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Abstract

I argue for a rule-based account of negation answering to both con-
structivist and relevantist demands. We can give such an account in
terms of basic contrarieties, and by co-inductively defining proofs and
disproofs, without having to make explicit appeal to the absurdity con-
stant |. If we do make such an appeal, it is to | only as a structural
punctuation marker within deductions, a device that allows us to as-
similate disproofs to the general class of proofs. | does not, in this
role, need to be governed by any ‘introduction’ or ‘elimination’ rules of
its own. Nor does | need to be treated as a propositional constant eli-
gible for embedding within other sentences. But even if we do treat L
as an embeddable propositional constant, it does not follow that nega-
tion can, let alone should, be defined in terms of it. Negation should
be taken as primitive, and one should explain how a grasp of its sense
arises from one’s prior grasp of primitive metaphysical contrarieties
within an interpreted language.

*To appear in D. Gabbay and H. Wansing, eds., Negation, Kluwer Academic Press.
Much of the stimulus for this essay derives from exchanges with Michael Hand.



1 Introduction

There is a widespread view among logicians that can be summarized as
follows. Absurdity (or falsity) — commonly designated as | — is a propo-
sitional constant. It may be used, with the conditional connective D, to
define negation, so that =A =4 A D L. Therefore, whether or not negation
is correctly to be understood as classical in nature will depend, ultimately,
on the logical properties correctly ascribable to (O and to) L. Moreover,
these properties can be correctly ascribed within systems of propositional
logic that are standard in at least two regards:

1. their deducibility relations are unrestrictedly transitive! and they ad-
mit of a deduction theorem; and

2. they permit at least some non-trivial ‘dilutions on the right’: that is,
they allow that when L follows from a set A of premisses, then by
virtue of that fact alone, some sentence A other than L follows from
A also.?

One variant of this view goes a little further, maintaining that the mean-
ing — and therefore also the logical properties — of | are to be captured
by appropriate rules of natural deduction. This is thought to be analogous
to the way that the meanings — and therefore also the logical properties —
of the connectives and quantifiers are characterized by the rules of natural
deduction that govern them.

Michael Hand holds the view just characterized®. He has interesting
and apposite points to make about how | fares in the respective proposi-
tional systems of minimal, intuitionistic and classical logic. He canvasses
the possibility of an introduction rule for L to balance the absurdity rule

!That this is an underlying systematic assumption worth challenging was the topic of
my essay ‘The Transmission of Truth and the Transitivity of Deduction’, in D.Gabbay
(ed.), What is a Logical System?, Oxford University Press, 1994, pp.161-177. Note that
in sequent calculus, we do not mark inconsistencies explicitly with | on the right, but use
the empty succedent instead.

2This is immediate when the natural deduction system contains the ‘absurdity rule’
(also known as ez falso quodlibet) according to which any sentence may be inferred from
1. Intuitionistic and classical logic both contain the absurdity rule. But minimal logic
also permits non-trivial dilutions on the right. For it has the rule of negation introduction
without any restriction to the effect that =A may be inferred from L only if A has actually
been used as an assumption in the derivation of 1. Thus in minimal logic we have
A,—- A+ =B, even though we do not have A,—-AF B.

3¢Antirealism and Falsity’, this volume.
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conceived of as the elimination rule for 1.# Much of his essay is devoted to
exhibiting alleged difficulties standing in the way of construing —A, when
it is defined as A D 1, as being the genuine negation of A. His conclusion
seems to be one of pessimism about the prospects for a rule-based, anti-
realist or constructivist account of negation via the absurdity constant L.

In this essay I intend to challenge the orthodox assumptions laid out
above in order to undermine this pessimistic conclusion. I shall be consid-
ering the following questions:

1. Is L a genuine propositional constant, eligible to be a constituent of
other sentences?

2. Is A is equivalent to A D L7 and should — be taken as primitive,
rather than defined in terms of L in the usual way?

3. Is an antirealist who accounts for the meanings of the connectives
and quantifiers by appealing to the introduction and elimination rules
governing them committed to giving a slavishly similar account of the
meaning of 17

4. What is the source of the semantic or pragmatic ‘badness’ that L
seeks to register? — and how does the denial = A of A succeed in
laying blame on A for the ‘badness’ in question?

Concerns (1)-(4) are addressed, respectively, in sections 2-5 below. There
will, however, perforce be some degree of overlap among these sections.

“Here one can, without loss of generality, restrict A to be atomic. Then Hand suggests
that the corresponding introduction rule for | should be Dummett’s rule of ‘complete
atomic entailment’:

A B C...
1

where A, B, C, ... is a complete list of the atomic sentences of the language (a list which
may be infinite). This rule was stated by Dummett, in The Logical Basis of Metaphysics,
Harvard University Press, 1991, at p.295.



2 Is | a genuine propositional constant, eligible
to be a constituent of other sentences?

On the face of it, no; unless | is conventionally identified with a particular
‘absurd’ sentence of an already interpreted language. For on this view, of
course, we would permit the embedding of that absurd sentence within other
sentences. Such would be the case with the intuitionistic mathematicians’
identification of | with the atomic arithmetical sentence 0 = 1. The latter
is arithmetically absurd. If one could prove that 0 = 1, then one could prove
any sentence of arithmetic in the language based on the connectives A, V
and D, and the quantifiers 3 and V. (There is an easy inductive proof of this
metatheorem. The main part of the proof involves establishing that if one
could prove 0 = 1 then one would be able to prove m = n for every numeral
m, n in the language of arithmetic. One would also be able to prove any
‘negation’ —A, that is, any sentence of the form A D 0 = 1.) Indeed, it
is this consideration that leads intuitionistic mathematicians, without much
further ado, to endorse the absurdity rule, given their identification of _L
with the sentence 0 = 1.

