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Abstract
The idea of virtual phrase tables for statistical machine translation (SMT) that construct

phrase table entries on demand by sampling a fully indexed bitext was first proposed ten years
ago by Callison-Burch et al. (2005). However, until recently (Germann, 2014) no working and
practical implementation of this approach was available in the Moses SMT system.

We describe and evaluate this implementation in more detail. Sampling phrase tables are
much faster to build and are competitive with conventional phrase tables in terms of translation
quality and speed.

1. Introduction

Phrase-based statistical MT translates by concatenating phrase-level translations that
are looked up in a dictionary called the phrase table. In this context, a phrase is any
sequence of consecutive words, regardless of whether or not it is a phrase from a
linguistic point of view. In addition to the translation options for each phrase, the table
stores for each translation option a number of scores that are used by the translation
engine (decoder) to rank translation hypotheses according to a statistical model.

In the Moses SMT system, the phrase table is traditionally pre-computed as shown
in Fig. 1. First, all pairs of phrases up to an arbitrary length limit (usually between 5
and 7 words), and their corresponding translations are extracted from a word-aligned
parallel corpus, using the word alignment links as a guide to establish translational
correspondence between phrases. Phrase pairs are scored both in the forward and
backward translation direction, i.e., p (target | source) andp (source |target), respectively.
Computing these scores is traditinally done by sorting the lists on disk first to facili-

© 2015 PBML. Distributed under CC BY-NC-ND. Corresponding author: ugermann@inf.ed.ac.uk
Cite as: Ulrich Germann. Sampling Phrase Tables for the Moses Statistical Machine Translation System. The Prague
Bulletin of Mathematical Linguistics No. 104, 2015, pp. 39–50. doi: 10.1515/pralin-2015-0012.

http://creativecommons.org/licenses/by-nc-nd/3.0/


PBML 104 OCTOBER 2015

..word-aligned bitext (parallel corpus).

extract phrase pairs

.

phrase pair list
source ||| target ||| alignment ||| ...

.

phrase pair list
target ||| source ||| alignment ||| ...

.

invert

.

sorted & scored phrase table half
source ||| target ||| alignment ||| ...

.

scored & reverted phr. table half
target ||| source ||| alignment ||| ...

.

sort & score

.

sort, score & revert

.

full phrase table (text format)
source ||| target ||| fwd. & bwd. scores ||| ...

.

scored & sorted phrase table half
source ||| target ||| bwd. scores ||| ...

.

merge

.

sort

.

merge

.

pruned phrase table
source ||| target ||| fwd. & bwd. scores ||| internal word alignment ||| ...

.

binary phrase table

.

prune

.

binarise

Figure 1. Conventional Phrase Table Construction

tate the accumulation of marginals.This approach requires sorting the list of extracted
phrase pairs at least twice: once to obtain joint and marginal counts for estimation of
the forward translation probabilities, and once to calculate the marginals for the back-
ward probabilities. In practice, forward and backward scoring take place in parallel,
as shown in Figure 1.

The resulting phrase tables often have considerable levels of noise, due to mis-
aligned sentence pairs or alignment errors at the word level. Phrase table pruning
removes entries of dubious quality. Even with pruning, conventional phrase tables
built from large amounts of parallel data are often too large to be loaded and stored
completely in memory. Therefore, various binary phrase table implementations were
developed in Moses over the years, providing access to disk-based data base structures
(Zens and Ney, 2007)1 or using compressed representations that can be mapped into
memory and “unpacked” on demand (Junczys-Dowmunt, 2012).

1The original implementation by R. Zens (PhraseDictionaryBinary) has recently been replaced in Moses
by PhraseDictionaryOnDisk (H. Huang, personal communication).
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Due to the way they are built, conventional phrase tables for Moses are fundamen-
tally static in nature: they cannot be updated easily without repeating the entire costly
creation process.

