
SNIAFL: Towards a Static Noninteractive
Approach to Feature Location

WEI ZHAO and LU ZHANG

Peking University

YIN LIU

Rensselaer Polytechnic Institute

and

JIASU SUN and FUQING YANG

Peking University

To facilitate software maintenance and evolution, a helpful step is to locate features concerned in
a particular maintenance task. In the literature, both dynamic and interactive approaches have
been proposed for feature location. In this article, we present a static and noninteractive method
for achieving this objective. The main idea of our approach is to use information retrieval (IR) tech-
nology to reveal the basic connections between features and computational units in the source code.
Due to the imprecision of retrieved connections, we use a static representation of the source code
named BRCG (branch-reserving call graph) to further recover both relevant and specific computa-
tional units for each feature. A premise of our approach is that programmers should use meaningful
names as identifiers. We also performed an experimental study based on two real-world software
systems to evaluate our approach. According to experimental results, our approach is quite effective
in acquiring the relevant and specific computational units for most features.

Categories and Subject Descriptors: K.6.3 [Management of Computing and Information Sys-

tems]: Software Management—Software maintenance; D.2.7 [Software Engineering]: Distribu-
tion, Maintenance, and Enhancement—Restructuring, reverse engineering, and reengineering; D.3.1
[Programming Languages]: Formal Definitions and Theory—Semantics, syntax; F.3.2 [Logics

and Meanings of Programs]: Semantics of Programming Languages—Program analysis

General Terms: Algorithms, Experimentation

This research was partially supported by the National 973 Key Basic Research and Development
Program No. 2002CB312003, the State 863 High-Tech Program No. 2004AA112070, and the Na-
tional Science Foundation of China No. 60125206, 60233010, 60373003, and 60403015.
This article is a revised and expanded version of a work presented at the 26th International Con-
ference on Software Engineering in May, 2004.
Authors’ addresses: W. Zhao, L. Zhang, J. Sun, and F. Yang, Institute of Software, School of Elec-
tronics Engineering and Computer Science, Peking University, Beijing, 100871, P. R. China; email:
{zhaow,zhanglu,sjs,yang}@sei.pku.edu.cn; Y. Liu, Department of Computer Science, Rensselaer
Polytechnic Institute, 110 8th St., Troy, NY 12180; email: liuy@cs.rpi.edu. This research was per-
formed while the third author was at Peking University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1049-331X/06/0400-0195 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006, Pages 195–226.

196 • W. Zhao et al.

Additional Key Words and Phrases: Program comprehension, feature location, traceability, infor-
mation retrieval, static analysis, BRCG

1. INTRODUCTION

During the past several decades, the heavy costs of maintaining existing soft-
ware systems have become a great concern for many software projects. As es-
timated in Turver and Malcolm [1994], about 40 percent of the total cost of a
software project is spent on software maintenance.

Usually, a maintenance task is to modify or add some functionalities or fea-
tures [Yau et al. 1988; Bohner and Arnold 1996], or refactor the program with-
out changing its behavior [Fowler et al. 1999]. Although some refactoring tasks
(such as refactoring for generalization [Tip et al. 2003]) can be fulfilled automat-
ically, most maintenance tasks require maintainers to spend more than half of
their working time analyzing documents and the source code to understand the
features of the system being maintained [Corbi 1989]. A basic but very helpful
step for this kind of maintenance is to locate interesting features in the source
code [Wong et al. 1999].

More theoretically, the feature location problem can be formulated as iden-
tifying the relationships between the user’s view and the programmer’s view
[Wilde et al. 1992]. The user’s view is made up of a collection of features denoted
as FEATURES = { f1, f2, . . . , fn}, while the programmer’s view consists of a col-
lection of computational units denoted as UNITS = {u1, u2, . . . , um}. Thus, the
feature location problem is to recover the implementation relationships over
FEATURES × UNITS. In particular, two kinds of implementation relation-
ships are usually of special interest [Wong et al. 1999; Eisenbarth et al. 2003].
The first is the relevant relation, in which each feature is related to all the
units contributing to the feature’s implementation. The second is the specific
relation, in which each feature is related only to the units that contribute to
the feature’s implementation and not to any other features’ implementation.

There are mainly two categories of approaches addressing this problem.
Firstly, interactive approaches based on maintainers browsing a graphical rep-
resentation of the source code (such as [Biggerstaff et al. 1993; Chen and
Rajlich 2000; Griswold et al. 2001; Robillard and Murphy 2002]) can be used to
assist maintainers to locate features. In the literature, this kind of approach is
also referred to as the static approach. Secondly, automatic approaches based
on dynamic execution of the system (e.g., [Wilde and Scully 1995; Wong et al.
1999]) are also reported in the literature. These approaches are usually referred
to as dynamic approaches. The latest work on feature location by Eisenbarth
et al. [2003] is a basically a dynamic approach, but also uses static analysis for
refinement.

In this article, we propose a static noninteractive approach to feature lo-
cation (SNIAFL). Like dynamic approaches, our approach works in a batch-
like manner without much human involvement. However, unlike dynamic
approaches which use test cases to exhibit the basic relationships between fea-
tures and units, we use information retrieval (IR) to achieve this goal. In fact,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 197

our approach is inspired by recent advances in applying IR for recovering trace-
ability between code and documentation (e.g., [Antoniol et al. 2002; Marcus and
Maletic 2003]). According to the characteristic of the retrieved results, we use
the branch-reserving call graph [Qin et al. 2003] (an expansion of the call graph
with branch information) to further recover the relevant and specific units, and
acquire relationships among the relevant units for each feature.

The remainder of this article is organized as follows. In Section 2, we ana-
lyze related approaches to the feature location problem and discuss other re-
lated research. Section 3 overviews the SNIAFL approach to feature location
and Section 4 presents this approach in detail. In Section 5, we report an ex-
perimental study applying our approach to two real-world software systems.
Section 6 further discusses the advantages and disadvantages of our approach.
Section 7 concludes this article.

2. RELATED WORK

2.1 Feature Location

As mentioned above, the central task of feature location is to match knowledge
about features to that about computational units. In previous research, two
mainstreams of ideas for this task can be identified. The first assumes that
maintainers with knowledge about features can browse through the source
code of computational units to establish the connections. Therefore, the feature
location problem is turned into building up an efficient support to facilitate
maintainers for this browsing. This leads to the various interactive approaches.
The second assumes that maintainers can create test cases corresponding to
features. As a result, the connections between features and computational units
can be established via recording the execution traces of test cases. Therefore,
the feature location problem is turned into analyzing execution traces with
feature tags. This leads to the various dynamic approaches.

The forerunner of interactive feature location is Biggerstaff et al. [1993], in
which this problem is referred to as a concept assignment problem. It should be
noted that a concept usually has a wider meaning than a feature. Thus, a feature
can be viewed as a concept that is related to the executions using some specific
input data. In Biggerstaff et al.’s approach, several graphical representations
of the source code (such as the call graph and the program clustering graph)
as well as some regular-expression-based matching tools are exploited to fa-
cilitate the process of assigning human-oriented concepts to program-oriented
concepts. Similarly, another interactive approach to feature location is based
on browsing the abstract system dependency graph (ASDG) [Chen and Rajlich
2000]. An ASDG can represent the dependencies among routines, types, and
variables at an abstract level. It therefore can guide a user to search for the
implementation of a particular feature. Griswold et al. [2001] report the as-
pect browser, which can help maintainers to find feature implementations us-
ing lexical searches. This tool is based on Seesoft [Eick et al. 1992] and uses
the map metaphor to graphically represent the location of possible pieces of
code for feature implementations. Concern graphs is proposed as a facility of

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

198 • W. Zhao et al.

feature location in Robillard and Murphy’s [2002] work, where features are re-
ferred to as concerns. Compared to previous interactive approaches, the main
difference is that the building of the concern graphs is also interactive. There-
fore, irrelevant source code will not be taken into consideration in the build-
ing process, and the piece of concern graphs used for locating a feature can
be very small. As a result, this approach has a good scalability for large
systems.

The latest publication of Marcus et al. [2004] presents an approach to lo-
cate the domain concepts of interest for a given system by applying one of the
IR models (i.e., latent semantic indexing (LSI) [Deerwester et al. 1990; Baeza-
Yates and Ribeiro-Neto 1999, 44–46]. As the concepts in it are very similar to the
features discussed here, this work can be viewed as closely related to our work.
Marcus et al. treat the concepts expressed in natural languages as queries and
retrieve the corresponding source code artifacts through LSI for them. The re-
trieved results still need further processing manually. The query corresponding
to the investigated concept is either manually generated by engineers, or auto-
matically constructed by LSI based on one or more simple initial terms about
it. Besides the human involvement, another difference between this approach
and our work is that no syntactic or semantic information extracted from the
source code is employed.

The main advantage of interactive approaches is that the maintainer using
such an approach can just have a vague idea of the target feature in the begin-
ning and build up his or her knowledge in the process of locating it. However,
the interactive nature of these approaches make them very difficult to be highly
automatic, and intensive human involvement is unavoidable.