In my view, however, this is a strategic mistake. Instead of making this
identification, one should rather admit only the atomic rule of inference

0=1
1

Here the occurrence of L is distinct (both as token and as type) from the
occurrence of 0 = 1. Inferring to L is the paradigmatic way of showing
that 0 = 1 is itself absurd. But this is not to make the sentence 0 = 1 type-
identical to the absurdity constant L. That 0 = 1 is absurd is a meaning-fact
arising out of the meanings of 0, = and the successor sign s( ). (For 1 is
simply s(0).) It is the internal composition of the sentence 0 = 1 that both
makes it absurd and prevents it from being a primitive sign for absurdity!
It is absurd to claim that O is identical to 1, in just the same way that is is
absurd to say, of a physical object, that it is in two different spatial locations
at the same time; or of two events, that one was both earlier and later than
the other; or of a visible object, that it is both red all over and green all
over; or to say, when speaking to another person, ‘You and I are numerically
identical, that is, the same person’. Each of these absurd claims can feature
as the premiss A in an inference

A

1



Or, if one wishes to construe the absurd claims in question as consisting
really of a pair of claims (such as ‘this visible object is red all over’ and ‘this
visible object is green all over’), then we have an instance of the general
form

A B

1

where it is now a particular pair of premisses A, B that gives rise to absur-
dity, by virtue of the particular expressions that they involve. But this basic
metaphysico-semantical fact of absurdity could just as well be registered by
the horizontal line:

A B

with nothing below it. More will be made of this simple point in due course.

One should not tie one’s conception of absurdity too closely to any par-
ticular discourse, such as that of arithmetic. If absurdity is a properly
logical notion, it should be discourse-independent. For even on the view
being challenged here, negation is surely discourse-independent, and yet is
to be defined in terms of absurdity. That is why one should refrain from
identifying the absurdity constant | with any particular sentence within a
discourse. For, if one does so, one makes absurdity discourse-specific. Two
unpalatable options would then be the only ones available, which I shall call
the unitary option and the fragmented option respectively:

1. take the arithmetical absurdity 0 = 1 as the only absurdity, and try to
show that it would follow from sentences rightly regarded as absurd
in other discourses (such as discourse about bodies in space and time,
or colour and shape discourse); or

2. designate similar ‘basic absurdities’ in these other discourses, intended
to play the rdle, within those discourses, that 0 = 1 plays within
arithmetical discourse.

The unitary option (1) is extremely difficult to justify, even when one has
the absurdity rule, which on the view in question would be

0=1
A

For the problem is how one would justify inferential passage from patent ab-
surdities in a non-arithmetical discourse to the supposedly primal absurdity



0 = 1! The rule just stated only deals with the converse direction. There
has to be a violation of relevance here.

The fragmented option (2) is likewise extremely difficult to justify since
there is, in general, no specific canonically absurd sentence in a given non-
arithmetical discourse that would be suitably analogous to 0 = 1 in the
arithmetical case. In particular, it is difficult to see how one could meet, in
any other than arithmetical discourse, the standard theorist’s insistence that
the absurdity rule itself should somehow be ‘derived’ once the canonically
absurd sentence, such as 0 = 1, has been identified. It is just too far-fetched
to conceive of ordinary linguistic negations —A in a discourse D as ‘really’
conditional-absurdity claims of the form A O 1, where the constant | in
question is supposed to be some specific sentence, chosen from the discourse
D, such as (say) ‘I am you’ or ‘The Taj Mahal is red all over and the Taj
Mahal is green all over’.

Nor does this point depend on the canonically absurd sentence B chosen.
It has the same force regardless of what actual sentence B might be substi-
tuted for ‘I am you’ or ‘The Taj Mahal is red all over and the Taj Mahal is
green all over’. It is a clearly counterintuitive grammatical suggestion that
explicit negation operators or prefixes (such as the English particles ‘not’,
‘un-’, ‘im-’ etc.) are the surface indicators of some underlying conditional
absurdity (of the form ‘... D B’) at a ‘deeper’, more ‘logical’ level — a
conditional absurdity, moreover, whose consequent B is some other gram-
matical sentence of the language whose identity is completely obscured in
the ‘surface’ form using the negative particle in question!

But even if these linguistic intuitions were to be dismissed in favour
of grander theory, the problem remains, with the fragmented option, that
in each discourse there would be a canonically absurd sentence provincial
to that discourse; and we would still need to show that these respective
canonically absurd sentences were somehow inferentially equivalent, on pain
of not being able to confer a uniform sense on the negation operator across
all discourses. Absurdity is much more cosmopolitan a notion than the
discourse-specific model would make it. And the cosmopolitanism required
could be purchased, it would seem, only at the cost of irrelevance, by simply
stipulating that all the ‘absurdities’ are interdeducible.

I conclude, then, that 1 is not to be regarded as a propositional constant
that may occur as a constituent in other sentences. This alone is enough to
prevent us from defining - A as A D L. We shall presently see that there is
another cogent reason for refraining from such definition.

It remains, in this section, to consider whether, indeed, L should be



adopted as a propositional constant, albeit a non-embeddable one. Suppose
we accept that we are prevented from identifying | with any particular sen-
tence within any given discourse. With what right, then, could we persist
in claiming that L itself may nevertheless still be regarded as (stating) a
proposition? No-one ever utters a non-embeddable sentence that could be
regimented as L. Even a cry of ‘Contradiction!” or ‘That’s absurd!’ is
ineligible for such regimentation, for such a cry is properly a metalinguis-
tic commentary on some argumentative predicament that one’s dialectical
opponent (real or imagined) should realise she is in. Accordingly, an occur-
rence of L is appropriate only within a proof (or a disproof), as a kind of
structural punctuation mark. It tells us where a story being spun out gets
tied up in a particular kind of knot — the knot of patent absurdity, or of
self-contradiction. This much is evident from the usual way that L features
in the natural deduction rules of —-Introduction and —-Elimination:

—(9)
A

-A A “E

-A

I turn now to some reflections on the role played by the absurdity sign L
as a piece of notation within proofs and disproofs involving applications of
these rules.

