PBML

The Prague Bulletin of Mathematical Linguistics
NUMBER 93 JANUARY 2010 107-116

Integrating Output from Specialized Modules in Machine
Translation

Transliterations in Joshua

Ann Irvine®, Mike Kayser®, Zhifei Li%, Wren Thornton®,
Chris Callison-Burch®
< Center for Language and Speech Processing, Johns Hopkins University

® BBN Technologies
¢ Cognitive Science Program, Indiana University

Abstract

In many cases in SMT we want to allow specialized modules to propose translation frag-
ments to the decoder and allow them to compete with translations contained in the phrase
table. Transliteration is one module that may produce such specialized output. In this paper,
as an example, we build a specialized Urdu transliteration module and integrate its output into
an Urdu-English MT system. The module marks-up the test text using an XML format, and
the decoder allows alternate translations (transliterations) to compete.

1. Introduction

The phrase tables used in statistical machine translation (SMT) systems are often
incomplete, and they may not take full advantage of the linguistic knowledge that
we have about a language. However, many data-driven NLP tools exist for specific
linguistic tasks. For this reason, it is often useful to create specialized modules that
employ other methods of translation not so dependent on the training text. Such mod-
ules may include noun phrase taggers and translators (Koehn and Knight, 2004), mor-
phological analyzers, modality taggers and translators, and transliteration systems.
These modules may then be integrated into the MT pipeline (Dugast et al., 2007; Yang
and Kirchhoff, 2006).

1Verbal modality expresses the notions of possibility, necessity, permission, and obligation

© 2010 PBML. All rights reserved. Corresponding author: annirvine@gmail. com
Cite as: Ann Irvine, Mike Kayser, Zhifei Li, Wren Thornton, Chris Callison-Burch. Integrating Output from
Specialized Modules in Machine Translation: Transliterations in Joshua. The Prague Bulletin of Mathematical
Linguistics No. 93, 2010, pp. 107-116. ISBN 978-80-904175-4-0. doi: 10.2478/v10108-010-0009-3.

PBML 93 JANUARY 2010

Previous SMT systems have integrated the subtask output of specialized mod-
ules using an XML-markup on input text (Koehn, 2004; Senellart et al., 2003). Here
we present an XML format to integrate the output of our specialized transliteration
module into the Joshua decoder (Li et al., 2009a). It necessarily differs from the XML
schemes used in phrase-based decoders because Joshua is a parsing-based decoder.
We illustrate its use with an example transliteration module.

2. Decoding Constraints

Joshua (Li et al., 2009a) is an open source? SMT system that uses synchronous con-
text free grammars (SCFGs) as its underlying formalism. SCFGs provide a convenient
and theoretically grounded way of incorporating linguistic information into statisti-
cal models of translation. Joshua implements all the essential algorithms described in
(Chiang, 2007) and supports Hiero-style rules (Chiang, 2005) as well as richer syntax
augmented rules (Zollmann et al., 2008). The version of Joshua that we have used in
this work incorporates the grammar extraction software that comes as part of their
open source SAMT toolkit2 Joshua translates by applying the extracted SCFG rules
to the source language text using a general chart parsing framework (Li et al., 2009b).

A probabilistic SCFG consists of a set of source-language terminal symbols Ts, a
set of target-language terminal symbols Tt, a set of nonterminals N that is shared
between both languages, and set of production rules of the form

X = ({y,o,~w)

where X € N,y € [NUTs]* is a (possibly mixed) sequence of nonterminals and source
terminals that form the lefthand side of the rule, « € [N U Tr]x* is a (again possibly
mixed) sequence of nonterminals and target-language terminals that form the right-
hand side of the rule, and ~ is a one-to-one correspondence between the nonterminals
of y and . w is a weight for the production rule.

To support integrating specialized modules we introduced the ability to specify
alternate translation rules in the document to be translated. In order to support both
the use of alternate translation rules and regular decoding (without alternate rules),
we introduced a new parameter in Joshua’s configuration file for specifying which
parser to use on the input file. Each input file parser reads in the file and emits a
sequence of segments to be translated. In order to avoid storing the whole file in
memory, the sequence is returned as a co-iterator.2 By using a co-iterator, the sequence
is produced lazily and consumed on-line, invoking the chart parser as a co-routine.

2http:/ /csjhu.edu/~ccb/joshua/
Shttp:/ /www.cs.cmu.edu/zollmann/samt/

“We use some object instance which implements the joshua. util. CoIterator interface. Both iterators
and co-iterators are examples of abstractions over enumerations. Whereas an iterator captures the notion
of producing the elements, a co-iterator captures the notion of consuming those elements.

