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bstract

This paper proposes a neural network approach for forecasting short-term electricity prices. Almost until the end of last century, electricity
upply was considered a public service and any price forecasting which was undertaken tended to be over the longer term, concerning future
uel prices and technical improvements. Nowadays, short-term forecasts have become increasingly important since the rise of the competitive
lectricity markets. In this new competitive framework, short-term price forecasting is required by producers and consumers to derive their bidding

trategies to the electricity market. Accurate forecasting tools are essential for producers to maximize their profits, avowing profit losses over the
isjudgement of future price movements, and for consumers to maximize their utilities. A three-layered feedforward neural network, trained by

he Levenberg-Marquardt algorithm, is used for forecasting next-week electricity prices. We evaluate the accuracy of the price forecasting attained
ith the proposed neural network approach, reporting the results from the electricity markets of mainland Spain and California.
2006 Elsevier B.V. All rights reserved.
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. Introduction

All over the world, the electricity industry is converging
oward a competitive framework and a market environment is
eplacing the traditional monopolistic scenery for the electric-
ty industry. In 1982, Chile was a pioneer country to introduce
ew market-oriented approaches in the electricity industry sec-
or, later spreading to countries such as England and Wales,
orway, Argentina, Australia, Spain, and various regions of the
nited States.
In the regulated framework, electricity supply was consid-
red a public service with the electric energy industry organized
s regulated and vertically integrated, joining generation, trans-
ission and distribution of electricity in government owned
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onopolistic companies. Thus, predicting future prices involved
atching regional electricity demand to regional electricity sup-

ly. The future regional demand was estimated by escalating
istorical data, and the regional supply was determined by stack-
ng up existing and announced generation units in some wise
rder of their variable operating costs [1].

As such, electricity prices tended to reflect the government’s
ocial and industrial policy, and any price forecasting which was
ndertaken was really based on average costs. In this respect, it
ended to be over the longer term, taking a view on fuel prices,
echnological innovation and generation efficiency [2]. Hence,
n the regulated framework, the electric energy industry’s atten-
ion mainly focused on load forecasting, existing little need for
ools hedging against price risk given the deterministic nature
f electricity prices.

Electricity has been turned into a traded commodity in nowa-

ays, to be sold and bought at market prices, although with
istinct characteristics since it cannot be queued and stored eco-
omically with the exception of pumped-storage hydro plants
hen appropriate conditions are met. Two ways of trading are
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sually assumed: the pool trading and bilateral contracts trading.
n the pool trading, producers and consumers submit bids respec-
ively for selling and buying electricity on established intervals,
ypically on an hourly basis. Finally, a market operator clears
he market by accepting the appropriate selling and buying bids,
iving rise to the electricity prices.

The new electricity industry competitive framework, coming
rom the deregulation of the electricity markets, was intended to
ncourage competition among companies in order to decrease
he cost of electricity. Unfortunately, occurrences seldom hap-
ening in the regulated framework, such as outages, blackouts
nd price peaks are now subject of increasing concern. More-
ver, deregulation brings electricity prices uncertainty, placing
igher requirements on forecasting. In particular, accuracy in
orecasting these electricity prices is very critical, since more
ccuracy in forecasting reduces the risk of under/over estimat-
ng the revenue from the generators for the power companies
nd provides better risk management [3]. Forecast errors have
ignificant implications for profits, market shares and ultimately
hareholder value [4].

An accurate forecast of electricity prices has become a very
mportant tool for producers and consumers. In the short-term, a
roducer needs to forecast electricity prices to derive its bidding
trategy in the pool and to optimally schedule its electric energy
esources [5]. In a regulated environment, traditional generation
cheduling of energy resources was based on cost minimization,
atisfying the electricity demand and all operating constraints
6]. Therefore, the key issue was how to accurately forecast elec-
ricity demand. In a deregulated environment, since generation
cheduling of energy resources, such as hydro [7] and thermal
esources [8], is now based on profit maximization [9], it is an
ccurate price forecasting that embodies crucial information for
ny decision making. Consumers need short-term price forecasts
or the same reasons as producers.