Suppose one has a logical system for which the existence of proofs is
indicated by the usual turnstile |, a relation of exact deducibility holding
between a set of premisses on the left and a conclusion on the right. The
intuitive meaning of ‘X F A’ is that there is a proof whose conclusion is A
and whose premisses (undischarged assumptions) form the set X. I reckon
any premiss P to X ‘just once’, no matter how often P may have been ‘used’
as an assumption in the proof.

There are two extreme cases:

1. X is empty. Then ‘- A’ means that A is a theorem. That is, there
is a proof of A ‘from no assumptions’. Any assumptions used for the
sake of argument within the proof will have been discharged by the
stage at which we reach A as the conclusion. Example: The one-step
proof
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B>OB

justifies the claim - B D B.

2. Ais ‘empty’. Then ‘X F’ means that there is a disproof of X, that is,
a deduction showing that X is inconsistent. Example: The one-step
disproof, consisting of just one application of —E:

-B B
1

justifies the claim B,—B .

In a single-conclusion natural deduction calculus® one usually uses the ab-
surdity symbol L as an explicit conclusion to mark this, and one writes
‘X F L’ instead of ‘X + ’. Thus: B,—B F 1. It is the sequent calculus
which prompts the use of the turnstile with nothing to the right, because in
the sequent calculus we prove the inconsistency of X by deriving the sequent

X : , with the empty succedent. Thus the last disproof, re-cast in the
sequent calculus, would be
B:B
B, -B :

1 was introduced by modern logicians in the natural deduction context in
very much the way that the ancient Hindus introduced the symbol 0 into
arithmetic. Rather than writing nothing, we indicate that it’s nothing that
we intend, by writing something in particular, which is to stand for the
nothing that we intend. Thus the rule —F above of negation elimination in
a system of natural deduction is written with | as its explicit conclusion,
instead of being cast in the form

A A

where the absence of anything below the inference stroke would explicitly
represent a logical dead-end.® Likewise, the rule —I of negation introduction

5See, for example, the treatment in my Natural Logic, Edinburgh University Press, 2nd
edn., 1990.

5As the reader will see, I prefer this way of construing negation elimination and all
other rules that produce disproofs. The use of the horizontal line as a logical dead-end
was foreshadowed above, in our discussion of primitive contraries in a language.



above has a schematic subproof of the explicit conclusion L, rather than
being cast in the form

—(@)
A

@ I

-A

where the absence of anything between the lower two inference strokes would
once again represent a logical dead-end.

It is a pity that we have no convention of using empty spaces in natural
deductions to represent emptiness. For I would like to be able to say that
a natural deduction ‘of |’, that is, ending with an explicit occurrence of |,
is just a proof of the empty conclusion; and I would like to say that, for
example, the sequent X : 1 is a sub-sequent of X : A.

I shall pretend that this notational quirk of natural deduction does not
prevent us from saying such things. Thus we shall be able to treat occur-
rences of | as if they ‘really were not there’. After a logical dead-end there
is to be no afterlife, no sentential resurrection in the form of a would-be
‘propositional constant’ L. Accordingly, there would be no need to give
rules ‘for’ such a propositional constant; for it would be absent from the
language. One would still be left with the problem of explaining the genesis
of our grasp of negation; and this is a problem to which I shall be proposing
a solution in due course.

One way of appreciating the upshot of this suggestion is to consider how
the usual inductive definition of proof’ might be changed so as to become a
simultaneous inductive definition of both proof and disproof. Before, when
one could make explicit appeal to L (whether as propositional constant
or as ‘conclusion marker’ of a reductio proof) one could treat disproofs as
special kinds of proof, namely proofs of the ‘conclusion’ |. Now, however,
given that we are eschewing | altogether, it behooves us to take special care
over the definition of proof and of disproof. To this end, I would propose a
simultaneous inductive definition of the two notions

‘Tl is a proof of A from the set A of undischarged assumptions’

and

"See, for example, the conventional treatment set out in Natural Logic, op.cit.



‘I is a disproof of the set A of undischarged assumptions’.

Proofs and disproofs are both deductions. We shall treat proofs and disproofs
as types. The ground type is that of single sentence occurrences. The basis
clause would be:

Any occurrence of a sentence A is a proof of A from {A}.

(There is no basis clause specifically for disproofs.)

The higher types of deductions are obtained by applying rules of infer-
ence. Higher-type proofs are either of the form p(IIy, . ..,II,, C), where p is
the introduction rule applied at the last step, Ily, ..., II, are the immediate
sub-proofs or sub-disproofs, and C is the conclusion of that terminal intro-
duction; or of the form p(M,IIy,...,II,,C), where p is the elimination rule
applied at the last step, C is its conclusion, IIy,...,II, are the immediate
sub-proofs or sub-disproofs, and M is the major premiss of the terminal
elimination. Higher-type disproofs are of the form p(M,I14,...,II,), where
p is the elimination rule applied at the last step and M is the major premiss
of that terminal elimination. Note that disproofs have no ‘conclusion’.

Disproofs arise only through the terminal application of elimination
rules. They cannot arise from the terminal application of introduction rules.
Terminal application of introduction rules produces only proofs, not dis-
proofs. But terminal application of elimination rules (other than —F) can
produce either a proof or a disproof, depending on the nature of the imme-
diate sub-deductions.