The pioneer work of dynamic feature location is software reconnaissance
[Wilde et al. 1992; Wilde and Scully 1995]. In this approach, carefully designed
test cases (amongst which some are corresponding to a particular feature f , and
others are not) are executed and the invoked computational units for each test
case are recorded. Based on analyzing these units, four kinds of units regarding
feature f can be identified: commonly involved units, potentially involved units,
indispensably involved units, and uniquely involved units. A similar approach
is reported in Wong et al. [1999], where the main difference is that it can help
to identify code that is unique to a feature or common to a group of features
at different granularity levels (i.e., files, functions, blocks, lines of code, etc.).
Eisenbarth et al. [2001, 2003] have published several articles using concept
analysis for feature location. This approach uses a concept lattice to represent
the execution traces recorded in dynamic execution. Based on the lattice, several
different relationships between features and computational units can be easily
recovered. It also uses static analysis based on the dependency graph to further
refine the results achieved by concept analysis. Licata et al. [2003] present a
notion of feature signature to investigate the properties of changes in evolving
programs based on dynamic feature location. They indicate that most changes
tend to pertain to either a very small number of features, or to almost all of
them.

The main advantage of dynamic approaches is that they can automatically
deal with many features in a batch-like manner after the test cases are obtained.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 199

However, the design of test cases may be a difficult task and a large number
of test cases are required for the scrutiny of investigated features. It should
be noted that automatic test case generation techniques (such as [Gupta et al.
1998; Shan et al. 2001]) can hardly help here, as the test cases designed for
feature location are aiming at acquiring test cases for each concerned feature
and not just those for revealing faults.

Rajlich and Wilde [2002] summarize some static and dynamic approaches
to feature location and discuss the role of concepts for program comprehen-
sion. A simple empirical comparison of a dynamic approach (i.e., software re-
connaissance) and a static approach (i.e., the approach in Chen and Rajlich
[2000]) is presented in Wilde et al. [2003]. The result of this comparison shows
that software reconnaissance is more suitable for locating a number of features
in a large but infrequently changed system, while the approach in Chen and
Rajlich [2000] is more suitable for locating a specific feature under intensive
changing.

2.2 IR-Based Traceability Recovery

In recent years, the use of information retrieval (IR) in recovering traceabil-
ity between documentation and source code has become a focus. Antoniol et al.
[2001, 2002] have published a series of articles on recovering code to documenta-
tion traceability. In their approach, documentation pages are used as documents
and summaries of classes in source code are used as queries. Two IR models
(the probabilistic model [Baeza-Yates and Ribeiro-Neto 1999, 30–34] and the
vector space model [Baeza-Yates and Ribeiro-Neto 1999, 27–30] are used in
this approach without much difference in terms of performance. Marcus and
Maletic [2003] use the latent semantic indexing (LSI, which is based on the
vector space model) method for recovering documentation-to-code traceability.
In this approach, source code files without any parsing are used as documents,
and sections in the documentation are used as queries. According to the experi-
mental results reported, this approach can to some extent outperform Antoniol
et al.’s approach. Marcus and Maletic [2001] have also used the LSI method to
define similarity measures between source code elements.

In the context of document-to-code traceability recovery, if the document of
interest is requirement documentation where each one or more paragraphs
describe a feature, the constructed links can be viewed as the relationships
between features and source code artifacts and therefore serve as a solution
of feature location. Locating features only based on IR is usually very coarse
and cannot cater to the request on precision to address this problem in practice.
However, the use of IR does provide an automatic means for connecting human-
oriented knowledge and program-oriented knowledge. This is the starting point
of our approach.

Cubranic and Murphy [2003] apply information retrieval as well as other
matching techniques to recover the implicit traceability among different kinds
of artifacts of open source projects (i.e., source file revisions, change or bug
tracks, communication messages, and documents). Hipikat, a corresponding
tool, can recommend some software development artifacts to newcomers under

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

200 • W. Zhao et al.

current tasks based on these recovered links. Similarly, CVSSearch, which is
also for open source projects, constructs the connections between previous CVS
comments and the changed code to facilitate current searching [Chen et al.
2001].

2.3 Graph-Based Pruning

In previous research on decision trees, several graph-based pruning methods
have been investigated to acquire the right-sized decision trees. In our ap-
proach, as we are aiming at static noninteractive feature location, it is a nat-
ural idea to use graph-based pruning to discard irrelevant nodes and keep the
relevant nodes in a static representation of source code. Therefore, the research
on graph-based pruning is also related to our work, in terms of dealing with
static representation of source code.

Typically, a pruning method for decision trees discards unnecessary branches
of a given decision tree in a repeated manner until the required minimum size
for the pruned tree is reached. The most popular and widely used pruning
method for decision trees is the cost-complexity pruning (CCP) method intro-
duced by Breiman et al. [1984]. During the course of each iteration of CCP,
one candidate node is picked out among all subnodes of the root node of the
previously-pruned decision tree and the candidate node is pruned including all
its subnodes. The determination of the candidate node is based on a criterion
which indicates the necessities of the nodes in a decision tree to make precise
classifications. The dynamic-programming-based pruning (DPP) algorithm ret-
rospects all previous pruning results and chooses a combination of candidate
nodes to be pruned off the original decision tree each time [Li et al. 2001]. The
aim of DPP is to construct a sequence of optimally pruned trees whose sizes
are reduced one leaf at a time. The measurement of a single node of DPP is the
same as that of CCP, but the criterion for determining the candidate nodes to
be pruned off is different. Multiple nodes can be picked out and the pruning is
always based on the original decision tree.

3. AN OVERVIEW OF THE APPROACH

Since our static noninteractive approach to feature location (SNIAFL) performs
as a batch-like method, each step of the approach refers to a particular model
or algorithm. Before describing details, we overview the objectives and main
ideas of our approach in this section first. A preliminary application of a similar
idea can be also found in our previous work [Zhao et al. 2003].

As our approach is currently evaluated on software systems written in the C
programming language, we hereafter use the term function instead of compu-
tational unit to present our approach. As mentioned above, the feature location
problem recovers the implementation relationships between features and func-
tions. In this article, we concentrate on locating relevant functions and specific
functions of a feature, although other relationships between features and func-
tions can also be acquired via a slight extension of our approach (which is
discussed at the beginning of Section 4.4). In detail, specific functions of a fea-
ture are defined as those functions that are definitely used to implement this

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 201

feature but will not be used by any other features; and the relevant functions
of a feature are defined as all the functions that are involved in the imple-
mentation of the feature. Obviously, the specific function set is a subset of the
relevant function set for each feature and can be computed through comparing
all features’ relevant functions.

The goal of our approach is to solve the feature location problem statically
while avoiding extensive human interaction. To achieve this goal, the basic idea
is to use IR as a means to reveal the basic connections between features and
functions. As indicated by recent studies on applying IR to recover traceability
links, IR may be quite effective in this kind of task. Obviously, the potential
advantage of this idea is that it can save the costs for creating and executing
test cases in dynamic approaches, and those for human involvement in interac-
tive approaches. Like approaches to traceability recovery [Antoniol et al. 2000,
2002; Marcus and Maletic 2003], our idea also requires that features should
be described in natural languages and meaningful identifier names should be
used in the source code.

Due to the fuzzy matching nature of IR technology, we cannot always ac-
quire an accurate set of relevant functions for a feature directly from IR. This
means that some irrelevant functions may be included due to the use of some
nonspecific words in feature descriptions, while some relevant functions may be
excluded due to the lack of corresponding descriptions in features. As a result,
we have to aim at correctly filtering some specific functions for each feature
when using IR since the specific descriptions of each feature, as the essential
part, should not be lost and can be strengthened through some IR models ac-
cording to the characteristics of their distributions. To achieve this, we use an
IR model to decrease the importance of nonspecific words related to nonspecific
functions, and for each feature we acquire a function list ranked by the extent to
which the function is specific to the feature. Then, an algorithm is used to set a
division point in the list according to the distances among ranked functions. All
functions before this division point will be used as the initial specific functions
to the feature. We call them initial specific functions because some supporting
specific functions which are not mentioned in the feature descriptions cannot
be revealed through IR, and also the initial specific functions revealed by IR
might not be completely correct.

After the initial specific functions for each feature are acquired, the next
step is to acquire all the relevant functions for the feature. As no information
about call-relationships between the retrieved functions can be acquired from
IR, it is also helpful to recover this information for maintainers to understand
how the relevant functions are connected with one another. In our approach,
we use a static representation of the source code for both purposes. The repre-
sentation used in our approach is the branch-reserving call graph (BRCG), an
expansion of the call graph with branching and sequential information which
was originally proposed for discovering use cases from source code in Qin et al.
[2003]. Compared with the traditional call graph, the branching information
in this representation can be used for eliminating irrelevant functions and
refining call-relationships. With branching information as well as sequential
information in the call graph, the pseudoexecution traces for each feature can

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

202 • W. Zhao et al.

Fig. 1. Process of the SNIAFL approach.

be generated. After all the relevant functions for each feature are determined,
we can determine all the other relationships between features and functions,
including the specific function sets that we are mostly interested in.