It should be noted that price series exhibit greater complex-
ty than demand series, given specific characteristics existing in
rice series. In most competitive electricity markets the series
f prices presents the following features: high frequency, non-
onstant mean and variance, daily and weekly seasonality, cal-
ndar effect on weekend and public holidays, high volatility and
igh percentage of unusual prices [10].

Price forecasting has become in recent years an important
esearch area in electrical engineering, and several techniques
ave been tried out in this task. In general, hard and soft comput-
ng techniques [11] could be used to predict electricity prices.

The hard computing techniques, where an exact model of
he system is built and the solution is found using algorithms
hat consider the physical phenomena that govern the process,
nclude time series models [10], auto regressive — AR models
9] and auto regressive integrated moving average — ARIMA
odels [12]. This approach can be very accurate, but it requires
lot of information, and the computational cost is very high

13]. More recently, generalized autoregressive conditional het-

roskedastic — GARCH models [14] and the Wavelet-ARIMA
echnique [15] have also been proposed.

The soft computing techniques, namely artificial intelligence
echniques, do not model the system; instead, they find an
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a
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ppropriate mapping between the several inputs and the electric-
ty price, usually learned from historical examples, thus being
omputationally more efficient. In particular, neural networks
pproaches, that have been widely used for load forecasting with
uccessful performance [16,17], are now used to predict elec-
ricity prices [18–24], using Fourier and Hartley transforms as
lters to the price data [25], using extended Kalman filter [26]
r combined with fuzzy logic in a hybrid approach [13,27,28].

Neural networks and ARIMA models are often compared
ith mixed conclusions in terms of forecasting capacity. A

omparison of neural networks and ARIMA models to forecast
ommodity prices showed that neural network forecasts were
ore accurate than ARIMA forecasts. Moreover, the success of
RIMA models is conditional upon the underlying data gener-

ting process being linear, while neural networks can account
or nonlinear relationships [29]. Hybrid methodologies, that
ombine neural networks and ARIMA models, have been also
roposed [30] to take advantage of the unique strength of each
odel in linear and nonlinear modeling.
Neural networks are simple, but powerful and flexible tools

or forecasting, provided that there are enough data for training,
n adequate selection of the input–output samples, an appropri-
te number of hidden units and enough computational resources
vailable. Also, neural networks have the well-known advan-
ages of being able to approximate any nonlinear function and
eing able to solve problems where the input–output relationship
s neither well defined nor easily computable, because neu-
al networks are data-driven. Three-layered feedforward neural
etworks are specially suited for forecasting, implementing non-
inearities using sigmoid functions for the hidden layer and linear
unctions for the output layer.

This paper proposes a neural network approach to fore-
ast next-week prices in the electricity market of mainland
pain. The Levenberg-Marquardt algorithm is used to train a

hree-layered feedforward neural network. Previously reported
pproaches to forecast prices in the electricity market of main-
and Spain were mainly based on time series models, namely the
RIMA technique. Neural networks approaches are compara-

ively easy to implement and show good performance being less
ime consuming. The proposed neural network approach is also
pplied to forecast next-week prices in the California electricity
arket, to further assess the validity of the approach.
This paper is structured as follows. Section 2 presents the

eural network approach. Section 3 provides the importance of
rice in electricity markets and the main factors that influence it,
s well as the different criterions used to assess the validity of the
roposed approach. Section 4 presents the case studies, based
n real-world electricity markets, to evaluate the accuracy of the
eural network approach in forecasting short-term electricity
rices. Section 5 outlines the conclusions.

. Neural network approach
Neural networks are highly interconnected simple processing
nits designed in a way to model how the human brain performs
particular task [31]. Each of those units, also called neurons,

orms a weighted sum of its inputs, to which a constant term
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Fig. 1. Internal structure of a neuron.

alled bias is added. This sum is then passed through a transfer
unction: linear, sigmoid or hyperbolic tangent. Fig. 1 shows the
nternal structure of a neuron.