I shall use the convention that ‘A, A’ stands for A U {A} where A is
understood not to be a member of A.

Building on the basis clause are the following inductive clauses. The
introduction rules generate only proofs; the elimination rule for negation
generates only disproofs; while the remaining elimination rules, for A, V and
D, generate both proofs and disproofs.

—-Introduction
If IT is a disproof of A, A then —I(II,—A) is a proof of A from A.

Graphically, —-Introduction could be rendered thus:

0—()
A, A
——

Im . -I
(4
-A

10



where the box appended to the discharge stroke over the assumption A indi-
cates that A is required to have been used as an assumption in the disproof
II. Note that there is no explicit use of the absurdity constant | as the ‘last
line’ of II immediately above the conclusion —A. Instead, the disproof II
will itself have ‘ended’ with just a horizontal line above the one now marked
with ‘(i)’ that represents the application of —I. All disproofs, when displayed
graphically, just end with horizontal lines, rather than with a terminal oc-
currence of .

—-Elimination generates only disproofs:
If II is a proof of A from A then —E(—A,II) is a disproof of AU—A.

Graphically, —=-Elimination could be rendered thus:

A
I
A A

where the horizontal line has nothing below it.

Note also that our rule of —-Elimination is formulated in such a way that
the major premiss - A stands proud, that is, has no proof-work above it.
This is because we are building normality into our definition of proof and
disproof, not allowing any major premiss of an elimination to stand as the
conclusion of any rule application.

This latter feature is very important for a proper appreciation of what
is to follow. I shall be prohibiting major premisses of eliminations from
standing as the conclusions of any rule applications. All major premisses
for eliminations will stand proud. To secure this feature of proofs, we need
to formulate the rules of A-Elimination and of D-Elimination in their parallel
forms rather than their usual serial forms (for which, see below).

These parallel forms for the elimination rules yield what I have called the
hybrid system of proof, a blend of sequent calculus and of natural deduction.?
A hybrid proof has the economy of form that one finds in a sequent proof,
but the economy of node-labelling that one finds in a natural deduction. It
is the perfect compromise between a sequent proof and a natural deduction,
yielding great advantages for computational logic.

8See my Autologic, Edinburgh University Press, 1992.
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The rules for negation have already displayed how the recursive defini-
tions of proof and of disproof interact. This interaction is displayed by other
rules as well, as we shall presently see.

A-Introduction
If TI; is a proof of A from A; and Il5 is a proof of B from Aq
then AI(IIj,II3, A A B) is a proof of A A B from A; U As.

Graphically:

Ay Ag

ITy 1D

A B
ANB

A-Elimination has two halves, one for proofs and one for disproofs. (Re-
member that introduction rules can create only proofs; whereas elimination
rules can create both proofs and disproofs, except for the elimination rule
for -, which can create only disproofs.) For proofs the rule of A-Elimination
is as follows:

If An{A, B} # ( and II is a proof of C' from A then AE(A A B,II, C)

is a proof of C from (A \ {4, B}) U{A A B}.

Graphically:

(i)—0—()
A, A, B
—_———

where the box between the discharge strokes over the assump-
tions A and B indicates that at least one of them must have been
used in the proof IT of C.

For disproofs, the A-Elimination rule is:
If An{A,B} # 0 and II is a disproof of A then AE(A A B,1I)
is a disproof of (A\ {4, B}) U{A A B}.

Graphically:

12



(i)—0—(3)
A, A, B
~———

AANB II

where the horizontal line has nothing below it. Note also that the major
premiss A A B stands proud, with no proof-work above it.

V-Introduction:

If IT is a proof of A from A then VI(II, AV B) is a proof of AV B
from A; and if IT is a proof of B from A then VI(II, AV B) is a proof
of AV B from A.

Graphically:
A A
IT I
_A B
AV B AV B

V-Elimination has four forms, depending on whether each of the cases
yields a proof or a disproof:

(1) If IT; is a proof of C from A;, A and Iy is a proof of C from Ag, B

then VE(AV B, 11,11y, C) is a proof of C from Ay UA;U{AV B}.

Graphically:
0—() 0—()
A1, A A9, B
I Iy
C

(2) If IT; is a proof of C from Aj, A and Il is a disproof of Ay, B
then VE(AV B,11;,1I5, C) is a proof of C from Ay U A U{AV B}.

Graphically:
H—(3)
A, A O__(i)
I Ay, B
AV B c I, ()
C

13



(3) If II; is a disproof of Ay, A and Il is a proof of C from Aj, B then
VE(AV B,I1;,1I3,C) is a proof of C from A; UAyU{AV B}.

Graphically:
0—()
D_(z) A2 ) B
A, A I,
AV B 11, C ()
C

(4) If II; is a disproof of Ay, A and Il is a disproof of Ay, B then
VE(AV B,I1;,11) is a disproof of A; UAsU{AV B}.

Graphically:

o) ()
A, A Ay, B
AV B I, II, (@)

where the horizontal line has nothing below it.

Note also that in all four cases of VE, the major premiss AV B stands proud,
with no proof-work above it.

The last introduction and elimination rules to deal with are for D. The
rule of D-Introduction splits into two halves:

If IT is a disproof of A, A then DI(II, AD B) is a proof of AD B from A.

Graphically:
B—()
A A
_ I
ADB
where the box appended to the discharge stroke above A indi-
cates that A must have been used in the disproof II; and
If II is a proof of B from A then DI(II, AD B) is a proof of AD B from
A\ {A}.

(4)

Graphically:

14



B
ADB
where the diamond appended to the discharge stroke above A
indicates that A need not have been used in the proof II. If A
was used, however, it is to be discharged.