4. THE STATIC NONINTERACTIVE APPROACH TO FEATURE LOCATION

The process of SNIAFL approach is depicted in Figure 1. Corresponding to basic
ideas behind the approach presented above, SNIAFL consists of four main steps:

(1) Acquisition of initial specific connections between features and functions.
In this step, we use an IR model to filter specific information of the features
and recover the initial connections between features and functions with
this information.

(2) Determination of initial specific functions related to each feature. The sec-
ond step is to rank functions for each feature according to the initial re-
trieved results, decide a separation point, and choose the preliminary spe-
cific functions for each feature for further refinement.

(3) Acquisition of relevant functions and possible pseudoexecution traces for
each feature. Based on each feature’s initial specific functions, we prune
those branches which are mutually exclusive from those where there is
at least one initial specific function based on the BRCG extracted from
source code. The functions in the pruned BRCG are regarded as relevant
functions for each feature, finally. As the BRCG maintains the branching
and sequential information of source code, the possible pseudoexecution
traces of these relevant functions can also be generated.

(4) Computation of final specific functions for each feature. In the last step, we
analyze relevant functions to determine the final specific functions accord-
ing to the definition of specific functions.

In the next four subsections, we describe the above four major steps in detail.
During the course of the presentation, we use examples to illustrate each step’s

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 203

Fig. 2. Example features and functions.

processing. Actually, the examples are derived from one of our studied systems
(the DC system, an implementation of a reverse-polish desk calculator). All the
data is from real experimental results, although for simplification in some cases
we only present the results partially.

The example features’ descriptions and a subset of all functions of the DC
system are shown in Figure 2. Two features of DC are used to illustrate our
approach in the following subsections. A subset of all functions of DC is chosen
for ease of illustration.

4.1 Acquiring Initial Specific Connections Between Features and Functions

In the first step, as shown in Figure 1, the requirement specification and source
code of a certain system under consideration are the input for preparing queries
and documents processed by IR. The output is the initial specific connections
between the features and functions of the system constructed by IR, as well as
the quantified degree of similarity for every connection.

4.1.1 The Vector Space Model of IR. In our approach, we use the vector
space model of IR for indexing documents and queries and ranking the results.
Here, we briefly introduce the vector space model. Please refer to Baeza-Yates
and Ribeiro-Neto [1999, 27–30] for details.

The vector space model [Salton and Lesk 1968; Salton 1971] proposes a
framework in which partial matching is possible. It treats queries and doc-
uments as vectors constructed by index terms. The index terms are acquired
from the text of queries and documents according to some rules (such as ig-
noring articles, punctuations, numbers, etc.). Each index term has different
weights in different document and query vectors. These term weights are ulti-
mately used to compute the degree of similarity between each document and
query. Vector q

�
(q1, q2, . . . , qt) represents the query q, in which qi is the weight

of the ith index term in the query q, and t is the number of index terms. Vector
d
�

j (w1, j , w2, j , . . . , wt, j) represents the document d j , in which wi, j is the weight
of the ith index term in the document d j , and t is the number of index terms.
The vector space model evaluates the degree of similarity of the document d j

with regard to the query q as a correlation. This correlation can be quantified

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

204 • W. Zhao et al.

by the cosine of the angle between two corresponding vectors (i.e., q
�

and d j
�

,
which is shown in equation (1).

sim(d j , q) = d j
� • q

�

|d j
� | × |q� |

=

t∑
i=1

wi, j × qi√
t∑

i=1
w2

i, j ×
√

t∑
i=1

q2
i

(1)

In order to compute the degree of similarity using equation (1), it is necessary
to specify how the index term weights are obtained. In the vector space model,
the tf (term frequency) factor and the idf (inverse document frequency) factor
are applied to decide the weights of index terms. The computation of these two
factors is shown in equations (2) and (3).

fi, j = freqi, j

maxl freql , j
(2)

In equation (2), freqi, j is the raw frequency of the ith index term in the doc-
ument d j (i.e., the number of times the ith index term is mentioned in the text
of document d j); the maximum is computed over all index terms that are men-
tioned in the text of the document d j ; and fi, j is the normalized frequency of
the ith index term in the document d j .

The computation of inverse document frequency for the ith index term, idfi,
is given by

idfi = log
N
ni

(3)

where N is the total number of documents in the system and ni is the number
of documents in which the ith index term appears. The motivation for using
the idf factor is that terms appearing in more documents are less useful for
distinguishing a relevant document from a nonrelevant one.

Then, as suggested in Baeza-Yates and Ribeiro-Neto [1999, 27–30], the two
following equations (i.e., (4) and (5)) can be used to compute the weights of index
terms in documents and queries with tf and idf factors.

wi, j = fi, j × idfi (4)

qi = (0.5 + 0.5 freqi,q

maxl freql ,q
) × idfi (5)

4.1.2 Preparing Queries and Documents. The decision to treat feature de-
scriptions as documents and function descriptions as queries for IR is an essen-
tial part of our approach. In this section, we first describe how to prepare the
feature description set and function description set, since no matter which one
is treated as query, the preparation remains the same. After that, we present
the rationale of our decision.

The set of feature descriptions (the document set) can be acquired from re-
quirements documentation, domain experts, or even users familiar with the

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 205

target system in the case where there is no available requirement documenta-
tion. For each feature, we will get a paragraph of text as its description. Usually,
all the descriptions are in a natural language (e.g., English). The examples are
shown in Figure 2, which are derived from the user manual in the DC package.
Then, each feature description is transformed into a set of index terms using
the standard practice in IR. That is to say, only the nouns and verbs in the
description are considered in the transformation, and these words will be nor-
malized to their original form (i.e., the single form of nouns and infinitive form
of verbs) to be the final index terms.

The function description set (the query set) is acquired from the source code
as follows. For each function in the source code, we extract the set of identifiers
associated with the function. The identifiers include the name of the function,
and the names of the parameters of the function. As we are aiming at retrieving
specific connections between features and functions, we do not want to incor-
porate those less specific identifiers into the body of the function (such as local
variables, which were never considered in our previous work [Zhao et al. 2003]
and show less contributions in the retrieval step). As an identifier may not be in
the standard form of a word, we preprocess the identifiers before we transform
them into index terms. For example, an identifier in the form of several words
connected by the symbol ‘ ’, or in the form of several words with capitalized
first letters directly linked together, will be separated into several words. That
is to say, both feature location and FeatureLocation will be turned into feature
location. It should be indicated that this relatively simple preprocessing is not
enough for further use of IR. For instance, identifiers like featurelocation and
floc need some more sophisticated word recognizers. In our experiment, we
preprocess such cases manually although some slight extension using existing
word-extraction techniques (e.g., [Anquetil and Lethbridge 1998]), and prefix
matching may help. After preprocessing, the words obtained from the identi-
fiers will be transformed into a set of index terms using the same rules as above
used for transforming requirement descriptions.

In the following, we present the rationale for the treatment of feature de-
scriptions as documents in the IR step. From the introduction of the vector
space model, we know that the nature of the vector space model is to treat the
query and each document as the vectors and compute the degree of similarity
between them. The tf and idf factors are used to measure the weights of in-
dex terms in the query and in each document. As described in Section 4.1.1,
computations of the tf and idf factors are based on statistical data of the query
and documents. For the tf factor, the more appearances of one index term in
a certain document or query, the higher the weight of this index term in this
document or query. For the idf factor, the more appearances of one index term
in all the documents, the less contribution the index term makes to judging the
similarity between the query and each document.

As we are aiming at retrieving some specific functions for each feature, we
can apply this idf factor to filter specific information of the feature descriptions
if we treat the features as documents in the IR step. Thus, common descriptions
in different features will contribute less to computing the similarity between
features and functions, and the ranking will be mainly based on the specific

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

206 • W. Zhao et al.

Table I. The Retrieved Initial
Connections between Example Features

and Functions

Feature 1 dc add 0.4153
dc pop 0.2159
dc top of stack 0.2054
dc register pop 0.1869
dc register get 0.1554
dc push 0.0289

Feature 2 dc sub 0.7726
dc pop 0.2909
dc top of stack 0.2515
dc register pop 0.2431
dc register get 0.1976
dc push 0.0525

descriptions in the features. That is why we decide to treat the feature de-
scription set as documents, and the function description set as queries in our
approach.

The two example features in Figure 2 have index terms pop and push; and
there are corresponding functions with these index terms (such as dc pop,
dc register pop, dc push, and dc register push). These common index terms
should contribute less during the construction of connections via the effect of
the idf factor. On the other hand, those specific index terms (such as add and
subtract) should be filtered with higher importance for recovering the relations
between features and functions. That is to say, functions dc add and dc sub
should relate to feature (1) and feature (2), respectively, with higher rank val-
ues than functions dc pop, dc register pop, dc push, and dc register push. Thus,
by treating feature descriptions as documents, we are more likely to achieve
our objective of ranking those specific connections with higher values.

4.1.3 Retrieving Initial Connections. After both the query set and the doc-
ument set are prepared, we use the vector space model for retrieval. For each
query in the query set, we will retrieve a subset of documents from the docu-
ment set ranked by the similarity between the query and each document in the
subset. These retrieved documents can reveal all the connections between the
function and all of the features. If there is no connection between a function
and a feature, the rank value will be zero.