108

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107-116)

To avoid interrupting translation in the middle of a file, we want to detect malformed
files before translation begins. So in order to detect malformed file errors eagerly, the
file is read once with a co-iterator that consumes the segments but does nothing with
them, and then re-read to produce segments for the chart parser.

Each translation segment consists of an ID, a source sentence, and a collection
of spans covering the sentence where each span contains a collection of constraints.
Spans containing only soft constraints are allowed to overlap, whereas hard constraint
spans may not overlap. Constraints are drawn from three types: lefthand side (LHS)
constraints, righthand side (RHS) constraints, and rule constraints. LHS constraints
are hard constraints specifying that the span be treated as a specified nonterminal,
thus filtering the regular grammar to generate translations only from that nonter-
minal. One use for LHS constraints is to integrate chunking or tagging information
before decoding. RHS constraints are hard constraints filtering the regular grammar
such that only rules generating the desired translation can be used. A use for RHS
constraints would be integrating word sense disambiguation before decoding. Rule
constraints specify a new grammar rule including a LHS nonterminal, source RHS
(derived from the source sentence), target RHS, and feature values. Rule constraints
can be either hard or soft; if they are hard, they override the regular grammar; if they
are soft, they are considered an addition to the regular grammar and will compete
with regular rules. Rule constraints for any given span must be marked collectively
as all hard or all soft.

2.1. XML Markup

The XML format follows straightforwardly from the specification of segments. The
XML file must be valid XML, and thus must have a root element. Underneath the root
element are some number of <seg>tags with a required id attribute that specifies the
input segment number. The source sentence is given as raw text under the <seg> tag.
Each <seg> tag may contain one or more tags with required start and end
attributes and an optional hard attribute for rule constraints. Each tag must
contain one or more <constraint> tags each of which contains an optional <lhs>
tag, containing nonterminal text, followed by an optional <rhs> tag with an optional
features attribute and containing target text. Any other tags are ignored by the XML
parser.

This specification of the XML format is overly liberal and could admit files which
are non-sensical or which cannot be represented internally. In order to rule out such
files, the generated objects are run through a type checker to ensure semantic validity.
The type checker verifies the following invariants:

* Each constraint adheres to one of the three types, thus it has

- only a <lhs>tag, or
- only a <rhs>tag with no features attribute, or
- a <lhs>tag, a <rhs>, and a features attribute

109

PBML 93 JANUARY 2010

¢ For each span,
— the start and end indices are within the width of the sentence
— the start index is smaller than the end index
¢ There are no overlapping hard spans
While the features attribute is considered optional in terms of the DTD for the
XML grammar, that is only because DTDs are unable to capture the dependency re-
lation between the three valid constraint types.2 If both <lhs> and <rhs> tags are
provided but there is no feature attribute, this is considered a type error since the
constraint does not belong to any of the three types: LHS constraints do not have
<rhs> tags, RHS constraints do not have <lhs> tags, and rule constraints require a
features attribute.

3. Decoder Integration

To enforce the three kinds of constraints (i.e., rule, LHS, and RHS) during decod-
ing, we modified the regular chart-based decoding algorithm in Joshua. Rule con-
straints can be hard or soft. A rule constraint provides a new translation option for a
source span, in addition to those translation options (hereafter called grammar-based
translations) provided by the regular grammars. If the rule constraint is hard, all the
grammar-based translations will be disallowed in the final translation output. Other-
wise, the new translation option will compete with those grammar-based translations,
in a probabilistic manner. Different from a rule constraint, LHS and RHS constraints
are always hard, meaning that a grammar-based translation will be disallowed if its
LHS or RHS does not match the LHS or RHS constraint.

Figure 1 presents the modified algorithm, where lines 1, 4, and 5 are added to the
regular chart-parsing algorithm in order to support manual constraints. As shown in
line 1, the algorithm first adds the rule constraints (regardless of being soft or hard)
into the chart so that the decoding algorithm will consider these rule translations
as candidate translations. To support the hard constraints, the algorithm will run
through two filtering processes. In line 4, if a span is within the coverage of a hard
rule constraint, all the grammar-based rules applicable to this span will be disallowed.
Similarly, all the applicable grammar rules that do not match any LHS or RHS con-
straints for the span will be filtered out, as shown in line 5.