The rule of D-Elimination, like the elimination rules for A and for V, pro-
duces both proofs and disproofs. The rule of D-Elimination for proofs is:

If I1; is a proof of A from A; and Ils is a proof of C' from As, B then
DE(ADB,II,1I,,C) is a proof of C from A; U Ay U{ADB}.

Graphically:
0—(3)
Ay Ao, B
Iy Iy
ADB A C i
C

The rule of D-Elimination for disproofs is:

If T1; is a proof of A from A; and Il5 is a disproof of Ag, B
then D E(AD B, II;,1Iy) is a disproof of A; U Ag U {AD B}.

Graphically:
Ay 0—()
Ty Ay, B
ADB A 11, ()

where the horizontal line has nothing below it.

Note also that in both cases of D E, the major premiss AD B stands proud,
with no proof-work above it.
The rules above form the system of intuitionistic relevant logic.

15



3 1Is —A equivalent to AD 1?7 Should negation be

taken as primitive, rather than defined in terms
of 17

Twice again, no. —A is not equivalent to AD 1. Moreover, negation should
be taken as primitive, and not defined in terms of L.

Why this heretical stance? The reason has to do with my opposition to
systems displaying the properties already mentioned above:

1. their deducibility relations are unrestrictedly transitive? and they ad-
mit of a deduction theorem; and

2. they permit at least some non-trivial ‘dilutions on the right’.

These systems admit of fallacies of relevance in their deducibility relations.
It is in order to avoid the most notorious fallacy of relevance, the so-called
first Lewis paradox

-A,A:B

that the relevant logician rejects the absurdity rule. It is, likewise, in order
to avoid the related paradox

-A,A:-B

that we should go further and insist that —I never be applied with ‘vacuous
discharge’ of the absent ‘assumption’ B.

This is not the place to state the whole case for relevantist logical reform,
and to chart the exact route that leads one to the system IR of intuitionistic
relevant logic and the system CR of classical relevant logic (depending on
one’s attitude to classicism).!® The rules of IR have been stated in the pre-
vious section. IR can lay claim to being an extremely faithful codification of
intuitive constructive reasoning. It admits of the following relevantizability
theorem:

9See footnote 1.

10The reader can find a detailed case for relevantizing in this recommended way in the
following: ‘Perfect validity, entailment and paraconsistency’, Studia Logica XLIII, 1984,
pp-179-198; ‘Intuitionistic Mathematics Does Not Need Ex Falso Quodlibet’, Topoi 1994,
pp-127-133; ‘Delicate Proof Theory’, in J. Copeland, ed., Logic and Reality: FEssays on
the Legacy of Arthur Prior, Oxford University Press, 1966, pp.351-385.; and Auwutologic,
Edinburgh University Press, 1992.
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If there is an intuitionistic proof of A from A, then in IR there
is either a proof of A from (some subset of) A, or a disproof of
(some subset of) A.

This means that one can welcome IR’s apparent loss of transitivity of de-
duction. Note that in IR

there is a proof of AV B from A; and
there is a proof of B from AV B, —A; but
there is no proof of B from A, —A.

Blocking the Lewis paradox while retaining disjunctive syllogism means re-
stricting transitivity of deduction. But our relevantizability result means
that these restrictions of transitivity are only ever made in the interests of
epistemic gain.

Another casualty of restricted transitivity is the second half of the fol-
lowing conventional deduction theorem:

If there is a proof of B from A, A then there is a proof of AD B
from A;

and

if there is a proof of A D B from A then there is a proof of B
from A, A.

In IR the first half of this deduction theorem is secured by the form of our
D-introduction rule. But the second half fails. For in IR there is a proof of
AD B from —A; but there is no proof of B from A, —A.

Another interesting feature of IR is that even if we were to have an ex-
plicit absurdity constant |, which were allowed to feature as a subsentence,
then A D 1 would not be intersubstitutable salva veritate with —A in all
contexts of deducibility.!! If we allowed L to feature as a subsentence, then
our rule of D-introduction would allow the proof

-A A
L (‘vacuous’ discharge of B)
BO 1
But our rule of —-introduction does not allow the construction of the anal-
ogous

" This criterion of synonymy is from T.J.Smiley, “The Independence of Connectives’,
Journal of Symbolic Logic, 27, 1962, pp.426-436.
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A A
L
-B

because of the requirement that for such an application of —I the sentence
B should have been used as an assumption in the derivation of L. All the
more reason, therefore, to treat of negation directly, as a primitive logical
operator, and not seek to define it in terms of D and L. Constructivizing
had already taught logicians not to seek to use = with one of A, V or D to
define the rest. Now we appreciate that relevantizing means that we should
not seek to use D and L to define —.

4 Should | be subject to introduction and elimi-
nation rules?

This question presupposes that the absurdity constant | has a réle to play
in our deductive system. We have seen above, however, how one can es-
chew | completely, avoiding employing it even as a structural punctuation
marker in deductions. One simply adopts the co-inductive definition above
of proof and of disproof, neither of which kinds of construction need ever
contain (occurrences of) L. For one who follows this line, the question of
introduction and elimination rules for | would therefore not arise. And that
is how I would prefer it. But suppose one relented anyway, and allowed for
occurrences of | within deductions. Thus | would be the conclusion of any
disproof. Disproofs could then simply be treated as proofs of |, and the
definitions above (of proof and disproof) could accordingly be simplified.
This indeed is the strongest — if not the only — reason for using | in the
first place.

Having thus admitted L, the question arises whether it should be subject
to any rules governing it, in addition to those rules, such as the rules for
negation, in whose statement it can appear, albeit not as the conclusion of
an introduction or as the major premiss of an elimination.