2. Phrase tables with on-demand sampling

7 suffix array
10 suffixarr ay
3 su ffixarray
4 suf fixarray
5 suff ixarray
9 suffixar ray
8 suffixa rray
1 suffixarray
2 s uffixarray
6 suffi xarray

11 suffixarra y

Figure 2. Letter-based
suffix array over the word

‘suffixarray’

As an alternative to pre-computed phrase tables, Callison-
Burch et al. (2005) suggested the use of suffix arrays (Man-
ber and Myers, 1990) to index the parallel training data
for full-text search, and to create phrase table entries on
demand at translation time, by sampling in the bitext oc-
currences of each source phrase in question, extracting
counts and statistics as necessary.

A suffix array over a corpus ⟨w1, . . . ,wn⟩ is an array
⟨1 . . . n⟩ of all token positions in that corpus, sorted in lex-
icographic order of the token sequences that start at the
respective positions. Figure 2 shows a letter-based suffix
array over the word ‘suffixarray’. For bitext indexing for
MT, we index at the word level.

Given a suffix array and the underlying corpus, we can
easily find all occurrences of a given search sequence by performing a binary search
in the array to determine the first item that is greater or equal to the search sequence,
and a second search to find the first item that is strictly greater. Every item in this sub-
range of the array is the start position of an occurrence of the search sequence in the
corpus. From this pool of occurrences, we extract phrase translations for a reasonably
large sample using the usual phrase extraction heuristics.

Lopez (2007, 2008) explored this approach in detail in the context of hierarchical
phrase-based translation (Chiang, 2007). Schwartz and Callison-Burch (2010) imple-
mented Lopez’s methods in the Joshua decoder (Li et al., 2009). Suffix array-based
translation rule extraction is also used in cdec (Dyer et al., 2010). However, until re-
cently (Germann, 2014), no efficient, working implementation of sampling phrase ta-
bles was available in the Moses decoder. The purpose of this article is to document this
implementation in detail, and to present results of empirical evaluations that demon-
strate that sampling phrase tables are an attractive, efficient, and competitive alterna-
tive to conventional phrase tables for phrase-based SMT.

The apparent lack of interest in sampling phrase tables in the phrase-based SMT
community may have been partly due to the fact that naïve implementations of the
approach tend perform worse than conventional phrase tables. To illustrate this point,
we repeat in Table 1 the results of a comparison of systems from Germann (2014). Sev-
eral German-to-English systems were constructed with conventional and sampling
phrase tables. All systems were trained on ca. 2 million parallel sentence pairs from
Europarl (Version 7) and the News Commentary corpus (Version 9), both available
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# method low high median mean 95% conf.
intervala runs

1 precomp., Kneser-Ney smoothing 18.36 18.50 18.45 18.43 17.93 – 18.95 10
2 precomp., Good-Turing smoothing 18.29 18.63 18.54 18.52 18.05 – 19.05 10
3 precomp., Good-Turing smoothing, filteredb 18.43 18.61 18.53 18.53 18.04 – 19.08 10
4 precomp., no smoothing 17.86 18.12 18.07 18.05 17.58 – 18.61 10
5 max. 1000 smpl., no sm., no bwd. prob. 16.70 16.92 16.84 16.79 16.35 – 17.32 10
6 max. 1000 smpl., no sm., with bwd. prob. 17.61 17.72 17.69 17.68 17.14 – 18.22 8
7 max. 1000 smpl., α = .05, with bwd. prob.c 18.35 18.43 18.38 18.38 17.86 – 18.90 10
8 max. 1000 smpl., α = .01, with bwd. prob. 18.43 18.65 18.53 18.52 18.03 – 19.12 10
9 max. 0100 smpl., α = .01, with bwd. prob. 18.40 18.55 18.46 18.46 17.94 – 19.00 10

table adapted from Germann (2014)a computed via bootstrap resampling for the median system in the group.
b top 100 entries per source phrase selected according to p (t | s).
c α: one-sided confidence level of the Clopper-Pearson confidence interval for the observed counts.