4. Transliteration Module

Here we present a specialized transliteration module that uses Joshua’s new XML
markup. We developed an Urdu-English transliterator, which is useful because our

SXML Schema and RelaxNG are also unable to capture all the necessary dependency relations. Even
if they can capture the tag and attribute dependencies between the three constraint types, type checking
would still be necessary due to the context-sensitive restrictions on valid start and end indices depending
on the length in words of the source text.

110

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107-116)

DecodingWithConstraints(grammars, sentence, constraints)

1 Add the rule constraints into the Chart

2 For each span [i,j] with increasing length (i.e.,j —1+ 1)

3 Identify applicable grammar rules for the span

4 Filter the grammar rules based on hard rule constraints

5 Filter the grammar rules based on LHS and RHS constraints
6 Add the surviving grammar rules into the chart

Figure 1. Constraining Chart-based Decoding with Manual Constraints.

LDC Urdu Language Pack bilingual parallel corpus & has only 88,108 sentence pairs
with 1,586,065 English tokens and 1,664,409 Urdu tokens. In this data, we observed
that 2% of words in a development set were out-of-vocabulary (OOV) with respect to
the training bitext. With the help of a human annotator, we found that approximately
33% of these words were phonetically transliterable; for example, proper names or
borrowed words. Introducing a module for generating transliterations and integrat-
ing that output into the output of an end-to-end MT system clearly has the potential
to improve performance.

4.1. Basic Framework

We treat transliteration as a monotone character translation task, similar to the work of
(Knight and Graehl, 1997). We used the Joshua MT system to build an Urdu transliter-
ation module using a semantically-informed framework, described below, and several
sources of transliteration pairs for training.

At training time, given a list of Urdu—English name pairs, we first perform character-
to-character alignment using the freely available Berkeley Word Aligner.” Next, we
find character-sequence pairs which conform to the alignment graph for a word pair;
these are analogous to phrase pairs in phrase-based statistical MT. We build a table of
such character-sequence mappings, annotated with translation probabilities. Finally
we extract a frequency-annotated list of 1.3 million names from the English Gigaword
corpus using a named entity tagger (Finkel and Manning, 2009). We then use this
to train a character language model prior. Having trained these components, we use
them in conjunction with the off-the-shelf Joshua MT decoder.

During decoding, a novel Urdu word is segmented into sequences of characters,
and each character sequence is translated to an English character sequence. Unlike
in the closely analogous process of phrasal machine translation, in phonetic translit-
eration the translated character sequences are never reordered. Transliteration hy-

6LDC catalog number LDC2009E12, "NIST Open MT08 Urdu Resources”
"http:/ /code.google.com/p/berkeleyaligner /

111

PBML 93 JANUARY 2010

potheses are scored using a log-linear model which makes use of character sequence
translation scores and a character-LM prior score. The result is a single English pho-
netic gloss of the Urdu word.

4.2. Semantically-targeted transliteration

We trained two transliteration systems, one for person names and one for all other
semantic types (including non-names). These two systems shared all components ex-
cept for the character LM and the dataset used for decoder weight tuning. For the
person-name transliteration system, we trained our character language model from
the large list of English person names automatically extracted from the Gigaword cor-
pus. In the non-person-name transliteration system, we trained a model from a large
list of English words, without regard to semantic type.

4.3. Training the module

In order to train the transliteration module, we gathered pairs of names that were
likely to be transliterations of one another. We obtained unique name pairs from three
sources: the Urdu-English parallel corpus (about 2,000 pairs, extracted from align-
ments and checked by a human annotator), Amazon’s Mechanical Turk system (over
12,000 pairs), and linked people pages from the Urdu and English Wikipedias (about
1,000 pairs). Our final system used about 15,000 pairs of Urdu-English transliterated
name pairs.8 Transliteration performance improved with increasing amounts of train-
ing data, and our final module outperformed the baseline system available from the
LDC Urdu Language Pack.

4.4. Integrating the module

When using the rule constraint mechanism to add externally constructed theories
to Joshua’s search space, it is necessary to specify a left-hand-side nonterminal for
each rule. Since this nonterminal label is used by Joshua in decoding, it is helpful
to choose a label which accurately represents the grammatical content of the covered
phrase. Rather than compute a single guess for this label, we add multiple arcs to the
search space, each with a different nonterminal. We use the automatically determined
named-entity-category of the source word to construct the set of possible labels for a
transliterated word.