The orthodox (that is, non-relevantist) intuitionist does admit at least
one special rule governing | — the aforementioned absurdity rule

L

A

Here it looks as though | is featuring as the major premiss of an elimi-
nation. Indeed, that is how some intuitionist proof-theorists — most no-
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tably, Prawitz — have chosen to regard the absurdity rule. They do so
even though | differs from the connectives and quantifiers in not being a
sentence-forming operator.

The question that naturally arises, then, is: what is the correct form of
the introduction rule for L, to match the absurdity rule if and when the
latter is taken as the elimination rule?

It was to this question that Dummett (as noted above) proposed the rule
of ‘complete atomic entailment’:

A Ay Az ...
1

where Aj, As, As,... are all the atomic sentences of the language. This
proposal at least has the merit of making the elimination rule appear to
balance the introduction rule via the following procedure:

I1; II, II3

Al A2 A3 “ e HZ
1 '
A;

But the main drawback, of course, is that the introduction rule will in gen-
eral be infinitary. This will mean that deductions involving it become un-
surveyable.

Hand’s further objection to Dummett’s proposed introduction rule for |
was that there is no guarantee that the atomic sentences of the language form
an inconsistent set. Thus L, as the conclusion of the introduction rule, need
not register any inherent ‘badness’. I think, however, that this particular
objection is not well-taken. For in laying down rules for logical operators
and for logical constants like 1, one has to bear in mind the possibility of
arbitrary linguistic extensions and innovations. Dummett is aware of this
when he writes!?

We may know our language to be such that not every atomic
statement can be true; but logic does not know that. As far
as it is concerned, they might form a consistent set, as they
are assumed to do in Wittgenstein’s Tractatus. The principle of
consistency is not a logical principle: logic does not require it,
and no logical laws could be framed that would entail it.

2 The Logical Basis of Metaphysics, p.295.
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But even if, as it happened, one’s present language had only a stock of
mutually consistent atomic sentences, one could not rule out the possibility
of that language being extended by the addition of new atomic sentences
which would be inconsistent either among themselves or with the old atomic
sentences already present in the existing language. One can agree with
Dummett that logic ‘does not know’ (of our present language, say) ‘that not
every atomic statement can be true.” But logic does not know either that
every atomic statement can be true! Logic has to allow for languages whose
sets of atomic sentences may or may not be jointly consistent. The rule of
L -introduction stated above has to be understood as potentially open-ended
in this way: namely, that it should hold whatever extension of the language
might be undertaken. And we must allow that some of those extensions
could involve the inconsistency of the set of all atoms.

Now this does not just mean that, in order to derive L in the existing
language, it suffices to derive each atomic sentence of the latter. Rather, it
means that in order to derive L one has to be in a position to derive any
atomic sentence of any extension of the language. Once one realizes that
extensions can result in inconsistent sets of atomic sentences, one becomes
aware of just how exigent such a requirement really is. Indeed, it should be
absurd that it should ever be met. Yet that, and no less, is what is required
in order to get around Hand’s otherwise very licit criticism of Dummett’s
proposal.

Dummett tries to justify the absurdity rule qua elimination rule as being
harmoniously balanced with the introduction rule suggested above. This is
in the spirit of the intuitionistic meaning theory according to which it is a
logical operator’s introduction rule that fixes its meaning, and on the basis
of which its elimination rule is to be justified by appeal to harmony.

Pace Dummett, other intuitionistic proof-theorists (such as Prawitz)
have tried to justify the absurdity rule qua elimination rule another way.
This is to claim that there is no introduction rule for 1. For an introduc-
tion rule for a logical operator is supposed to be the form of the last step of
any canonical proof (or warrant) of a conclusion with that operator domi-
nant. When it is a constant and not a logical operator that is in question,
we can say, analogously, that its introduction rule is supposed to be the
form of the last step of any canonical proof (or warrant) of that constant
as its conclusion. Canonical proofs, or warrants, however, are constructed
with respect to consistent atomic bases. Thus there can be no warrant for
1. Thus there is no general form of the putative last step of any warrant
for 1. Hence there is no introduction rule for L.
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How, then, would one justify the absurdity rule for | as the elimi-
nation rule harmoniously balancing the non-existent (or null) rule of L-
introduction? The absurdity rule would be justified if one could exhibit an
effective method m such that, from the claim that II is a canonical proof
of L one could infer that m(II) is a canonical proof of A. But there is no
canonical proof of 1. Hence the appending of A to IT would be just such
an effective method. That is, the metalinguistic argument

IT is a canonical proof of 1;
therefore, (I1/ A) is a canonical proof of A

is valid.

This justification, however, is too swift. It has an important defect that
distinguishes it from all the other (successful) justifications of elimination
rules for logical operators in terms of their introduction rules. The defect is
that in any detailed metaproof codifying this justification of the absurdity
rule as an ‘elimination’ rule for L, one will be using that very elimination rule
in the metalanguage. But this is not the case with the usual justifications
of the elimination rules for -, A, V and D.

There is something unnatural in speaking of introduction or elimina-
tion rules for a propositional constant rather than for a sentence-forming
logical operator. In the case of a sentence-forming logical operator, the
sub-sentences provide a focus for the specification of appropriate forms of
sub-deductions. But there are no sub-sentences within a propositional con-
stant such as L. It is doubly unnatural for it to have only an ‘elimination’
rule, with no introduction rule to which it is genuinely answerable.

The solution to this problem that is afforded by intuitionistic relevant
logic is to say that, insofar as | might appear as a structural punctuation
marker within deductions, it has no introduction rule and no elimination rule
either. The absurdity rule is abandoned because it is a source of irrelevance.
This is the solution afforded by the system IR.

