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Abstract 29 

An extended Tracking Radar Echo by Correlation (TREC) technique, called T-TREC 30 

technique, has been developed recently to retrieve horizontal circulations within tropical 31 

cyclones (TCs) from single Doppler radar reflectivity (Z) and radial velocity (Vr, when available) 32 

data. This study explores, for the first time, the assimilation of T-TREC-retrieved winds for a 33 

landfalling typhoon, Meranti (2010), into a convection-resolving model, the WRF (Weather 34 

Research and Forecasting). The T-TREC winds or the original Vr data from a single coastal 35 

Doppler radar are assimilated at the single time using the WRF 3DVAR, at 8, 6, 4 and 2 hours 36 

before the landfall of typhoon Meranti. In general, assimilating T-TREC winds results in better 37 

structure and intensity analysis of Meranti than directly assimilating Vr data. The subsequent 38 

forecasts for the track, intensity, structure and precipitation are also better, although the 39 

differences becomes smaller as the Vr data coverage improves when the typhoon gets closer to 40 

the radar. The ability of the T-TREC retrieval in capturing more accurate and complete vortex 41 

circulations in the inner-core region of TC is believed to be the primary reason for its superior 42 

performance over direct assimilation of Vr data; for the latter, the data coverage is much smaller 43 

when the TC is far away and the cross-beam wind component is difficult to analyze accurately 44 

with 3DVAR method.  45 
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1. Introduction  46 

Accurate prediction of the track, intensity, structure and precipitation of landfalling 47 

tropical cyclones (TCs) is crucial for the protection of life and property. In the past years, 48 

TC track forecasting has improved steadily [Rappaport et al. 2009] with significant 49 

contributions from satellite or other non-traditional observations and improved numerical 50 

models, but the intensity and structure forecasting has improved much more slowly 51 

[Houze et al. 2007]. One of the primary reasons is that the inner-core structures of TC are 52 

often inadequately initialized in operational models, while such structures are believed to 53 

be important for intensity forecasting. 54 

Many efforts have been made to improve the initial conditions focusing on the data 55 

assimilation (DA) by using different types of observations from various platforms. 56 

Assimilating typhoon bogus data (BDA) has been shown to result in much better intensity 57 

forecast [e.g., Zou and Xiao 2000; Xiao et al. 2009a]. Such a method relies significantly 58 

on the empirical profiles of sea level pressure (SLP) and/or wind assumed in the bogus 59 

vortex and therefore cannot represent the true TC structure. Studies have shown that the 60 

assimilation of satellite wind and aircraft dropsonde data helps to improve the 61 

environmental conditions and track forecast of TCs [Pu et al. 2008; Chou et al. 2011]. 62 

Among the various observational platforms, Doppler radar is the only platform that can 63 

observe the three-dimensional structure of TCs with high temporal and spatial resolutions. 64 

The airborne Doppler radar data have been shown to allow for the analyses of the inner 65 

core structure of TCs, especially during their lifetime over the ocean, which lead to 66 

improve track as well as intensity forecasting [Pu et al. 2009; Xiao et al. 2009b; Du et al 67 

2012; Weng and Zhang 2012]. For landfalling TCs, coastal ground-based Doppler radars 68 
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are commonly used for TC monitoring and forecasting. Several recent studies have shown 69 

that the direct assimilation of radar Radial Velocity (Vr) data into cloud-resolving 70 

numerical models can improve TC analysis and forecasting [e.g., Xiao et al. 2005; Zhao 71 

and Xue 2009; Zhang et al. 2009; Dong and Xue 2012]. All the studies cited above use 72 

either three-dimensional variational (3DVAR) or ensemble Kalman filter (EnKF) method 73 

for data assimilation. Compared with EnKF, 3DVAR is more computationally efficient 74 

and suitable for operational use. However, 3DVAR typically does not analyze the 75 

cross-beam components of wind well from single-Doppler radar radial velocity data 76 

especially when it is not used in a cycled mode. 77 

Instead of assimilating the original Vr data, assimilating retrieved winds can be more 78 

effective. Zhao et al. [2011] explored the assimilation of winds retrieved using the 79 

GBVTD [Ground-based velocity track display, Lee et al. 1999] method for super typhoon 80 