Multilayer perceptrons are the best known and most widely
sed kind of neural network. Networks with interconnections
hat do not form any loops are called feedforward. Recurrent or
on-feedforward networks in which there are one or more loops
f interconnections are used for some kinds of applications [32].

The units are organized in a way that defines the network
rchitecture. In feedforward networks, units are often arranged
n layers: an input layer, one or more hidden layers and an out-
ut layer. The units in each layer may share the same inputs,

ut are not connected to each other. Typically, the units in the
nput layer serve only for transferring the input pattern to the
est of the network, without any processing. The information is
rocessed by the units in the hidden and output layers. Fig. 2

ig. 2. Example of a three-layered feedforward neural network model with a
ingle output unit.
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hows the architecture of a generic three-layered feedforward
eural network model. The neural network considered is fully
onnected in the sense that every unit belonging to each layer is
onnected to every unit belonging to the adjacent layer.

In order to find the optimal network architecture, several
ombinations were evaluated. These combinations included net-
orks with different number of hidden layers, different number
f units in each layer and different types of transfer functions.
e converged to a configuration consisting of a one hidden layer

hat uses a hyperbolic tangent sigmoid transfer function, defined
s:

(s) = 1 − e−s

1 + e−s
(1)

here s is the weighted input of the hidden layer, and f(s) is the
utput of the hidden layer. The output layer has only one unit
ith a pure linear transfer function.
This configuration has been proven to be a universal mapper,

rovided that the hidden layer has enough units [33]. On the one
and, if there are too few units, the network will not be flexible
nough to model the data well and, on the other hand, if there
re too many units, the network may overfit the data. Typically,
he number of units in the hidden layer is chosen by trial and
rror, selecting a few alternatives and then running simulations
o find out the one with the best results.

Forecasting with neural networks involves two steps: train-
ng and learning. Training of feedforward networks is normally
erformed in a supervised manner. One assumes that a train-
ng set is available, given by the historical data, containing both
nputs and the corresponding desired outputs, which is presented
o the network. The adequate selection of inputs for neural net-
ork training is highly influential to the success of training. In

he learning process a neural network constructs an input–output
apping, adjusting the weights and biases at each iteration based

n the minimization of some error measure between the output
roduced and the desired output. Thus, learning entails an opti-
ization process. The error minimization process is repeated

ntil an acceptable criterion for convergence is reached.
The knowledge acquired by the neural network through the

earning process is tested by applying new data that it has never
een before, called the testing set. The network should be able
o generalize and have an accurate output for this unseen data
13]. It is undesirable to overtrain the neural network, meaning
hat the network would only work well on the training set, and
ould not generalize well to new data outside the training set

20]. Overtraining the neural network can seriously deteriorate
he forecasting results. Also, providing the neural network with
oo much or wrong information can confuse the network and
t can settle on weights that are unable to handle variations of
arger magnitude in the input data [25].

The most common learning algorithm is the backpropagation
lgorithm [18,19], in which the input is passed layer through
ayer until the final output is calculated, and it is compared to

he real output to find the error. The error is then propagated
ack to the input adjusting the weights and biases in each layer.
he standard backpropagation learning algorithm is a steepest
escent algorithm that minimizes the sum of square errors.
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However, the standard backpropagation learning algorithm is
ot efficient numerically and tends to converge slowly. In order
o accelerate the learning process, two parameters of the back-
ropagation algorithm can be adjusted: the learning rate and the
omentum. The learning rate is the proportion of error gradi-

nt by which the weights should be adjusted. Larger values can
ive a faster convergence to the minimum but also may produce
scillation around the minimum. The momentum determines the
roportion of the change of past weights that should be used in
he calculation of the new weights [19].