Table 1. Bleu scores (de → en) with different phrase score computation methods.

from the web site of the 2014 Workshop on Statistical Machine Translation (WMT).2 They
were tuned on the NewsTest 2013 data set, and evaluated on the NewsTest 2014 data
set from the Shared Translation Tasks at WMT-2013 and WMT-2014, respectively. The
systems differ in the number of feature functions used (with and without backwards
phrase-level translation probabilities) and smoothing methods applied. No lexical-
ized reordering model was used in these experiments.

Each system was tuned 8-10 times in independent tuning runs with Minimum
Error Rate Training (MERT; Och, 2003). Table 1 shows low, high, median, and mean
scores over the multiple tuning runs for each system.

The first risk in the use of sampling phrase tables is that it is tempting to forfeit the
backwards phrase-level translation probabilities in the scoring. The basic sampling
and phrase extraction procedure produces source-side marginal and joint counts over
a sample of the data, but not the target-side marginal counts necessary to compute
p (source | target). These backwards probabilities are, however, important indicators
of phrase-level translation quality, and leaving them out hurts performance, as illus-
trated by a comparison of Lines 2 and 5 in Tab. 1 (standard setup vs. naïve implemen-
tation of the sampling approach without backward probabilities and smoothing).

While it is technically possible to “back-sample” phrase translation candidates by
performing the sampling and gathering of counts inversely for each phrase translation
candidate, this would greatly increase the computational effort required at translation
time, and slow down the decoder. A convenient and effective short-cut, however,
is to simply scale the target-side global phrase occurence counts of each translation

2http://www.statmt.org/wmt14/translation-task.html#download
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candidate by the proportion of sample size to total source phrase count:

p (source | target) ≈ joint phr. count in sample
total target phr. count · total source phr. count

# of source phr. sampled (1)

As Line 6 in Tab. 1 shows, this method narrows the performance gap between con-
ventional systems and sampling phrase tables, althout it does not perform as well as
“proper” computation of the backwards probabilities (cf. Line 4 in the table).

The second disadvantage of the sampling approach is that it cannot use the stan-
dard smoothing techniques used to compute smoothed phrase table scores in con-
ventional phrase tables, i.e. Good-Turing or Kneser-Ney, as these require global in-
formation about the phrase table that is not available when sampling. The results in
Lines 4 and 6 (vs. Line 2) confirm the finding by Foster et al. (2006) that phrase table
smoothing improves translation quality.

One particular problem with maximum likelihood (ML) estimates in the context
of translation modeling is the over-estimatation of the observations in small samples.
The smaller the sample, the bigger the estimation error. Since the decoder is free
to choose the segmentation of the input into source phrases, it has an incentive to
pick long, rare phrases. The smaller sample sizes result in bigger over-estimation of
the true translation probabilities. This in turn leads to higher model scores, which is
what the decoder aims for. Alas, in this case higher model scores usually do not mean
higher translation quality — ML estimates introduce modelling errors. Smoothing
dampens this effect.
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Figure 3. Lower bound of binomial
confidence interval for success rate 1

3

In lieu of the established smoothing
techniques, we counteract the lure of
small sample sizes by replacing max-
imum likelihood estimates with the
lower bound of the binomial confidence
interval (Clopper and Pearson, 1934) for
the observed counts in the actual sam-
ple, at an appropriate level of confi-
dence.3 Figure 3 shows the “response
curve” of this method for a constant suc-
cess rate of 1/3, as the underlying sam-
ple size increases. In practice, a confidence level of 99% appears to be a reasonable
choice: in our German-to-English experiments, using the lower bound of the binomial
confidence interval at this level brought the BLEU performance of the system with a
sampling phrase table back to the level of decoding with a conventional phrase table
(cf. Line 8 vs. Line 2 in Tab. 1).

3An alternative is the use of additional features that keep track of quantized raw joint phrase counts,
e.g., how many phrase translations used in a translation hypothesis were actually observed at most once,
twice, three times, or more frequently (Mauser et al., 2007).
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Another concern about sampling phrase tables is speed. After all, phrase extrac-
tion and assembly of phrase table entries on the fly do require more computation at
translation time. However, caching of entries once created as well as multi-threaded
sampling make the current implementation of sampling phrase tables in Moses very
competitive with their alternatives.