In particular, before decoding we compute from training the N most frequent tar-
get nonterminal labels assigned to low-frequency words of each source name category
(the name categories are: Person, Location, Organization, Geopolitical Entity, Facil-
ity). At decoding time, we use an automatic name tagger to compute the semantic
category of each source word. For every transliteration candidate, we add N arcs to

8The complete name pair list is freely available at http:/ /www.clsp.jhu.edu/~anni/

112

Irvine, Kayser, Li, Thornton, Callison-Burch Specialized Modules in MT (107-116)

<seg id="20">
LB e o 205 s S ol S S s Sl e S0 Go o o S 58 Kl Gl S 558 Gl ey

<constraint>
<lhs>[NNP-PERSON]</1hs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.3361808473;
-9.0926338104;-0.5569314994;0">gardner</rhs></constraint>
<constraint>
<lhs>[NNP-PERSON]</1hs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0;
-10.4980070804; -0.7064663926;0">gardiner</rhs></constraint>
<constraint>
<lhs>[NNP-PERSON]</1hs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0;
-11.1132723471;-0.8203325663;0">gardener</rhs></constraint>
<constraint>
<lhs>[NNP-PERSON]</1hs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;0;1,0;0;0;0
;0;0">##UNKNOWN## </ rhs></constraint>
<constraint>
<lhs>[NN-PERSON]</1lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.3361808473;
-9.0926338104;-0.5569314994;0">gardner</rhs></constraint>

<constraint>
<lhs>[NNP]</1lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.003016175;
-13.1667265966;-0.863364734;1">datong</rhs></constraint>
<constraint>
<lhs>[NNP]</1lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0;-12.3903889565;
-0.7339666773;1">dating</rhs></constraint>
<constraint><lhs>[NNP]</1lhs><rhs features="0;0;0;0;0;0;0;0,0;0;0;0;0;0;1;0;0;0;
0;0;0">##UNKNOWN##</rhs></constraint>
<constraint>
<lhs>[NN]</1lhs><rhs features="0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;-6.907755279;0.003016175;-13.1667265966;
-0.863364734;1">datong</rhs></constraint>

Figure 2. An example of XML markup on Urdu text. Each span has 21 associated
feature weights. The first 13 features represent the feature space of traditionally
extracted Joshua translation rules. Since transliteration rules do not exist in the same
feature space, these feature values are always set to 0 for transliteration rules.

the search space, each with a different label from the semantically-targeted set. In our
experiments, we use the value N=5.

An example of the XML markup for an input Urdu sentence is shown in Figure 2.
In this example, two word spans are tagged with constraints and hypothesis translit-
erations. Each span and transliteration hypothesis is tagged with the N most frequent
target nonterminal labels (e.g. NNP, NN, etc. for a PERSON tag).

5. Results

We tested the impact of transliterator integration in a small number of blind sub-
missions to the NIST MT09 Urdu-English evaluation. We integrated the transliter-
ator into the current Joshua system. In one experiment, we transliterated all low-
frequency words, while in a second experiment we transliterated only low-frequency

113

PBML 93 JANUARY 2010

Joshua Translation System | NIST MT09 BLEU Score
No Transliteration 2958
Transliterate names only .2980
Transliterate all types .3010

Table 1. Impact of transliteration on BLEU in submissions to NIST MT09 evaluation.

person names. Our baseline for comparison was the identical Joshua system without
transliterations.

We compared the baseline against the transliteration-aware systems both quanti-
tatively and qualitatively. In a quantitative comparison, whose results are in Table
1, transliteration yielded a small but notable BLEU improvement. As shown in the
table, transliterating words of all semantic types yielded slightly better performance
than transliterating only words marked as person names.

We also qualitatively compared the best transliteration-aware system with the base-
line system via manual inspection of decoder output. As expected, some sentences
showed clear improvement via the increased lexical coverage allowed by the translit-
eration model, while other sentences showed little benefit. In some sentences, the
transliteration model hypothesized incorrect transliterations for OOV words. More
effectively filtering such incorrect translation options, such as through a more devel-
oped measure of confidence, is a potential avenue for future work. Tables 2 and 3
show examples of Joshua decoder output with and without the transliteration fea-
ture.