An algorithm that trains a neural network 10–100 times faster
han the usual backpropagation algorithm is the Levenberg-

arquardt algorithm. While backpropagation is a steepest
escent algorithm, the Levenberg-Marquardt algorithm is a vari-
tion of Newton’s method [34].

Newton’s update for minimizing a function V(x) with respect
o the vector x is given by:

x = −[∇2V (x)]
−1∇V (x) (2)

here �2V(x) is the Hessian matrix and �V(x) is the gradient
ector. Assuming that V(x) is the sum of square errors, given by:

(x) =
N∑

h=1

e2
h(x) (3)

hen:

V (x) = 2JT(x)e(x) (4)

2V (x) = 2JT(x)J(x) + 2S(x) (5)

here e(x) is the error vector, J(x) is the Jacobian matrix given
y:

(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1(x)

∂x1

∂e1(x)

∂x2
· · · ∂e1(x)

∂xn

∂e2(x)

∂x1

∂e2(x)

∂x2
· · · ∂e2(x)

∂xn

...
...

. . .
...

∂eN (x)

∂x1

∂eN (x)

∂x2
· · · ∂eN (x)

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

nd where S(x) is given by:

(x) =
N∑

h=1

eh(x)∇2eh(x) (7)

Neglecting the second-order derivatives of the error vector,
.e., assuming that S(x) ≈ 0, the Hessian matrix is given by:

2V (x) = 2JT(x)J(x) (8)

nd substituting Eqs. (8) and (4) into Eq. (2) we obtain the
auss–Newton update, given by:

T −1 T
x = −[J (x)J(x)] J (x)e(x) (9)

The advantage of Gauss–Newton over the standard Newton’s
ethod is that it does not require calculation of second-order

erivatives. Nevertheless, the matrix JT(x) J(x) may not be

d
s
t
r
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nvertible. This is overcome with the Levenberg-Marquardt algo-
ithm, which consists in finding the update given by:

x = −[JT(x)J(x) + μI]
−1

JT(x)e(x) (10)

here parameter μ is conveniently modified during the algo-
ithm iterations.

When μ is very small or null the Levenberg-Marquardt algo-
ithm becomes Gauss-Newton, which should provide faster con-
ergence, while for higher μ values, when the first term within
quare brackets of Eq. (10) is negligible with respect to the sec-
nd term within square brackets, the algorithm becomes steepest
escent. Hence, the Levenberg-Marquardt algorithm provides a
ice compromise between the speed of Gauss-Newton and the
uaranteed convergence of steepest descent [35].

A three-layered feedforward neural network trained by the
evenberg-Marquardt algorithm is proposed in this paper for

orecasting next-week electricity prices. The neural network
oolbox of MATLAB was selected due to its flexibility and sim-
licity [36]. The transfer functions used for the hidden and output
ayers are, respectively, MATLAB nonlinear and linear transfer
unctions: tansig, a hyperbolic tangent sigmoid transfer function
ith outputs between −1 and 1; purelin, a pure linear transfer

unction. At the training stage, various numbers of units in the
idden layer were tested. The best results were produced with
ve hidden units. The output layer has one unit, which was set up

o output the next-week electricity prices. Historical data from
he markets, namely previous electricity prices, are the main
nputs to train the neural network proposed in this paper.

. Electricity prices forecasting

The electricity price is of extreme importance in a competitive
lectricity market to all the market players, and in particular for
roducers and consumers. A priori knowledge of the electricity
rice is important for risk management and may represent an
dvantage for a market player facing competition. For companies
hat trade in electricity markets, the ability to forecast prices

eans that the company is able to strategically set up bids for
he spot market in the short-term.

A good price forecasting tool in deregulated markets should
e able to capture the uncertainty associated with those prices.
ome of the key uncertainties are fuel prices, future additions
f generation and transmission capacity, regulatory structure
nd rules, future demand growth, plant operations and climate
hanges [1].