A comparision of translation times for a large French–English system with sam-
pling phrase tables vs. the compressed phrase tables of Junczys-Dowmunt (2012)
(CompactPT) is given in Tab. 3 (Sec. 7) below. CompactPT is the fastest phrase table
implementation available in Moses for translation in practice.

3. Lexicalised reordering model

Lexicalized reordering models improve the quality of translation (Galley and Man-
ning, 2008). Sampled lexicalised reordering models were not available for the work
presented in Germann (2014), but have been implemented since. Our sampling proce-
dure keeps track of the necessary information for hierarchical lexicalized reordering
(Galley and Manning, 2008) and communicates this information to the lexicalised re-
ordering model.

4. Dynamic updates

One special feature of the sampling phrase table implementation in Moses is that it al-
lows to add parallel text dynamically through an RPC call when moses is run in server
mode. This is useful, for example, when Moses serves as the MT back-end in an inter-
active post-editing scenario, where bilingual humans post-edit the MT output. Dy-
namic updates allow immediate exploitation of the newly created high-quality data
to improve MT performance on the spot.

To accommodate these updates, the phrase table maintains two separate bitexts:
the memory-mapped, static background bitext whose build process was just described,
and a dynamic foreground bitext that is kept entirely in-memory. The phrase table’s
built-in feature functions can be configured to compute separate scores for foreground
and background corpus, or to simply pool the counts. Details for use of this feature
are available in the Moses online documentation.4

5. Building and using sampling phrase tables in Moses

5.1. Moses compilation

Compile Moses as usual, but with the switch --with-mm:5
./bjam --with-mm --prefix=...

4http://www.statmt.org/moses

5Suffix-array based sampling phrase tables are scheduled to be included with the standard built soon.
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The binaries mtt-build, symal2mam, and mmlex-build will be placed in the same direc-
tory as the moses executable.

5.2. Binarizing the word-aligned parallel corpus

Binarisation converts the corpus from a text representation into large arrays of 32-bit
word IDs, and creates the suffix arrays. Word alignment information is also converted
from a text representation (symal output format) to a binary format. In addition, a
probabilistic word translation lexicon is extracted from the word-aligned corpus and
also stored in binary format. All files are designed to be mapped directly in to memory
for fast loading.

Let corpus be the base name of the parallel corpus. The tags src and trg are lan-
guage tags that identify the source and the target language. Normally, these tags are
mnemonic tags such as en, fr, de, etc.

• corpus.src is the source side of the corpus (one sentence per line, tokenized);
• corpus.trg is the respective target side in the same format;
• corpus.src-trg.symal is the word alignment between the two in the format pro-

duced by the symal word alignment symmetriser;
• /some/path/ is the path where the binarized model files will be stored. It must ex-

ist prior to running the binarizers. The path specification may include a file pre-
fix bname. for the individual file names, in which case /some/path/bname. should
be used instead of /some/path/ in all steps.

Binarisation consists of four steps, the first three of which can be run in parallel. The
Step 1: binarise source side: mtt-build < corpus.src -i -o /some/path/src
Step 2: binarise target side: mtt-build < corpus.trg -i -o /some/path/trg
Step 3: binarise word alignments

symal2mam < corpus.src-trg.symal /some/path/src-trg.mam
Step 4: produce a word lexicon for lexical scoring

mmlex-build corpus. src trg -o /some/path/src-trg.lex
Steps 1 and 2 will produce 3 files each: a map from word strings to word IDs and vice
versa (*.tdx), a file with the binarized corpus (*.mct), and the corresponding suffix
array (*.sfa). Steps 3 and 4 produce one file each (*.mam and *.lex, respectively).