6. Conclusion

In this work, we created an XML format to markup the output of specialized sub-
task modules and integrate alternate translations into the SMT decoder. We created
a transliteration module using a character-based statistical MT system and several
thousand pairs of transliterated words. The results are promising. In particular, a
qualitative analysis suggests that the transliterations were able to appropriately com-
pete with the phrase-based translation output. This work has also opened the door to
integrating additional specialized translation modules. Such modules have a poten-
tial to increase translation performance, particularly in low-resource conditions.2

9This research was supported in part by the European Commission through the EuroMatrixPlus project,
by the US National Science Foundation under grant IIS-0713448, and by the Human Language Technology
Center of Excellence. Any opinions, findings, and conclusions or recommendations expressed in this ma-
terial are the authors’ and do not necessarily reflect the views of the sponsor.

114

Irvine, Kayser, Li, Thornton, Callison-Burch

Specialized Modules in MT (107-116)

Without Transliteration

[UNKNOWN] Members said that the economic plan, ex-
pensive, and will not be effective.

With Transliteration

Republican members said that the economic plan, expen-
sive, and will not be effective.

Reference

The republican members said that this economic plan is
very “expensive” and will not be effective.

Without Transliteration

However, [UNKNOWN] said that he [UNKNOWN]
president to respect their age and are also due to yell at
them, but they were saying truth from miles away.

With Transliteration

“However, Erdogan said that he respects the Israeli Pres-
ident and his age as a result of which they yell at them ,
but they were saying the truth from miles away.

Reference

However, later Erdogan said that he respects Israeli
President and his age as well which is why he did not yell
at him but whatever he was saying was miles away from
truth.

Table 2. Examples of improvements from transliteration.

Without Transliteration

In southern germany [UNKNOWN] a resident of the
area of[UNKNOWN] [UNKNOWNT] has left behind a big
business group

With Transliteration

A resident of the area of Cuba in south Germany Adolf
Merkel has left behind a big business group

Reference

Adolf Merckle of southern Germany’s Swabia area has
left a large business group behind

Table 3. Impact of transliteration. Note that the location name “Swabia” was
incorrectly transliterated to “Cuba.” This example indicates the future room for

improvement.

115

PBML 93 JANUARY 2010

Bibliography

Chiang, David. A hierarchical phrase-based model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL-2005),
2005.

Chiang, David. Hierarchical phrase-based translation. Computational Linguistics, 33(2):201-228,
2007.

Dugast, Loic, Jean Senellart, and Philipp Koehn. Statistical post-editing on systran’s rule-based
translation system. In Proceedings of the Workshop on Statistical Machine Translation, part of the
45th Annual Meeting of the Association for Computational Linguistics (ACL-2007), 2007.

Finkel, Jenny Rose and Christopher D. Manning. Nested named entity recognition. In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMINLP-2009),
2009.

Knight, Kevin and Jonathan Graehl. Machine transliteration. In Proceedings of the 8th Conference
of the European Chapter of the Association for Computational Linguistics (EACL-1997), 1997.

Koehn, Philipp. Pharaoh: a beam search decoder for phrase-based statistical machine transla-
tion models. In Proceedings of the 6th Biennial Conference of the Association for Machine Trans-
lation in the Americas (AMTA-2004), 2004.

Koehn, Philipp and Kevin Knight. Feature-rich statistical translation of noun phrases. In Pro-
ceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-2004),
2004.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren Thornton, Jonathan Weese, and Omar Zaidan. Joshua: An open source
toolkit for parsing-based machine translation. In Proceedings of the Workshop on Statistical
Machine Translation, part of the Proceedings of the 47th Annual Meeting of the Association for
Computational Linguistics (ACL-2009), 2009a.

Li, Zhifei, Chris Callison-Burch, Sanjeev Khudanpur, and Wren Thornton. Decoding in joshua:
Open source, parsing-based machine translation. In Prague Bulletin of Mathematical Linguis-
tics, number 91, 2009b.

Senellart, Jean, Christian Boitet, and Laurent Romary. XML machine translation. In Proceedings
of the 9th Machine Translation Summit, 2003.

Yang, Mei and Katrin Kirchhoff. Phrase-based backoff models for machine translation of highly
inflected languages. In Proceedings of the 11th Conference of the European Chapter of the Associ-
ation for Computational Linguistics (EACL-2006), 2006.

Zollmann, Andreas, Ashish Venugopal, Franz Och, and Joy Ponte. A systematic comparison of
phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings of the 22nd
International Conference on Computational Linguistics (COLING-08), 2008.

116

	Introduction
	Decoding Constraints
	XML Markup

	Decoder Integration
	Transliteration Module
	Basic Framework
	Semantically-targeted transliteration
	Training the module
	Integrating the module

	Results
	Conclusion