Electricity price is influenced by many factors: histori-
al prices and demand, bidding strategies, operating reserves,
mports, temperature effect, predicted power shortfall and gen-
ration outages. The daily average price in the electricity market
f mainland Spain at 2002 is shown in Fig. 3.

Some factors are more important than others and practically
e can only consider those more important. The amount of

ifferent types of reserves, power import and predicted power
hortfall do not improve the forecast at all [13], the effect of the
emperature and other weather related variables can be incorpo-
ated in the demand, and unit outage information is generally
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used to forecast this summer week are from July 8 to August
ig. 3. Daily average price in the electricity market of mainland Spain at 2002,
n euro per megawatt hour.

roprietary thus not available to all market agents. Also, in the
ase of neural networks and ARIMA models, historical demand
ata does not significantly improve predictions [5]. Extremely
igh prices with no assessable reasons are the consequence of
idding strategies, which are confidential. We decided to use
nly historical price data to forecast the future prices, not only
ecause this selection enables a fair comparison between the
RIMA models in [12,15] and our neural network approach,
ut also because it reveals a good compromise between accu-
acy and time consumption.

The shape of price profiles presents seasonality characteris-
ics, usually day and week cycles. The price profile is modified
rom day to day and week to week, to reflect changes in the
lectricity market behaviour. Typically, daily price profiles are
lassified as weekdays, from Monday to Friday, and weekend
ays, Saturday and Sunday, which are different. Another consid-
ration besides weekend is public holiday, known as the calendar
ffect, since price profiles on non-holidays are particularly dif-
erent from those on public holidays.

To evaluate the accuracy of the neural network approach in
orecasting electricity prices, different criterions are used. This
ccuracy is computed in function of the actual market prices that
ccurred. The mean absolute percentage error — MAPE crite-
ion, the sum squared error — SSE criterion, and the standard
eviation of error — SDE criterion, are defined as follows.

The MAPE criterion is given by:

APE = 100

N

N∑
h=1

|p̂h − ph|
p̄

(11)
¯ = 1

N

N∑
h=1

ph (12)
1
2
O
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here p̂h and ph are respectively the forecasted and actual elec-
ricity prices at hour h, p̄ is the average price of the forecasting
eriod and N is the number of forecasted hours.

Electricity price can rise to tens or even hundreds of times of
ts normal value at particular hours. It may drop to zero or even
o negative at other hours. Hence, the average price was used
n Eq. (11) to avoid the problem caused by prices close to zero
37].

The SSE criterion is given by:

SE =
N∑

h=1

(p̂h − ph)2 (13)

The SDE criterion is given by:

DE =
√√√√ 1

N

N∑
h=1

(eh − ē)2 (14)

h = p̂h − ph (15)

¯ = 1

N

N∑
h=1

eh (16)

here eh is the forecast error at hour h and ē is the average error
f the forecasting period.

. Case studies

The proposed neural network approach is applied to forecast
ext-week prices in the electricity market of mainland Spain
38] and the California electricity market [39].

Price forecasting is computed using historical data of year
002 for the Spanish market. It should be noted that the Span-
sh market is a duopoly with a dominant player, resulting in
rice changes related to the strategic behaviour of the dominant
layer, which are hard to predict. For the sake of a fair compar-
son, the fourth week of February, May, August, and November
re selected, i.e., weeks with particularly good price behaviour
re deliberately not chosen. This results in an uneven accuracy
istribution throughout the year that reflects reality [15]. For the
alifornian market, one week of year 2000 has been selected to

urther assess the validity of the proposed approach.
To build the forecasting model for each of the considered

eeks, the information available includes hourly historical price
ata of the 42 days previous to the day of the week whose prices
re to be forecasted. Very large training sets should not be used
o avoid overtraining during the learning process.