5.3. Setting up entries in the moses.ini file

In the section [feature], add the following two entries.
LexicalReordering name=DM0 type=hier-mslr-bidirectional-fe-allff
Mmsapt name=PT0 lrfunc=DM0 path=/some/path/ L1=src L2=trg sample=1000

Note that the value of the path parameter must end in ‘/’ or ‘.’, depending on whether
it points to a directory or includes a file name prefix. The value of the parameter
lrfunc must match the name of the lexical reordering feature.
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5.4. Setting up sampling phrase tables in EMS

In Moses’s Experiment Management System (EMS), the use of sampling phrase tables
can be specified by adding the following two lines to the EMS configuration file.

mmsapt = "sample=1000"
binarize-all = $moses-script-dir/training/binarize-model.perl

6. Configuring the phrase table

The phrase table implementation offers numerous configuration options. Due to space
constraints, we list only the most important ones here; the full documentation can be
found in the online Moses documentation at http://statmt.org/moses. All options
can be specified in the phrase table’s configuration line in moses.ini in the format
key=value. Below, the letter ‘n’ designates numbers in N, ‘f ’ floating point numbers,
and ‘s’ strings.

6.1. General Options

sample=n the maximum number of samples considered per source phrase.
smooth=f the “smoothing” parameter. A value of 0.01 corresponds to a 99% confi-

dence interval.
workers=n the degree of parallelism for sampling. By default (workers=0), all avail-

able cores are used. The phrase table implements its own thread pool; the gen-
eral Moses option threads has no effect here.

cache=n size of the cache. Once the limit is reached, the least recently used entries
are dropped first.

ttable-limit=n maximum number of distinct translations to return.
extra=s path to additional word-aligned parallel data to seed the foreground corpus

for use in an interactive dynamic scenario where phrase tables can be updated
while the server is running. This use case is explained in more detail in Germann
(2014).

6.2. Feature Functions

Currently, word-level lexical translation scores are always computed and provided.
Below we list some core feature scores that the phrase table can provide. A compre-
hensive list including experimental features is provided online at http://statmt.org/
moses.
pfwd=g[+] forward phrase-level translation probability. If g+ is specified, scores are

computed and reported separately for the static background and the dynamic
foreground corpus. Otherwise, the underlying counts are pooled.

pbwd=g[+] backwards phrase-level translation probability with the same interpre-
tation of the value specified as for pfwd.
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source sentence pairs French tokens English tokens
CommonCrawl 3.2 M 86 M 78 M
EuroParl 2.0 M 58 M 52 M
Fr–En Gigaword 21.4 M 678 M 562 M
News Commentary 0.2 M 6 M 5 M
UN 12.3 M 367 M 318 M
Total for TM training 39.1 M 1,185 M 1,016 M
News data for LM training 140.0 M 2,874 M

Table 2. Corpus statistics for the parallel WMT-2015 French-English training data.

lenrat={0|1} phrase length ratio score (off/on). Phrase pair creation is modelled as
a Bernoulli process with a biased coin: ‘heads’: produce a word in L1, ‘tails’:
produce a word in L2. The bias of the coin is determined by the ratio of the
lengths (in words) of the two sides of the training corpus. This score is the log
of the probability that the phrase length ratio is no more extreme (removed from
the mean) than observed.

rare=f rarity penalty: f
f+j

, where j is the phrase pair joint count. This feature is always
computed on the pooled counts of foreground and background corpus.

prov=f provenance reward: j
f+j

. This feature is always computed separately for fore-
ground and background corpus.

7. Performance on a large dataset
Table 3 shows build times and translation performance of two systems built with
the large French–English data set available for the WMT-2015 shared translation task
(cf. Tab. 2). The first system uses a pruned conventional phrase table binarized as a
compact phrase table (Junczys-Dowmunt, 2012) (tuning was performed with an un-
pruned, filtered in-memory phrase table); the other system uses a sampling phrase
table. The systems were tuned on 760 sentence pairs from the newsdiscussdev2015
development set and evaluated on the newsdiscusstest2015 test set.

