/2

x1/α

dπ(t; 4, 3)
t log(x/(nt))

=
(1 + o(1))

2

∑
n≤x1−2/α

u(n)f(n)
n

∫ (x/n)1/2

x1/α

dt

t log t log(x/(nt))

=
(1 + o(1))

2 log x

∑
n≤x1−2/α

u(n)f(n)
n

log(αh(n)− 1)
h(n)

, (7)

where h(n) = 1− log n/ log x. Define

U(t) =
∑
n≤t

u(n)f(n) and K(t) =
log(αh(t)− 1)

th(t)
.
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Then we have for x ≥ 10 and 1 ≤ t ≤ x1−2/α

K ′(t) = − 1
t2h(t)

log(αh(t)− 1) + O

(
1

t2 log x

)
because h′(t) = −1/(t log x) and 2/α ≤ h(t) ≤ 1 under these restrictions.

Since U(1−) = K(x1−2/α) = 0, by partial integration the last sum in (7)
equals ∫ x1−2/α

1−
K(v)dU(v) = −

∫ x1−2/α

1

U(v)K ′(v)dv

=
A

C1

∫ x1−2/α

1

log(αh(v)− 1)
vh(v)(log v)1/2

dv + O(1)

=
A

C1

√
log x

∫ α

2

log(t− 1)
t(1− t/α)1/2

dt + O(1),

where the last equality is due to the change of variables t = αh(v).

3 Application of sieves

First we state a lower bound for S(A,P3, z).

Proposition 6. Let 1
2 ≤ θ ≤ 1 and 2

2θ−1 ≤ α ≤ 6
2θ−1 . Then

S(A,P3, x
1/α) ≥ (W1(θ, α) + o(1))

xθ

(log x)3/2
,

where

W1(θ, α) =
AC3√
4θ − 2

∫ α(θ−1/2)

1

dt√
t(t− 1)

,

C3 =
∏

p≡3 (mod 4)(1−
1

(p−1)2 ) and A is defined as above.

Proof. The proof is an application of the half dimensional sieve [3]. The esti-
mation of the error term comes from the Bombieri-Vinogradov theorem in short
intervals (Lemma 3). For details, see [7, Proposition 1].

Next we find an upper bound for T .

Proposition 7. Let 3/5 < θ < 1 and 2 ≤ α < min{4, 2/(5 − 5θ), 6/(5 − 4θ)}.
Then

T ≤ (W2(θ, α) + o(1))
xθ

(log x)3/2
,

where

W2(θ, α) =
AC3

2θ − 1

∫ α

2

log(t− 1)
t(1− t/α)1/2

dt.
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Proof. For each l ∈ L, choose in Lemma 2

F = M(l), P = P(l), X =
1
2

∫ (x+xθ)/2l

x/2l

dt

log t
=

xθ

4l log(x/l)
(1 + o(1))

and

ω(p) =

{
p/(p− 1) if p ∈ P(l)
0 otherwise.

Let d be a square-free integer with all the prime factors belonging to P(l). Let
a∗d be the unique (mod 4d) solution to the system of congruences{

2x ≡ −1 (mod d)
x ≡ 1 (mod 4).

Then

|M(l)d| =
∑

x/2≤p1l<(x+xθ)/2
p1l≡a∗d (mod 4d)

1, r(M(l), d) = H(x/2, xθ/2, 4d, a∗d, l).

By Lemma 2 we obtain

S(M(l),P(l), xθ0) ≤XV (xθ0)
(

F

(
log Q

θ0 log x

)
+ o(1)

)
+

∑
d<Q,d|P (l,xθ0 )

adH(x/2, xθ/2, 4d, a∗d, l), (8)

where
P (l, z) =

∏
p∈P(l),p<z

p.

The implied constant here does not depend on l since we can choose the constant
K in (5) independently of l: We simply drop out the condition (p, 2l) = 1 when
we look for this constant.

Now

V (xθ0) =
∏

p<xθ0 ,(p,2l)=1

(
1− 1

p− 1

)
= 2(1 + o(1))C1C3f(l)

∏
p<xθ0

(
1− 1

p

)

= (1 + o(1))
2C1C3e

−γf(l)
θ0 log x

(9)

by Mertens’ formula.
By choosing Q = xθ−1/2/(log x)B and θ0 = (θ − 1/2)/3, and summing over

all l ∈ L, we get from (4), (8) and (9) by Lemma 5

T ≤ (W2(θ, α) + o(1))
xθ

(log x)3/2
+ O(|L|xθ0)

+
∑
l∈L

∑
d<Q,d|P (l,xθ0 )

adH(x/2, xθ/2, 4d, a∗d, l).
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Here the second term is

� x1−1/α+θ0 ≤ x1−(5−4θ)/6−ε+(θ−1/2)/3 = o(xθ/(log x)3/2).

The third term is

�
∑

d<Q,2-d

∣∣∣∣ ∑
l∈L,(l,d)=1

H(x/2, xθ/2, 4d, a∗d, l)
∣∣∣∣ = o(xθ/(log x)3/2)

by choosing g(l) to be the characteristic function of L in Lemma 3. Here we
have noticed that |L| ≤ x1−1/α ≤ x1− 5−5θ

2 −ε = x(5θ−3)/2−ε.

4 Proof of the theorem

Assume that 3/5 < θ < 1 and 2/(2θ − 1) ≤ α < min{4, 2/(5− 5θ), 6/(5− 4θ)}.
Then by equations (2) and (3) and Propositions 6 and 7

∑
x<p≤x+xθ

b∗(p− 1) ≥
(

AC3

2θ − 1
W (θ, α) + o(1)

)
xθ

(log x)3/2
,

where

W (θ, α) =
√

θ − 1/2
∫ α(θ−1/2)

1

dt√
t(t− 1)

−
∫ α

2

log(t− 1)
t(1− t/α)1/2

dt.

The choice θ = 10/11 and α = 11/4 satisfies the assumptions. Evaluation of
the integrals gives

W ( 10
11 , 11

4 ) > 0.005,

which completes the proof.
Numerical calculation gives maxα W (0.908, α) < 0. So there is no possibility

to improve the exponent substantially without a new idea.
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