Saomai (2006) near its landfall. The 3DVAR assimilation of GBVTD-retrieved winds data 81 

resulted in better structure, intensity and precipitation analysis and forecasts of Saomai 82 

than direct assimilation of Vr data, partly because the GBVTD method can provide the full 83 

circle of vortex circulation in the inner-core region while Vr data coverage is often 84 

incomplete. However, due to the geometric limitation imposed in GBVTD, the analysis 85 

domain is limited to the region satisfying R/RT<0.7, where R is the radius of the analysis 86 

ring and RT is the distance of the TC center from the radar. In addition, for most 87 

operational radar, such as the WSR-88D of the U.S., and WSR-98D of China, the 88 

maximum Doppler velocity range is about 230 km, far less than the maximum range of 89 

reflectivity, Z data, which is typically 460 km. It would thus be advantageous if the 90 
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reflectivity data could be used to estimate the wind field to provide data coverage when 91 

the TC is further away from the coast. 92 

Tuttle and Gall [1999] successfully retrieved TC circulations using reflectivity data 93 

from two consecutive PPI (Plan Position Indicator) scans with the tracking radar echoes by 94 

correlation (TREC) method. Wang et al. [2011] developed the so-called TC circulation 95 

TREC (T-TREC) technique by extending TREC to a polar coordinate centered at the TC 96 

center with the vortex rotating rate estimated from Vr data as an extra retrieval condition. 97 

This condition provides a constraint on the searching range for spatial correlation in 98 

T-TREC algorithm, and helps reduce the wind underestimation problem often encountered 99 

in the eyewall region where the reflectivity is often relatively uniform along the eyewall 100 

rainband [Tuttle and Gall 1999]. This study explores for the first time the assimilation of 101 

T-TREC-retrieved wind data from a single radar located at Xiamen (XMRD) of Fujian 102 

Province, China, for typhoon Meranti (2010) that experienced a sudden intensification near 103 

the coast of China and brought heavy rainfall to coastal Fujian and Zhejiang Provinces. The 104 

used data assimilation system is the WRF (Weather Research and Forecasting) 3DVAR 105 

[Baker et al. 2003].  106 

Four pairs of data assimilation experiments are performed, with each pair containing 107 

one experiment assimilating Vr data and one assimilating T-TREC data. These pairs analyze 108 

for the single-time of radar data at 1200, 1400, 1600 and 1800 UTC, 9 September 2010, 109 

respectively. The 1200 UTC is the time when the inner core region of typhoon Meranti first 110 

moved into the full coverage of XMRD reflectivity data but was only partially covered by 111 

the radial velocity data. This is also about the earliest time when T-TREC-retrieved wind 112 

retrieval can be successfully performed. The other experiments starting at the later times 113 
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examine the relative impacts of T-TREC-retrieved winds versus Vr data when the typhoon 114 

was closer to the radar to have better Vr coverage. To focus on the impact of the original Vr 115 

and the retrieved T-TREC wind data, all experiments excluded the assimilation of Z data. 116 

The rest of this paper is organized as follows. Section 2 describes the radar data, 117 

forecasting model, assimilation system and experimental configurations. Sections 3 and 4 118 

examines the impacts of assimilating Vr data versus T-TREC-retrieved winds on the track, 119 

intensity and structure forecasting of Meranti during and after landfall; the results are 120 

compared to a forecast starting from the National Centers for Environmental Predication 121 

(NCEP) operational Global Forecast System (GFS) analyses at 1200 UTC without any radar 122 

data assimilation. Section 3 discusses in detail the results from the 1200 UTC experiments 123 

while section 4 presents results from the experiments with later analysis times. Summary 124 

and conclusions are presented in Section 5. 125 

 126 

2. Method and experimental design 127 

2.1 Radar Vr and T-TREC-retrieved wind data 128 

In this paper, Level II data from XMRD radar are used, and the radar is located at the 129 

southeastern coast of China (Fig. 1). Vr and Z data are edited manually using NCAR Solo 130 

software [Oye et al., 1995] to remove/correct erroneous radar observations, including 131 

velocity dealiasing and ground clutters. The radial resolutions of the original XMRD radar 132 

data are 0.25 km for Vr and 1 km for Z, respectively. The Vr data are thinned to a 4 km grid 133 

before assimilation. For T-TREC retrieval [Wang et al. 2011], quality controlled Z and Vr 134 

data are first interpolated to a grid with 1 km horizontal and vertical grid spacings, then the 135 

retrieval is performed within a 300 km radius from the TC center, in cylindrical-polar 136 
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coordinates. The T-TREC retrieval procedure [Wang et al. 2011] as used in this study is 137 

briefly described in the following. 138 

As in the traditional TREC method, T-TREC uses Z data from two consecutive scan 139 

times T1 and T2 (6 minutes apart in this study). The analysis divides each scan into the same 140 