After we have done the above for all the queries in the query set, for each func-
tion we will have a list of features with similarity values. Then, we can acquire
a list of functions ranked by the similarity values for each feature by transpos-
ing the retrieval results. For example, there are n features in the feature set
F = { f1, f2, . . . , fn} and m functions in the function set U = {u1,u2, . . . , um}.
The similarity value between fi and u j is Sij (1 ≤ i ≤ n, 1 ≤ j ≤ m). The
original retrieval result for function u j is { f1, f2, . . . , fn} with rank values
S1 j ,S2 j , . . . , Snj. The acquired result for feature fi is then {u1,u2, . . . , um}
with rank values Si1, Si2, . . . , Sim.

After the first step, for the example features and functions in Figure 2, the
recovered connections with rank values are shown in Table I. The rank values

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 207

Fig. 3. Algorithm to determine the division point and choose the initial specific functions.

are computed based on all features in our experiment. That is to say, the idf
factor is based on all of DC’s features, rather than on only these two example
features. From Table I, we can see that functions dc add and dc sub have much
higher rank values than function dc pop, since they correspond to the filtered
specific descriptions rather than to the common descriptions due to the idf
factor.

4.2 Identifying Initial Specific Functions

After acquiring the initial connections between features and functions, we iden-
tify the initial specific functions for each feature. In this step, for each feature we
sort the list of functions that have a connection (where the rank value is larger
than zero) with it in descending order. We compute the distances between two
consecutive functions for all functions in the list. We simply use the arithmetic
differences of the rank values of the functions as the distances between them.
We regard the position where the biggest distance appears as our division point
to identify the initial specific functions. That is to say, the functions before this
point will be chosen as the initial specific functions, while the others are not. It
is obvious that the functions before this point have much closer distances and,
therefore, are more likely to have the same nature (i.e., the specific nature) as
the feature. The algorithm to determine the division point and to choose the
initial specific functions is depicted in Figure 3.

The input is the descending list of functions for one feature with these func-
tions, rank values and number. The output is the initial specific functions to
the feature.

The first step is to initialize the output initial specific function set S. Step (2)
calculates all distances d [i] (i = 1, 2, . . . , m − 1) between two consecutive
functions sorted in descending order. In the third step, for all acquired distances
the biggest one is chosen and thus, the division point is determined. In the final

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

208 • W. Zhao et al.

step, all functions before the division point will be chosen as the initial specific
functions in our approach. Obviously, the worst case time complexity of this
algorithm is O(m), where m is the number of functions.

According to the rank values of the two example features in Table I, the
calculated division points of Feature (1) and Feature (2) are both after the
first function, since the distance between the first function and the second is
biggest among all distances between two consecutive functions. Therefore, func-
tions dc add and dc sub are the initial specific functions for the two features,
respectively.

4.3 Determining Relevant Functions and Generating Pseudoexecution Traces

After the initial specific functions are identified, we begin to determine the rel-
evant functions and to generate the pseudoexecution traces of these functions.
The basis of this step is obtaining the BRCG from the source code. We traverse
the BRCG and determine the relevant functions according to the initial specific
functions, and finally, construct the possible execution traces via the structural
information among these functions in the BRCG.

4.3.1 The Branch-Reserving Call Graph. The branch-reserving call graph
(BRCG) was first introduced in Qin et al. [2003] for discovering use cases. This
structure is a representation of the source code by adding branch informa-
tion to the traditional call graph. In this structure, both branch statements
and function-call statements are considered. For simplicity, if-statements, case-
statements, and loop statements are all treated as branch statements.

Each node in the BRCG is a function, a branch statement, a branch in a
branch statement, or a return statement. Furthermore, the loop statement is
simply regarded as a two-branch condition statement; one branch does not have
any nodes, and the other has all the nodes belonging to the loop. The connections
between the nodes are the sequential control flow and the branching control
flow. Therefore, the BRCG can be formally defined as a triple BRCG = <N, S,
B>, where:

(i) N is the set of functions, branch statements, branches in branch state-
ments, and return statements;

(ii) S is the set of sequential control flows, where for ∀<n1, n2> ∈ S, n1 ∈ N
and n2 ∈ N ;

(iii) B is the set of branching control flows, where for ∀<n1, n2> ∈ B, n1 ∈ N
and n2 ∈ N ; and

(iv) for ∀<n1, n2> ∈ S and ∀n3 ∈ N , <n1, n3> /∈ B, and for ∀<n1, n2> ∈ B and
∀n3 ∈ N , <n1, n3> /∈ S.

The BRCG is extended from the traditional call graph. The first three condi-
tions further define that the BRCG is a call graph with two kinds of control flows
(i.e., sequential control flow and branching control flow). The fourth condition
states that a node connects to (i.e., invokes) its subnodes only through one kind
of control flow. An example BRCG is depicted in Figure 4. Figure 4(a) depicts the
source code of a function foo, and Figure 4(b) depicts the corresponding BRCG.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 209

Fig. 4. A branch-reserving call graph.

The construction of the entire BRCG for a system is based on the subBRCGs
of all the functions. The entire BRCG of a system can be acquired by connecting
all the subBRCGs for the functions into complete graph by linking the root
node of each subBRCG to the nodes of the same signature in other subBRCGs.
Please refer to Qin et al. [2003] for the algorithm to build the BRCG for each
function from source code. Identical to Qin et al.’s strategy, we do not include
the edges of recursive function calls in the BRCG for simplicity, since it will not
affect the approach much.

4.3.2 Acquiring Relevant Functions Using the BRCG. Since the specific
functions of a feature mean that the implementation of this feature will def-
initely invoke these functions and implementation of other features will not
invoke them, it is very likely that branches that will not invoke any such func-
tions are irrelevant to the feature. Therefore, we can prune some branches from
the BRCG according to the nonexistence of the initial specific functions.

For example, if one branch statement BSi has two branches BSi b1 and
BSi b2, and BSi b1 includes some specific functions while BSi b2 does not, the
branch BSi b2 will be pruned according to the definition of specific functions.
Furthermore, if the branch statement BSi lies in one of the branches (BS j b1)
of another branch statement BS j , the specific nature of the BSi b1 can be prop-
agated to BS j b1. This propagation will end at the root node of the BRCG. This
is the main idea we use to prune the BRCG. Obviously, all the functions left
in the pruned BRCG should be candidates for the relevant functions to the
feature.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

210 • W. Zhao et al.

Since there may be more than one initial specific function for a feature,
pruning is a repeated process based on each initial specific function. We process
the initial specific functions in descending order based on their rank values
against the feature. The pruning of each initial specific function is based on
the previous pruning result. If the initial specific function under consideration
currently does not exist in the BRCG acquired in the previous pruning step, it
probably means it is a wrongly-retrieved result. In such a case, this function
will not be considered any further.

The algorithm for pruning the BRCG based on one particular initial specific
function is depicted in Figure 5. The input to this algorithm is the BRCG with
root node n, and the initial specific function isf. The output is the pruned BRCG.

This algorithm includes three main steps. The first step traverses the input
BRCG and adds all the appearing positions (i.e., call sites) of the initial specific
function to the set F . Since this step is a basic graph traversal problem, we do
not discuss the details. The second step marks all branches where the initial
specific function occurs. The process of propagating specific branches ends at
the root node of the BRCG. Obviously, the first two steps can be accomplished at
the same time. That is to say, once locating an appearance of the initial specific
function, the specific link to its superbranch statements will be created and
propagated up until the root node. We describe them as two separate steps,
just for clarity. The third step prunes those unmarked branches that have the
same branch statement as the marked branches. The definitely-used nodes
and their subnodes will always be maintained in the pruned BRCG. This step
is recursive, and it traverses the BRCG from the root node with a depth-first
strategy. When the node is a branch statement and there is at least onespecific
branch of it, all the nonspecific branches will be deleted. As the propagation
of the specific relation in step (2) marks all specific branches, it is not needed
to further traverse all the transitive descendents for each branch statement to
determine the specific branches during the pruning processing. Obviously, if
there is more than one specific branch in a branch statement, all of them will
be maintained in the BRCG. All functions existing in the pruned BRCG are
considered as the relevant functions of the feature after the pruning according to
all the initial specific functions. The worst case time complexity of this algorithm
is linear in the number of nodes in the BRCG.

Considering the example BRCG in Figure 4(b), supposing function f 3 is
one of the initial specific functions for a certain feature, applying the pruning
algorithm in Figure 5 on function f 3 and this BRCG, then branches B3 and
B1 are deleted. Since the branch B4 where function f 3 occurs keeps a specific
relationship to its branch statement BS2, the mutually exclusive branch of
branch B4 (i.e., branch B3) is deleted. Furthermore, the specific relationship is
propagated upward, so that branch B2 and its branch statement BS1 hold it.
Thus, branch B1 is pruned. As a result, function f 2 is pruned and the relevant
functions are: foo, f 1, f 3, f 4, f 5, f 6.