For technical reasons, we were not able to run the build processes on dedicated
machines with identical specifications; build times reported are therefore only ap-
proximate numbers. To give the conventional phrase table construction process the
benefit of the doubt, the data binarization for the sampling phrase table was per-
formed on a less powerful machine (8 cores) than conventional phrase table construc-
tion (24-32 cores), although not all steps in the process can utilize multiple cores. Nev-
ertheless, even under these slightly unfair conditions the time savings of the sampling
approach are obvious. The translation speed experiments were performed with cube
pruning (pop limit: 1000) on the same 24-core machine with 148GB of memory, trans-
lating the test set of 1500 sentences (30,000 words) in bulk using all available cores on
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conventional system sampling phrase tables
phrase table build time ≫ 20 hrs. ca. 1h 30m
Model features: total: 28 total: 18
• word penalty yes yes
• phrase penalty yes yes
• distortion distance yes yes
• language model 5-gram Markov model 5-gram Markov model
• TM: phrase transl. forward, backward forward, backward

w/ Good-Turing sm. lower bound of 99% conf. interv.
• TM: lexical transl. forward, backward forward, backward
• rare counts 6 bins: 1/2/3/4/6/10 rarity penalty
• lex. reord. model hierarchical-fe-mslr-all-ff hierarchical-fe-mslr-all-ff
• phrase length ratio no yes
Evaluation
(newsdiscusstest2015) 3 independend tuning runs

run BLEU 95% conf. interval
via boostrap resampling

#1 33.16 32.07 – 34.21
batch MIRA #2 33.42 32.42 – 34.52

#3 33.30 32.16 – 34.39
#1 32.19 31.15 – 33.13

MERT #2 32.93 31.90 – 34.08
#3 31.53 30.39 – 32.68

run BLEU 95% conf. interval
via boostrap resampling

#1 33.16 31.96 – 34.27
#2 32.89 31.74 – 34.04
#3 33.12 32.03 – 34.20
#1 34.25 33.11 – 35.37
#2 34.11 32.91 – 35.37
#3 33.80 32.69 – 34.90

translation speed
unpruned top30

threads 8 24
wrds./sec. (sec./wrd.) 13 (0.075) 547 (0.002)

snts./sec. (sec./snt.) 0.7 (1.498) 27 (0.037)
BLEU (best system) 33.42 33.55

sample=1000 sample=100
24 24

300 (0.003) 501 (0.002)
15 (0.067) 25 (0.040)

34.25 33.82

Table 3. Features used and translation performance for the WMT15 fr–en experiments.

the machine. Prior to the start of Moses, all model files were copied to /dev/null to
push them into the operating system’s file cache. Due to race conditions between
threads, we limited the number of threads to 8 for the legacy system with the un-
pruned phrase table.

Notice that in terms of BLEU scores, the two systems perform differently with
different tuning methods. The lower performance of MERT for the conventional sys-
tem with 28 features is not surprising: it is well known that MERT tends to perform
poorly when the number of features exceeds 20. That MIRA fares worse than MERT
for the sampling phrase tables may be due to a sub-optimal choice of MIRA’s meta-
parameters (cf. Hasler et al., 2011 for details on MIRA’s meta-parameters).
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8. Conclusion

We have presented an efficient implementation of sampling phrase tables in Moses.
With the recent integration of hierarchical lexicalized reordering models into the ap-
proach, sampling phrase tables reach the same level of translation quality while ap-
proaching CompactPT in terms of speed. In addition, sampling phrase tables offer the
following advantages that make them an attractive option both for experimentation
and research, and for use in production environments:

• They are much faster to build.
• They offer flexibility in the choice of feature functions used. Feature functions

can be added or disabled without creating the need to re-run the entire phrase
table construction pipeline.

• They have a lower memory footprint. It is not necessary to filter or prune the
phrase tables prior to translation.

9. Availability

Sampling phrase tables are included in the master branch of Moses in the Moses github
repository at http://github.com/moses-smt/mosesdecoder.git.
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