This much, however, is not yet a fully satisfactory account of the matter.
For, insofar as | might appear as a punctuation marker in deductions, we
need an account of it from which we might come to grasp the badness that
negation tries to register. Otherwise, we shall be at a loss to understand how
the rule of —-introduction fixes the meaning of — as that of negation. That
account, however, is philosophically extra-systematic, and does not call for
any logical extension of the system IR itself.
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5 What is the source of the semantic or pragmatic
‘badness’ that | seeks to register? How does the
denial —A of A succeed in blaming A as ‘bad’?

The source of the ‘badness’ that L seeks to register is contrariety. In inter-
preted languages there are atomic sentences that conflict by way of being
contraries even if not contradictories. We gave various examples earlier,
from colour discourse, discourse about place and time, and meta-discourse
about the identity of speaker and hearer. Whereas Dummett seeks a logical
basis for metaphysics, I think we need, at this point, to put it the other way
round. One needs a metaphysical basis for logic, insofar as we seek an origin
for our grasp of the meaning of negation. I believe this is to be found in
our sense of contrariety, a sense that follows inexorably from our deploying
perceptual concepts and objectual categories, and from our understanding
of the fundamental features of bodies and events occupying space and time.

One could indeed have raised the objection earlier, to Hand’s imagined
language in which all atomic sentences were mutually consistent, that such
a language would not be learnable. For in learning the meaning of an atomic
sentence, one must be learning its truth-conditions; and in order to learn
these, one must appreciate conditions under which the sentence in question
fails to be true. Otherwise, there will be no telling apart the meaning of any
one atomic sentence from that of any other. Hand’s imagined case might
well be impossible. In any event, with any natural language mastered by
human beings, Hand’s worries do not arise; for these languages are replete
with collections of contrary atomic sentences. In learning them we acquire a
primitive grasp of our not-being-able-to-hold-these-together: incompatible
colour ascriptions, mutually exclusive (simultaneous) spatial locations for
one and the same object,!? etc.

The need for contrariety among at least some atomic sentences before
any of them is learnable is particularly evident when we consider how we
grasp the distinction between reference and predication. In order to grasp
different predicates as expressing different concepts, or possessing different
senses, we need to appreciate them as having different patterns of instanti-
ation, that is, different extensions. When the extensions of two predicates
with different senses happen to coincide, we can imagine circumstances,
counterfactual if need be, in which they do not so coincide. Likewise, in or-
der to grasp different referring terms as referring to distinct individuals, we

13This holds even in the relativistic case, within any given frame of reference.
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need to appreciate that the individuals in question differ in the properties
they have, that is, in the range of (primitive) predicates that they satisfy.
These ranges can differ without there being any explicit use of negation.
It is enough to have a few pairs of antonyms (such as short/tall; thin/fat;
light /heavy; soft/hard; bright/dull; big/small; hot/cold), or contraries of a
more general kind (such as red/green; round/square).

Within any such language, regimentation supplies various rules of the
form

A ... Ay

where by this we are to understand that Ay, ..., A, are not jointly assertible,
that is, that they are mutually inconsistent. It is important to realise that
this mutual inconsistency can arise without any of these sentences containing
an embedded negation. It arises, rather, by virtue of what the sentences
mean and various ways that we undertand the world simply cannot be.
This is the primal ‘badness’ we are after. It long preceded the invention
of arithmetic, with its provincial primal badness of ‘0 = 1’. If we use the
absurdity constant | to register the metaphysical primal badness of simulta-
neous predication of antonyms, or of conflicting colour or shape attributions,
or conflicting spatial locations of one and the same body, or conflicting tem-
poral orderings of distinct events etc., then that constant features thus:

Ay ... A,
1

Now we would be in a position to confer a sense upon — by laying down
the rule of —-Introduction. We are antecedently apprised of the ‘badness’
registered by L, and this now allows us to single out a particular sentence
for blame within any bad collection of sentences. If the set A of sentences,
along with some other sentence A leads to absurdity, then, if one holds to
A, one must deny A.

But in exactly the same way we can confer a sense upon the negation
sign — by specifying its rule of introduction in the way we did above —
where the terminal horizontal line tells all, and no use or mention is made
of absurdity.
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6 On classical negation.

In the context of the standard view described in my opening section, Hand
went on to consider what the systems of minimal, intuitionistic and classical
logic ‘said about’ the absurdity constant 1. Minimal logic treats L like any
other constant. Intuitionistic logic distinguishes it by adding the absurdity
rule. Finally, according to Hand, classical logic says in addition the following
about L:

AV (ADL) Law of Excluded Middle
—(9) (@)
A AD L
: Dilemma
B B ()
B
(45 j) BE Double ‘Negation’ Elimination
(@)
ADL
: Classical Reductio
L @)

To regard the last four rules as about |, however, is to rest too much on the
standard view’s identification of —=A with AD L. I do not think it is at all
helpful to try to understand the peculiar ‘extra’ of classical logic as consisting
in the specification of further inferential powers for | — especially when, as
we have seen, there is no need to regard L as a structural punctuation marker
in deductions, let alone as a propositional constant that can be embedded
as a subsentence of other sentences. Rather, the classical rules should be
regarded as rules about negation, pure and simple — although the classical
rules thereby make negation philosophically impure and logically simplistic:

AV -A Law of Excluded Middle
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: Dilemma
B B ;)
B
A Double Negation Elimination
(%)
—-A
: Classical Reductio
L@
A

Each of these rules suffices for the derivation of any of the other, modulo
intuitionistic logic (which contains the absurdity rule). Excluded Middle
and Dilemma can be derived, in minimal logic, from either Double Negation
Elimination or Classical Reductio. In order to derive Double Negation Elim-
ination or Classical Reductio from Excluded Middle or Dilemma, however,
one needs to use the absurdity rule. Thus for any logical system lacking
the absurdity rule it may seem as though there are two ways of ‘classiciz-
ing’ the system. The weaker way would be to add one of Excluded Middle
or Dilemma; the stronger way would be to add one of Double Negation
Elimination or Classical Reductio.