4.3.3 Generating Pseudoexecution Traces. As the pruned BRCG includes
both branching and sequential information, we can generate each possible exe-
cution trace by traversing the graph. For the relevant functions acquired in the

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 211

Fig. 5. Algorithm to prune the BRCG according to the initial specific function.

pruned BRCG, we use the following algorithm to generate the possible execu-
tion traces. We refer to them as pseudoexecution traces since we do not acquire
these traces by real execution and there are some simplifications in the BRCG
(such as simplifying loop statements as branch statements). Figure 6 shows the
algorithm.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

212 • W. Zhao et al.

Fig. 6. Algorithm to generate pseudoexecution traces.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 213

Fig. 7. Algorithm to determine the specific functions.

This algorithm is a recursive one, during which we only generate trace in-
formation for nonleaf nodes that represent functions and all the leaf nodes.
The generated pseudoexecution traces can somehow reveal the relationships
between the relevant functions.

4.4 Determining Specific Functions

After we acquire all the relevant functions of each feature from the pruned
BRCG, we can determine all other relationships between features and func-
tions in the same way that a dynamic approach deals with the recorded func-
tions invoked for each feature. Due to space limitation, we present only the
algorithm for calculating the final specific functions for each feature, which
is depicted in Figure 7. This algorithm is based on the relevant relationships
between the features and functions. We construct a two-dimensional array to
store this relation. The rows denote all the features and the columns denote all
the functions. In the algorithm, V is the two-dimensional array. V [i, j] equals
1 if the jth function is the relevant function to the ith feature, otherwise, it is 0.

The idea of this algorithm is to check each feature like so:

(i) It finds the first function that is relevant to this feature;
(ii) It checks whether this function is also relevant to another feature;

(iii) If not, it marks the function to the feature with 1 in the output array, and
otherwise 0;

(iv) It finds another relevant function, and does the same;

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

214 • W. Zhao et al.

(v) After all the functions are processed, the specific functions for one feature
can be acquired.

Obviously, the worst case time complexity is O(n2m), where n is the number
of features and m is the number of functions.

5. AN EXPERIMENTAL STUDY

In our experiments we used two software systems of GNU, named DC [GNU
DC] (which is distributed with the BC package) and UnRTF [GNU UnRTF].
We acquired the complete source code and the requirements specification doc-
umentation of these two systems. For DC, there were 21 primitive features,
each of which implemented a single functionality of the system. The others
were composite features. Their location could be acquired through the analysis
of all the locations of their constituent features. For the UnRTF system, there
were eight primitive features, among which six features were implemented at
level of functions. In the following subsections, firstly we present our experi-
mental method and then report the results of the applications of our approach
on these two systems. In our experiment, we only studied the location of these
27 features.

5.1 Experimental Method

To apply our method, we used SMART [Salton 1971] as the tool in the IR-step.
SMART is an implementation of the vector space model of IR proposed by Salton
back in the 1960’s. The primary purpose of SMART is to provide a framework to
conduct IR research. Therefore, SMART can be viewed as the standard version
of indexing, retrieval, and evaluation for the vector space model.

For all 27 features of these two systems, we applied SNIAFL to get the rele-
vant functions, the possible pseudoexecution traces, and the specific functions.
For each feature, we got three groups of data for our approach: One group is
the initial specific functions and the final specific functions of each feature; the
second group is the relevant functions acquired by the BRCG using the initial
specific functions; and the third is the pseudoexecution traces of these relevant
functions constructed by the BRCG.

To evaluate SNIAFL, we manually analyzed the two systems, and for each
of the 27 features we recorded the genuine relevant functions, the genuine ex-
ecution traces for them, and the genuine specific functions. As a comparison,
we also designed test cases for each feature to execute the instrumented ver-
sions of these two systems, in order to get the dynamic results. As dynamic
approaches are heavily dependent on the quality of the test cases, they will not
be complete and/or precise if the test cases are not sufficient or well designed.
Therefore, for each feature we designed two groups of test cases to imitate both
the test cases made by an experienced maintainer and those made by a typical
maintaining engineer in the real world. Each test case invoked exactly one exe-
cution trace, the functions invoked by the test cases for a feature were recorded
as its relevant functions, and all the relevant function sets were used to cal-
culate the specific functions for each feature in a way similar to the algorithm
depicted in Figure 7. To confirm the necessity of using the function-to-feature

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 215

retrieving strategy and the BRCG in our approach, we also recorded the re-
trieval results using features as queries and functions as documents as the
relevant functions. This is referred to as the IR-only approach in this article, in
which we used 0.1 as the threshold to choose functions with higher similarity
as the relevant functions.

Therefore, SNIAFL was evaluated from three aspects: the relevant functions,
the execution traces, and the specific functions. For the relevant functions, we
compared the results of SNIAFL with the results of the dynamic approach, the
results retrieved directly from SMART using features as queries and functions
as documents, and the genuine results. We used precision and recall to do the
comparison. Precision is the ratio of the number of correct functions acquired
for a given feature over the total number of functions acquired for that feature.
Recall is the ratio of the number of correct functions acquired over the total
number of accurate relevant functions. For the execution traces, we compared
the results of SNIAFL with those of the dynamic approach and the genuine
results. For the specific functions, we compared the initial results, the final
results, and the results of the dynamic approach with the genuine results.

5.2 Experiments on DC

The DC system is a reverse-polish desk calculator which supports unlimited
precision arithmetic calculation. It consists of about 2.7KLOC in ANSI C pro-
gramming language, and 74 functions. Among the 49 features of the DC sys-
tem, we experimented on the 21 primitive features according to the experimen-
tal method presented above. The results on this system are reported in the
following.

5.2.1 Results on Acquiring Relevant Functions. Quantitative Results—We
calculated the precision and recall of the relevant functions acquired by the
three approaches on the DC system. Table II shows the results of the three
approaches for the 21 features. Since the functions invoked by the test cases for
any feature should be relevant to the feature (supposing there are no wrongly-
involved test cases for feature location), the precision of the dynamic approach
is always 100 percent. Therefore, we do not list it in the table.

For the results of the IR method, neither precision nor recall is good enough.
The average recall is 11.07%, the worst is 3.03%, and the best is only 17.65%.
The average precision of the IR method is 32.53%, the worst is 14.29%, and the
best is 60%.

The dynamic approach is much better, but the precondition is that the test
cases are well designed. The recall of the dynamic approach with insufficient
test cases is much lower than that of well-designed test cases. On average, the
recall of the insufficient test cases is 72.44%. The well-designed test cases have
a higher recall (91.91%), but still cannot reach 100 percent. This is because
some unusual error handling branches are not invoked by those test cases. Our
approach can avoid this weakness.

For SNIAFL, the recall is 99.57% and the precision is 90.97%, on average.
The recall is higher than the dynamic approach and close to 100 percent. The
average result confirms the effectiveness of SNIAFL in acquiring the relevant

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

216 • W. Zhao et al.

Table II. The Recall and Precision of Relevant Functions of Three Approaches on DC

IR Only Recall of Dynamic Approach SNIAFL
Feature No. Recall Precision Insufficient Well-Designed Recall Precision

1 12.50% 14.29% 100% 100% 100% 100%
2 14.29% 33.33% 100% 100% 100% 100%
3 6.67% 22.22% 63.33% 90% 96.67% 96.67%
4 5.71% 22.22% 68.57% 91.43% 100% 94.59%
5 14.29% 31.25% 71.43% 91.43% 100% 94.59%
6 8.57% 60% 71.43% 91.43% 100% 94.59%
7 17.14% 37.5% 71.43% 91.43% 100% 94.59%
8 11.43% 33.33% 71.43% 91.43% 100% 94.59%
9 8.57% 42.86% 71.43% 91.43% 94.29% 89.19%

10 11.43% 36.36% 71.43% 91.43% 100% 94.59%
11 8.57% 30% 71.43% 91.43% 100% 94.59%
12 14.29% 35.71% 71.43% 91.43% 100% 94.59%
13 11.76% 36.36% 70.59% 91.18% 100% 94.44%
14 3.03% 14.29% 66.67% 90.91% 100% 94.29%
15 15.15% 38.46% 72.73% 90.91% 100% 84.62%
16 11.76% 36.36% 67.65% 91.18% 100% 89.47%
17 8.82% 27.27% 76.47% 91.18% 100% 94.44%
18 17.65% 46.15% 67.65% 91.18% 100% 89.47%
19 14.71% 38.46% 67.65% 91.18% 100% 89.47%
20 12.50% 26.67% 65.62% 90.63% 100% 94.12%
21 3.70% 20.00% 62.96% 88.89% 100% 37.5%
Avg. 11.07% 32.53% 72.44% 91.91% 99.57% 90.97%

functions to some extent. However, we still have an exceptionally bad case in
which the precision is only 37.5%.

Qualitative Analysis—The bad performance of the IR-only approach on the
DC system is due to the imprecise nature of this technology. For the low re-
call, it is because some relevant functions of a feature do not have identifiers
representing the content in the feature’s description. Therefore, they cannot
be acquired by the IR-only method. For the insufficient precision, the expla-
nation lies in the feature-to-function retrieval strategy. Some commonly used
words in the description of a feature will lead to retrieving all the functions
having some of those words as identifiers. The dynamic approach is much
more precise. Its only disadvantage is its dependence on the quality of test
cases.