For the Spanish market, the winter week is from February 18
o February 24, 2002; the hourly data used to forecast this winter
eek are from January 7 to February 17, 2002. The spring week

s from May 20 to May 26, 2002; the hourly data used to forecast
his spring week are from April 8 to May 19, 2002. The summer
eek is from August 19 to August 25, 2002; the hourly data
8, 2002. The fall week is from November 18 to November 24,
002; the hourly data used to forecast this fall week are from
ctober 7 to November 17, 2002.
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ig. 4. Winter week for the Spanish market: actual prices, solid line, together
ith the forecasted prices, dashed line, in euro per megawatt hour.

For the Californian market, the spring week is from April 3
o April 9, 2000. This week is prior in time to the beginning of
he dramatic price volatility period that took place afterwards
12]. The hourly data used to forecast this spring week are from
ebruary 21 to April 2, 2000.

Figs. 4–8 show the numerical results with the proposed
pproach for the five weeks studied—four weeks for the Span-
sh market and one week for the Californian market. Each figure

hows the forecasted prices, dashed line, together with the actual
rices, solid line.

Table 1 presents the values for the criterions to evaluate the
ccuracy of the neural network approach in forecasting elec-

ig. 5. Spring week for the Spanish market: actual prices, solid line, together
ith the forecasted prices, dashed line, in euro per megawatt hour.

2

a

F
t

ig. 6. Summer week for the Spanish market: actual prices, solid line, together
ith the forecasted prices, dashed line, in euro per megawatt hour.

ricity prices. The first column indicates the market, the second
olumn indicates the week, the third column presents the MAPE,
he fourth column presents the square root of SSE, and the fifth
olumn presents the SDE.

The MAPE for the Spanish market has an average value of
.91% and for the Californian market has an average value of
.09%. All the cases have been run on a PC with 512 MB of
AM and a 1.6-GHz-based processor. Running time is less than

0 s for each week.

Table 2 shows a comparison between the neural network
pproach and the ARIMA technique for the MAPE criterion.

ig. 7. Fall week for the Spanish market: actual prices, solid line, together with
he forecasted prices, dashed line, in euro per megawatt hour.
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Fig. 8. Spring week for the Californian market: actual prices, solid line, together
with the forecasted prices, dashed line, in euros per megawatt hour.

Table 1
Statistical analysis of the weekly forecasting error attained with the neural net-
work approach for the five weeks analyzed

Market Week MAPE
√

SSE SDE

Spanish Winter 5.23% 37.92 1.82
Spring 5.36% 39.63 1.91
Summer 11.40% 81.14 4.23
Fall 13.65% 76.92 3.86
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alifornian Spring 3.09% 15.93 0.81

lso, the MAPE criterion for a naı̈ve procedure is presented.
he naı̈ve procedure establishes just that the prices forecasted

or a given week are the actual prices of the previous week,
herefore, using a no-change criterion.

The neural network approach outperforms the ARIMA
echnique and the naı̈ve procedure in all considered weeks.

oreover, the neural network approach is much less time
onsuming than the ARIMA technique, since the CPU time
equired by the ARIMA technique to forecast prices is about
min. Hence, the neural network approach provides a very

owerful tool of easy implementation for forecasting electricity
rices.

able 2
omparative MAPE results between the neural network approach, the ARIMA

echnique and the naı̈ve procedure

arket Week Neural networks ARIMA Naı̈ve

panish Winter 5.23% 6.32% 7.68%
Spring 5.36% 6.36% 7.27%
Summer 11.40% 13.39% 27.30%
Fall 13.65% 13.78% 19.98%

alifornian Spring 3.09% 5.01% 6.98%

[

[

[

[

[
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. Conclusion

This paper proposes a neural network approach to forecast
ext-week prices in the electricity markets of mainland Spain
nd California. The Levenberg-Marquardt algorithm is used to
rain the network.

Average errors in the Spanish market are around 9% for the
eeks under study, and around 3% in the stable period of the Cal-

fornian market. The results presented confirm the considerable
alue of the proposed neural network approach in forecasting
hort-term electricity prices, taking into account results pre-
iously reported in the technical literature from the ARIMA
echnique.
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