This is a correct way of viewing the matter, however, only for a system
such as minimal logic. We must remember that in the system IR we have,
by contrast, a ‘liberalized’ rule of V-Elimination. The four parts of it set
out above can be captured in one graphic scheme as follows:

oG ()

A, A As, B

IT; Iy
AV B 1/C 1/C 0
1/C

One may read this as saying that if either one of the case proofs ends with
1 then one may bring the conclusion of the other case proof down as the
main conclusion of the proof by cases.

25



In considering classical extensions of IR it is therefore natural to formu-
late the rule of Dilemma in a similarly liberalized form:

(%)

—(1)
A

—

: : Dilemma
B/L B/L
B/l

(%)

Now we can claim that each classical rule suffices for the derivation of any
of the others, against the background of IR.

Let us focus now on just Dilemma and Classical Reductio in order to see
how they extend IR.

Let us define the truth set 7 of a truth value assignment 7 as the set
formed by choosing the atom A if 7(A) = T and by choosing —A if 7(A) = F.
When dealing with a sentence we shall think of assignments as defined only
on the atoms occurring therein.

It is easy to prove the following result about IR, by induction on the
complexity of sentences:

If 7(¢) = T then there is a proof of ¢ from 7 ;
if 7(¢) = F then there is a disproof of 7, ¢

Suppose ¢ is logically true. Then for every 7, 7(¢) = T, whence there is a
proof of ¢ from 7. Multiple applications of Dilemma on atoms now suffice
to ensure that there is a classical proof of ¢.

Suppose ¢ is logically false. Then for every 7, 7(¢) = F, whence there
is a disproof of 7,¢. Multiple applications of —-Introduction now yield a
disproof of ¢ (within IR ). Hence if 9 is logically true (whence — is logically
false) there is a disproof of ) within IR. A single terminal step of Classical
Reductio now yields a classical proof of 1.

The immediate apparent difference between these two proofs of theorem-
completeness of classical propositional logic is that when Dilemma is the
classical rule, it may be restricted so as to apply only to atoms; whereas
when Classical Reductio is the classical rule, it appears that it needs to
be applied to complex sentences, albeit only once. Is this difference only
apparent? It is not. To be sure,

1. applications of Classical Reductio to obtain conclusions of the form
—A are derivable in IR ;
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2. proofs containing applications of Classical Reductio to obtain con-
clusions of the form A A B can be transformed into ones in which
applications of Classical Reductio are made only to A and to B; and

3. proofs containing applications of Classical Reductio to obtain con-
clusions of the form A D B can be transformed into ones in which
applications of Classical Reductio are made only to B.

But — it is not the case that proofs containing applications of Classical
Reductio to obtain conclusions of the form A V B can be transformed into
ones in which applications of Classical Reductio are made only to A or to
B. Thus the presence of disjunction prevents us from carrying through an
inductive proof of the claim that one can classicize IR by adopting Classical
Reductio for atomic conclusions. We have to be able to apply Classical
Reductio to at least some complex sentences — notably, disjunctions — in
order to achieve classical logic.

This is not the case, however, with Dilemma. And this at once makes
Dilemma the more attractive route to full classical logic. The absurdity-free
proof system set out above (for IR ) can now be extended to one for Classical
Relevant logic (CR) by adopting the following two-part rule of Dilemma
on atoms A:

(1) If I1; is a proof of B from A1, A and IIy is a proof of B from Ag, A
then Dil(IIy, Iy, B) is a proof of B from A; U Aj.

Graphically:
0—(i) 0—@)
Aq 3 A Ag 3 —A
1y Iy
B B
B

(2) If II; is a proof of B from A1, A and Il is a disproof of Ay, —A
then Dil(IIy,1IIy, B) is a proof of B from Aj U Aj.

Graphically:
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In the case where II; is a disproof of Aj, A and IIy is a proof of B from
Ao, —A there is no need for an application of Dilemma, since the net effect
is derivable without it. One applies —-Introduction to II; to obtain —A as a
conclusion, and proceeds with I . Likewise when II; is a disproof of Ay, A
and Ils is a disproof of Ay, —~A. Of course, the results of doing so will not
in general be in normal form; but they can be normalized, so as to obtain a
proof in which all major premisses of eliminations ‘stand proud’.

7 Conclusion.

I hope to have dispelled undue pessimism about the prospects for a rule-
based, anti-realist or constructivist account of negation. It is also relevantist
to boot. We can give such an account in terms of basic contrarieties, and by
co-inductively defining proofs and disproofs, without having to make explicit
appeal to the absurdity constant L. If we do make such an appeal, it is to
1 only as a structural punctuation marker within deductions, a device that
allows us to assimilate disproofs to the general class of proofs. | does not,
in this role, need to be governed by any ‘introduction’ or ‘elimination’ rules
of its own. Nor does | need to be treated as a propositional constant
eligible for embedding within other sentences. But even if we do treat L
as an embeddable propositional constant, it does not follow that negation
can, let alone should, be defined in terms of it. Negation should be taken
as a primitive, and one should explain how a grasp of its sense arises from
one’s prior grasp of primitive metaphysical contrarieties with an interpreted
language.

1 is a sham logical operator. Some logicians like to think of it as a
zero-place connective. I like to think of that as an admission that it has no
place in logic.
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