The good recall of SNIAFL lies in two factors. Firstly, the static nature of
SNIAFL causes it to treat more than the necessary functions as relevant. Sec-
ondly, the function-to-feature retrieval strategy should be quite effective, and
thus, good initial specific functions are usually selected. However, the impreci-
sion of the initial specific functions results in our inability to reach total cor-
rectness. The precision of our approach is not as good as the recall. This is due
to the conservative nature of the static approach that takes all possibilities
into consideration. Especially in the worst case (feature 21), the precision is
down (to 37.5%). In this case, the semantic information of the program does
significantly affect the implementation of this feature. Our approach cannot
get such information and therefore collects some functions in branches that are

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 217

Table III. Execution Traces on DC

Dynamic Approach SNIAFL
Feature No. Insufficient Well-Designed Generated Correct Genuine

1 1 1 3 2 2
2 1 1 1 1 1
3 6 24 756 0 42
4 6 24 756 36 36
5 3 12 504 30 30
6 3 12 504 30 30
7 3 12 504 30 30
8 3 12 504 30 30
9 3 12 504 0 30

10 3 12 504 30 30
11 3 12 504 30 30
12 3 12 504 30 30
13 3 12 252 27 27
14 6 24 756 36 36
15 6 24 2106 42 42
16 6 24 1008 48 48
17 3 12 504 0 30
18 3 12 1008 18 18
19 3 12 1008 30 30
20 3 12 252 18 18
21 3 12 >10000 18 18

syntactically relevant but semantically irrelevant. This situation is discussed
in more detail in Section 6.5.

5.2.2 Results on Acquiring Function Relationships. Quantitative
Results—Due to the simplification of the loop statement, the pseudoexe-
cution traces acquired from the BRCG are not exactly the same as the traces
from dynamic execution in some cases. For these cases, in our experiment we
still treat the acquired traces as the correct ones as long as they can reveal the
actual execution relationships.

Table III shows the execution traces acquired by SNIAFL, the dynamic
approach, and the genuine traces for each feature.

For the dynamic approach, each test case invokes exactly one execution trace.
It is obvious that the quality of test cases determines the result. For well-
designed test cases, there are still some traces lost, while for the insufficient
test cases, more traces are lost. Except for three features, SNIAFL can acquire
all the genuine traces. The main problem with this approach is that there are
too many traces generated. This is due to the static nature of our approach.

Qualitative Analysis—Our approach is not quite effective in acquiring exe-
cution traces for each feature. However, it can reveal some unusual traces for
most features. This might be helpful in some special cases. To reduce the traces
generated by our approach, we need to apply more restrictive static analysis
methods to get rid of some wrongly-generated traces.

5.2.3 Results on Acquiring Specific Functions. Quantitative Results—
Table IV shows the results of initial and final specific functions of our approach,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

218 • W. Zhao et al.

Table IV. Specific Functions on DC

Totally Totally Partially Correct
Approaches Correct Wrong Wrong Ratio

SNIAFL Initial 14 3 4 66.67%
Final 18 3 0 85.71%

Dynamic Insufficient 20 0 1 95.24%
Well-designed 21 0 0 100%

and the results of the dynamic approach with insufficient and well-designed test
cases in the experimentation. Due to space limitations, we concisely present
the results in Table IV. The column captioned by totally correct indicates the
number of features which acquire all specific functions without additional false
results. Features with no correct specific function are enumerated in the col-
umn marked totally wrong. Features with correct specific functions as well as
wrong ones are considered as those acquiring the partially wrong results. The
correct ratio is computed based on the number of totally correct features over
all features.

Of all 21 features in our experiment, 66.67% of features acquire the com-
pletely correct specific functions during the IR-step. Despite the imprecise na-
ture of IR, the experimental results show that our approach is effective to some
extent. Furthermore, we acquire an 85.71% correct ratio of the specific func-
tions after analyzing the relevant functions. This ratio is quite acceptable in
practice.

For dynamic approach, the correct ratio of the insufficient test cases is
95.24%, while that of the well-designed test cases is 100%.

Qualitative Analysis—Due to the imprecise nature of IR technology, the ef-
fectiveness of the initial specific functions reflects the effectiveness of our re-
trieval strategy. We use features as documents and functions as queries to avoid
commonly-used functions being very similar to any feature. The algorithm for
selecting initial specific functions will allow only very similar functions to be
selected.

For the final specific functions, we analyze the relevant functions accord-
ing to the definition of specific functions. This step is only effective for those
partially-wrong initial specific functions. The explanation is that we can elimi-
nate the nonspecific functions from the partially-wrong initial specific functions
and complement those supporting ones. However, for those that are totally
wrong, we can do nothing at this stage.

For the insufficient test cases of the dynamic approach, some nonspecific
functions are picked out due to the insufficient execution traces.

5.3 Experiments on UnRTF

The UnRTF system is a batch processing program to convert RTF (rich text)
documents to other formats. UnRTF consists of about 8.6KLOC in ANSI C pro-
gramming language, including comments, and 154 functions. There are eight
primitive features of UnRTF, and two of them are implemented at the statement
level rather than the function level. Consequently, we experimented only on the
six primitive features. An example feature of the UnRTF system is “Converting

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 219

Table V. The Recall and Precision of Relevant Functions of Three Approaches on UnRTF

IR Only Recall of Dynamic Approach SNIAFL
Feature No. Recall Precision Insufficient Well-designed Recall Precision
1 9.66% 93.33% 57.93% 99.31% 100% 98.64%
2 11.03% 94.12% 57.93% 99.31% 21.38% 100%
3 11.03% 88.89% 57.93% 99.31% 100% 97.97%
4 9.66% 93.33% 57.93% 99.31% 100% 98.64%
5 9.66% 93.33% 57.24% 98.62% 100% 98.64%
6 9.66% 93.33% 57.24% 98.62% 100% 98.64%
Avg. 10.12% 92.72% 57.7% 99.08% 86.90% 98.76%

to Text with VT100 control codes.” It is obvious that the features’ descriptions
of UnRTF are relatively concise compared with those of the DC system. The
experimental results on the UnRTF system are as follows.

5.3.1 Results on Acquiring Relevant Functions. Quantitative Results—
Identical to experiments on the DC system, we calculated the recall and preci-
sion of the relevant functions of the six features of UnRTF acquired by IR-only,
both for the dynamic approach and our approach. The results are shown in
Table V.

From the results in Table V, we can see that, unlike the results of DC acquired
from the IR-only approach, the precision for the UnRTF system is much higher.
Even the worst case is up to 88.89%, and the average is 92.72%. The recall of
the IR approach is similar to the DC system.

For the dynamic approach, the recall keeps similar behavior to the DC sys-
tem. The results of the dynamic approach on UnRTF are clearly affected by the
quality of the test cases.

There is an abnormal case of our approach in acquiring the relevant functions
for the UnRTF system. That is, for feature (2), the recall is only 21.38%. Except
for this, the overall results show the effectiveness of our approach in acquiring
the relevant functions for the features.

Qualitative Analysis—The better precision of the IR-only approach on the
UnRTF system is due to the precise descriptions of the features. Unlike the DC
system, there are no misleading and/or common words in the descriptions of
features that may cause retrieval of irrelevant functions.

Unlike that abnormal case of the DC system, the unstable case of our ap-
proach on the UnRTF system (feature (2)) is not due to the lack of semantic
information but to a false initial specific function. This function is indeed a rele-
vant function for this feature, but not a specific function. At the same time, there
are many relevant functions of this feature that appear in different branches
of the same branch statement with that false specific function. The pruning
process eliminates these functions such that the recall decreases seriously.

5.3.2 Results on Acquiring Function Relationships. The UnRTF applica-
tion is a bit different from the DC system. For each feature that converts an RTF
file to a certain file format, there are still many different branches to support
the processing of different tags in RTF files. The possible combinations of dif-
ferent tags in the real input files cause the different execution traces. However,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

220 • W. Zhao et al.

Table VI. Specific Functions on UnRTF

Totally Totally Partially Correct
Approaches Correct Wrong Wrong Ratio

SNIAFL Initial 4 0 2 66.67%
Final 6 0 0 100%

Dynamic Insufficient 6 0 0 100%
Sufficient 6 0 0 100%

such potential combinations make it difficult to compute the number of genuine
execution traces. Consequently, we did not show the quantitative comparison
for UnRTF in acquiring the execution traces. Nevertheless, our strategy that
considers all the possible combinations of the different branches did acquire
all possible pseudoexecution traces, based on the correct relevant functions. In
these cases, we acquired far more than 10,000 execution traces. Such a large
number weakens the effectiveness of our approach on generating the traces,
although the recall is still high. Furthermore for feature (2), since not all the
relevant functions were recovered by our approach, we still missed some gen-
uine traces despite the large number of pseudoexecution traces.

5.3.3 Results on Acquiring Specific Functions. Quantitative Results—The
results on acquiring the specific functions for each feature of the UnRTF system
are shown in Table VI. We still compared the initial and final results of our ap-
proach with the dynamic approach (both the insufficient and the well-designed
test cases). The meaning of the columns is the same as in Table IV.

Except the initial result of our approach with the 66.67% correct ratio, all
achieve the 100% correct ratio on the UnRTF system. These results are encour-
aging for our SNIAFL approach, since, unlike the dynamic approach, it does
not require test cases.

Qualitative Analysis—The good performance of our approach in acquiring the
specific functions of the UnRTF system is attributable to two factors. Firstly, the
precise descriptions of each feature did not introduce many irrelevant functions.
Secondly, the effectively-recovered relevant functions finally exclude those false
initial specific functions.

5.4 Summary

In the two experiments reported here, the experiment on DC has already been
reported earlier [Zhao et al. 2004]. The experimental results on both target sys-
tems show clearly the overall effectiveness of SNIAFL in acquiring the specific
functions and relevant functions for most features.

A major concern about the application of information retrieval is that it may
cause the results to depend on the quality of documents (i.e., the descriptions of
features). In our experiments, the features’ descriptions of the UnRTF system
more precisely express the features than do those of the DC system. From the
experimental results, we can see that it does affect the results of the IR-only
method (see the second columns in both Table II and Table IV) in the study.
However, the impact on the overall performance of SNIAFL is not obvious.
Actually, except for the abnormal cases of feature (2) in UnRTF and feature

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 221

(21) in DC in acquiring the relevant functions, SNIAFL has achieved acceptable
performance for all features. The explanation lies in that suitable refinements
on both IR- and static analysis steps can offset the impact of the coarse nature
of information retrieval. However, if completely wrong initial connections are
constructed by IR, the following steps in SNIAFL can hardly get the correct
results. This is basically a main cause for the abnormal cases in the study.

The acquisition of pseudoexecution traces is not as effective as acquiring
specific and relevant functions, since the large number of generated unneces-
sary combinations of relevant functions may offset the merit of the real ones.
However, efforts to address this aspect may be of particular use in the following
two circumstances. Firstly, some traces with abnormal processing branches of
a certain feature can be easily acquired by SNIAFL, while dynamic approaches
may have difficulties reaching them. Secondly, for those systems in which it is
costly to carry out dynamic approaches, pseudoexecution traces of SNIAFL are
an acceptable compromise for a simulation analysis.

5.5 Threats to Validity

The main threat to validity is to what extent the experimented systems are
representative of all the possible target systems in practice. Although DC and
UnRTF are real-world systems for various versions of UNIX and Linux, their
sizes are still small compared to typical systems in practice. This threat can be
reduced via experimenting on both more and larger systems. Another threat
is the test cases used for dynamic feature location in the comparison. As we
are not professional testers, we cannot ensure that the well-designed test cases
remain so in the eyes of professional testers. In our study we have tried our
best to design these test cases, and the experimental results also confirm the
effectiveness of the well-designed test cases.

6. DISCUSSION

6.1 Automatic vs. Interactive

Compared to previous static approaches to feature location, a distinct character-
istic of our approach is the ease of automation. This is achieved by conceding the
following price. A maintainer using our approach has to describe and retrieve
all the features before locating a specific feature. This can cause inconvenience
in practice. Furthermore, the noninteractive way of our approach will prevent
a maintainer from building up the knowledge about the feature in the locating
process. However, we think the gains from the automatic nature can offset the
price by saving much human involvement.

6.2 IR vs. Test Cases

Compared to dynamic approaches, a clear difference of our approach is the use
of IR instead of test cases as the driving force. The advantage of using test cases
is that the more test cases are involved, the more precise the result is, and there
are no false-positive relevant functions if no test case is wrongly credited to a
feature. In our approach, we have to concede the imprecise nature of IR, and

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

222 • W. Zhao et al.

therefore, incorporate errors in the first place. However, our approach can save
the cost of designing and executing so many test cases.

6.3 Granularity

A main weakness of our approach is the lack of flexibility in choosing granular-
ity. Using IR to set up connections between features and functions determines
that the granularity has to be above the function level. There are circumstances
in which feature implementations should be represented at the level of frag-
ments of functions, or even the statement level. As we cannot abstract specific
descriptions for entities smaller than functions, it is difficult for our approach to
support finer granularity. For many other dynamic approaches, there is much
more flexibility for choosing functions, branches, or statements as the basic
computational units.

6.4 Scalability

IR is a kind of technology that has been widely used in domains involving
large numbers of data, such as web search. Compared with these domains, the
descriptions of features and computational units should be viewed as only a
small number of data, even if the target system is a very large industrial one.
Therefore, the scalability of the IR step should not be a big concern. Further-
more, as scalability is always a heavily focused issue in IR, we can always apply
cutting-edge techniques for improving the scalability of IR in our approach.

Another concern regarding the scalability of SNIAFL lies in the static anal-
ysis step. The construction of the BRCG is based on parsing the source code, in
which only limited syntactic information is taken into consideration. Therefore,
the complexity should not be worse than for a complete parsing for compilation.
For pruning the BRCG, our approach will traverse the BRCG representation
to prune the irrelevant nodes. As there is no iteration in the pruning process,
its complexity should be proportional to the product of the number of initial
specific functions and the number of nodes in the BRCG. For the calculation
of final specific functions, the complexity should be proportional to both the
square of the number of features and the number of functions.

The major concern about scalability of SNIAFL may be the preprocessing
of identifiers using abbreviations and/or acronyms. Currently, there is some
human involvement, and it may become a big burden when dealing with a very
large system. This is also an issue we will pursue in the future.

6.5 Imprecision of BRCG

In order to make static representation suitable for computer processing, we
try to avoid using the complex representation used in some other static ap-
proaches. However, there is some imprecision in our BRCG representation. A
main shortcoming of BRCG is that it does not analyze the relationship be-
tween conditions in different branch statements. Considering the piece of code
in Figure 8, there are two branch statements, each having two branches. In
BRCG, these two branch statements are considered independent. However, this
may not be the case in reality. For example, if branch one does not change the

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 223

Fig. 8. An example of the imprecision of BRCG.

value of x, executing branch one will exclude the execution of branch three. In
our experience, this is another main reason for the imprecision in the SNIAFL
approach (feature (21) of the DC system). We think that this situation may be
improved if we can further apply some techniques of data flow and/or control
flow analysis.

7. CONCLUSIONS AND FUTURE WORK

Feature location has long been identified as a necessary and helpful step in
software maintenance. Although there have been many articles discussing this
topic in the literature, most of the proposed approaches rely on manual test
case generation and/or human analysis of source code for this purpose. Due to
the recent advances in IR-based traceability recovery, we think that it may be
advantageous to combine IR with static program analysis for feature location.
This idea actually follows the direction pointed by some previous research (e.g.,
[Antoniol et al. 2000, 2002; Marcus and Maletic 2003; Marcus et al. 2004]).

Based on this idea, we have proposed a static and noninteractive approach
to locating features, namely, SNIAFL, which combines the vector space infor-
mation retrieval model and static program analysis based on an abstract rep-
resentation of source code (i.e., BRCG). The starting point of our approach is to
construct the initial connections between features and computational units in
source code through matching the knowledge of features to the clues in source
code using IR. This can be viewed as simulating first step in the process of man-
ual feature location. Based on the initial connections, we recover all relevant
computational units for each feature through navigating a static representa-
tion of the source code using some algorithms. This can be viewed as simulating
human reasoning about the relationships between features and computational
units in manual feature location. Thus, compared with manual feature location,
SNIAFL can avoid much human involvement through combining IR and static
analysis.

An experimental study on two GNU systems (DC and UnRTF) is also re-
ported in this article, and our approach is evaluated against the IR-only method

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

224 • W. Zhao et al.

and a dynamic approach from three aspects, respectively—relevant functions,
pseudoexecution traces, and to specific functions. The experimental results are
quite promising, as SNIAFL performs much better than the IR-only method
on average, and it even achieves comparable results the dynamic approach in
most cases. Therefore, the SNIAFL approach, which is to based on the idea of
combining IR and static analysis, seems to be quite effective in addressing the
feature location problem according to current experimental results. However,
some abnormal cases raised in the experiments indicate that our approach may
still need further improvements.

In the future, we will focus on doing experiments on larger software systems
to further evaluate the feasibility and usability of our approach. To apply IR
more effectively and ease its automation, we will exploit more sophisticated
preprocessing mechanisms to deal with identifiers using abbreviations and/or
acronyms. We will also look at possible ways to reduce the number of pseudoex-
ecution traces generated by our approach. Inspired by the retrospection used
in the pruning of decision trees, we will investigate whether this idea can boost
the pruning step in our approach. Due to the imprecise nature of BRCG, we are
also planning to apply other static representations and/or static code analysis
techniques (such as program slicing [Weiser 1984]) for this purpose.

ACKNOWLEDGMENTS

We appreciate the timely help of Ms. Dan Hao and Mr. Hao Zhong, who per-
formed part of the experimental study. We are also grateful to the anonymous
referees for their helpful suggestions.

REFERENCES

ANQUETIL, N. AND LETHBRIDGE, T. 1998. Extracting concepts from file names: A new file clustering
criterion. In Proceedings of the 20th International Conference on Software Engineering (Kyoto,
April). IEEE Computer Society, Washington, D.C. 84–93.

ANTONIOL, G., CANFORA, G., CASAZZA, G., AND DELUCIA, A. 2000. Information retrieval models for
recovering traceability links between code and documentation. In Proceedings of the 16th Inter-
national Conference on Software Maintenance. (San Jose, Calif. Oct.). IEEE Computer Society,
Washington, D.C. 40–49.

ANTONIOL, G., CANFORA, G., CASAZZA, G., DELUCIA, A., AND MERLO, E. 2002. Recovering traceability
links between code and documentation. IEEE Trans. Soft. Eng. 28, 10, 970–983.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. ACM Press. New York.
BIGGERSTAFF, T., MITBANDER, B., AND WEBSTER, D. 1993. The concept assignment problem in pro-

gram understanding. In Proceedings of the 15th International Conference on Software Engineer-
ing (Baltimore, Md., May.). IEEE Computer Society, Los Alamitos, Calif. 482–498.

BOHNER, S. A. AND ARNOLD, R. S. 1996. Software Change Impact Analysis. IEEE Computer Society,
Los Alamitos, Calif.

BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A., AND STONE, C. J. 1984. Classification and Regression
Trees. Wadsworth, Belmont, Calif.

CHEN, A., CHOU, E., WONG, J., YAO, A. Y., ZHANG, Q., ZHANG, S., AND MICHAIL, A. 2001. CVS Search:
Searching through source code using CVS comments. In Proceedings of the 17th International
Conference on Software Maintenance (Florence, Nov.). IEEE Computer Society, Washington, D.C.
364–373.

CHEN, K. AND RAJLICH, V. 2000. Case study of feature location using dependence graph. In Pro-
ceedings of the 8th International Workshop on Program Comprehension (Limerick, Ireland, June).
IEEE Computer Society, Washington, D.C. 241–249.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

SNIAFL: Towards a Static Noninteractive Approach to Feature Location • 225

CORBI, T. A. 1989. Program understanding: Challenge for the 1990’s. IBM Syst. J. 28, 2, 294–
306.

CUBRANIC, D. AND MURPHY, G. C. 2003. Hipikat: Recommending pertinent software development
artifacts. In Proceedings of the 25th International Conference on Software Engineering (Portland,
Oreg., May). IEEE Computer Society, Washington, D.C. 408–418.

DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LANDAUER, T. K., AND HARSHMAN, R. 1990. Indexing
by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407.

EICK, S., STEFFEN, J., AND SUMMER, E. 1992. Seesoft—A tool for visualizing line-oriented software
statistics. IEEE Trans. Softw. Eng. 18, 11, 957–968.

EISENBARTH, T., KOSCHKE, R., AND SIMON, D. 2001. Aiding program comprehension by static and
dynamic feature analysis. In Proceedings of the 17th International Conference on Software Main-
tenance (Florence, Nov.). IEEE Computer Society, Washington, D.C. 602–611.

EISENBARTH, T., KOSCHKE, R., AND SIMON, D. 2003. Locating features in source code. IEEE Trans.
Softw. Eng. 29, 3, 210–224.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND ROBERTS, D. 1999. Refactoring—Improving the
Design of Existing Code. Addison Wesley, Boston, Mass.

GNU DC. An Arbitrary Precision Calculator. http://www.gnu.org/directory/GNU/bc.html.
GNU UNRTF. Converts from RTF to Other Formats. http://www.gnu.org/software/unrtf/unrtf.html.
GRISWOLD, W. G., YUAN, J. J., AND KATO, Y. 2001. Exploiting the map metaphor in a tool for software

evolution. In Proceedings of the 23rd International Conference on Software Engineering (Toronto,
Ont. May). IEEE Computer Society, Washington, D.C. 265–274.

GUPTA, N., MATHUR, A. P., AND SOFFA, M. L. 1998. Automated test data generation using an inter-
active relaxation method. In Proceedings of the 6th ACM SIGSOFT Symposium on Foundations
of Software Engineering (Lake Buena Vista, Fla., Nov.). ACM Press, New York, 231–244.

LI, X.-B., SWEIGART, J., TENG, J., DONOHUE, J., AND THOMBS, L. 2001. A dynamic programming based
pruning method for decision trees. J. Comput. 13, 4, 332–344.

LICATA, D. R., HARRIS, C. D., AND KRISHNAMURTHI, S. 2003. The feature signatures of evolving pro-
grams. In Proceedings of the 18th International Conference on Automated Software Engineering
(Montreal, Que., Oct.). IEEE Computer Society, Washington, D.C. 281–285.

MALETIC, J. I. AND MARCUS, A. 2001. Supporting program comprehension using semantic and
structural information. In Proceedings of the 23rd International Conference on Software Engi-
neering (Toronto, Ont., May). IEEE Computer Society, Washington, D.C. 103–112.

MARCUS, A. AND MALETIC, J. I. 2003. Recovering documentation-to-source-code traceability links
using latent semantic indexing. In Proceedings of the 25th International Conference on Software
Engineering (Portland, Oreg., May). IEEE Computer Society, Washington, D.C. 125–135.

MARCUS, A., SERGEYEV, A., RAJLICH, V., AND MALETIC, J. I. 2004. An information retrieval approach
to concept location in source code. In Proceedings of the 11th Working Conference on Reverse
Engineering (Delft, Nov.). IEEE Computer Society, Washington, D.C. 214–223.

QIN, T., ZHANG, L., ZHOU, Z., HAO, D., AND SUN, J. 2003. Discovering use cases from source code
using the branch-reserving call graph. In Proceedings of the 10th Asia-Pacific Software Engi-
neering Conference (Chiang Mai, Thailand, Dec.). IEEE Computer Society, Washington, D.C. 60–
67.

RAJLICH, V. AND WILDE, N. 2002. The role of concepts in program comprehension. In Proceedings
of the 10th International Workshop on Program Comprehension (Paris, June). IEEE Computer
Society, Washington, D.C. 271–278.

ROBILLARD, M. P. AND MURPHY, G. C. 2002. Concern graphs: Finding and describing concerns us-
ing structural program dependencies. In Proceedings of the 24th International Conference on
Software Engineering (Orlando, Fla., May). IEEE Computer Society, Washington, D.C. 406–
416.

SALTON, G. AND LESK, M. E. 1968. Computer evaluation of indexing and text processing. J. ACM
15, 1, 8–36.

SALTON, G. 1971. The SMART Retrieval System—Experiments in Automatic Document Process-
ing. Prentice Hall, Englewood Cliffs, N.J.

SHAN, J., WANG, J., AND QI, Z. 2001. On path-wise automatic generation of test data for both white-
box and black-box testing. In Proceedings of the 8th Asia-Pacific Software Engineering Conference
(Macau, China, Dec.). IEEE Computer Society, Washington, D.C. 237–240.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

226 • W. Zhao et al.

TIP, F., KIEZUN, A., AND BAEUMER, D. 2003. Refactoring for generalization using type constraints.
In Proceedings of the 18th Conference on Object-Oriented Programming Systems, Languages, and
Applications (Anaheim, Calif. Nov.). ACM Press, New York, 13–26.

TURVER, R. J. AND MALCOLM, M. 1994. An early impact analysis technique for software mainte-
nance. J. Softw. Maintenance: Res. and Pract. 6, 1, 35–52.

WEISER, M. 1984. Program slicing. IEEE Trans. Soft. Eng. 10, 4, 352–357.
WILDE, N., GOMEZ, J. A., GUST, T., AND STRASBURG, D. 1992. Locating user functionality in old code.

In Proceedings of the 8th International Conference on Software Maintenance (Orlando, Fla., Nov.).
IEEE Computer Society, Washington, D.C. 200–205.

WILDE, N. AND SCULLY, M. C. 1995. Software reconnaissance: Mapping program features to code.
J. Softw. Maintenance: Res. Pract. 7, 1, 49–62.

WILDE, N., BUCKELLEW, M., PAGE, H., RAJLICH, V., AND POUNDS, L. 2003. A comparison of methods
for locating features in legacy software. J. Syst. Softw. 65, 2, 105–114.

WONG, W. E., GOKHALE, S. S., HORGAN, J. R., AND TRIVEDI, K. S. 1999. Locating program features
using execution slices. In Proceedings of the 2nd Symposium on Application-Specific Systems and
Software Engineering Technology (Richardson, Tex., Mar.). IEEE Computer Society, Washington,
D.C. 194–203.

YAU, S. S., NICHOL, R. A., TSAI, J. J., AND LIU, S. 1988. An integrated life-cycle model for software
maintenance. IEEE Trans. Softw. Eng. 15, 7, 58–95.

ZHAO, W., ZHANG, L., LIU, Y., LUO, J., AND SUN, J. 2003. Understanding how the requirements
are implemented in source code. In Proceedings of the 10th Asia-Pacific Software Engineering
Conference (Chiang Mai, Thailand, Dec.). IEEE Computer Society, Washington, D.C. 68–77.

ZHAO, W., ZHANG, L., LIU, Y., SUN, J., AND YANG, F. 2004. SNIAFL: Towards a static noninteractive
approach to feature location. In Proceedings of the 26th International Conference on Software
Engineering (Edinburgh, UK, May). IEEE Computer Society, Washington, D.C. 293–303.

Received November 2004; revised July 2005; accepted December 2005

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