number of arc-shaped cells. Each cell from the first scan is cross-correlated with all possible 141 

cells in the second scan. The coefficient z  is calculated by using the formula of Tuttle 142 

and Gall (1999), 143 
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where Z1 and Z2 are Z arrays at T1 and T2, respectively, and N is the number of data points 145 

within a cell.  146 

To reduce the uncertainty produced by subjective selection of searching area, the Vr is 147 

used to improve the estimation of the searching range and to create a velocity correlation 148 

coefficient. As the TC circulation exhibits a distinct dipole pattern on Doppler radial 149 

velocity images and with the TC circulation being modeled by a Rankine vortex [Brown 150 

and Wood, 1983], the mean tangential wind component VT(R) at each radius from TC center 151 

can be estimated by 152 

max min| ( ) | | ( ) |
( )

2

r r
T

V R V R
V R


 ,          (2) 153 

where R is the distance from the TC center, and Vrmax(R) (Vrmin(R)) is the maximum 154 

(minimum) outbound (inbound) radial velocity. Therefore, a reference searching distance in 155 
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the azimuth direction ArefD  ( OR  as shown in Fig. 2a) and that in the radial direction 156 

RrefD  (half of AB  as shown in Fig. 2a) can be defined as  157 

( )Aref TD V R t  ,             (3) 158 

( )Rref TD V R t   ,           (4) 159 

Since the magnitude of radial flow is typically an order of magnitude smaller than the 160 

tangential flow within a TC [Roux and Marks 1996], parameter   is set to 0.3, as in Wang 161 

et al. [2011]. Based on the reference searching distance in the azimuth direction, an 162 

additional wind weight coefficient v  is defined as  163 

1, (1 ) (1 )

0,
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v

D D D

others

 


   
 


,      (5) 164 

Considering that the real tangential velocity may fluctuate around VT(R) and the 165 

axisymmetric component of tangential velocity is typically an order of magnitude larger 166 

than the asymmetric component [Roux and Marks 1996],   is used as an adjustable 167 

parameter and set to 0.3, as in Wang et al. [2011]. 168 

By combining the reflectivity correlation coefficient z  with the wind weight 169 

coefficient v , a new, final, correlation coefficient is given by 170 

z v   ,     (6) 171 

The final correlation coefficient   confines the actual search area to a limited area 172 

with non-zero coefficient (hatching area in Fig. 2a). When Vr is unavailable, z  , the 173 

T-TREC method reduces to the traditional TREC method [Tuttle and Gall 1999; Harasti et 174 

al. 2004]. The location of target cell (Fig. 2b) that has the highest correlation coefficient 175 

represents the end point of the retrieval vector. The wind vector is estimated by the arc 176 
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length between the initial and target cells and their time interval. The estimated velocities 177 

are interpolated to a Cartesian grid with 10 km horizontal and 1 km vertical grid spacings in 178 

the end. 179 

 180 

2.2 WRF model and WRF 3DVAR 181 

The Advanced Research WRF (ARW) [Skamarock et al. 2008] with full physics is 182 

used during the DA and for the forecast. Three two-way nested domains are employed. 183 

The domains have horizontal dimensions of 258×238, 463×463 and 616×616, and grid 184 

spacings of 12, 4 and 1.33 km, respectively. All model domains have 35 vertical levels 185 

from the surface to 50 hPa. The physics options include the Purdue Lin microphysics [Lin 186 

et al. 1983; Chen and Sun 2002], RRTM longwave radiation [Mlawer et al. 1997], 187 

Dudhia shortwave radiation [Dudhia 1989], Monin-Obukhov surface-layer [Monin and 188 

Obukhov 1954], Noah land-surface [Chen and Dudhia 2001], and YSU planetary 189 

boundary layer [Nohet et al. 2003] schemes. The Kain-Fritsch cumulus scheme [Kain and 190 

Fritsch 1990; Kain 2004] is only used on the 12-km domain. GFS analyses with a 0.5° 191 

spacing are used to provide the boundary conditions, and as the analysis background for 192 

the DA experiments or as the initial condition for the non-DA experiment.  193 

In the WRF-3DVAR system, the ‘CV5’ background error option is used with the 194 

control variables of stream function, unbalanced velocity potential, unbalanced surface 195 

pressure, unbalanced temperature and relative humidity. The background error 196 

covariances matrix (BE matrix) is generated via the National Meteorological Center 197 

(NMC) method [Parrish and Derber 1992] for our own forecasting domain sampling from 198 

one month forecasts. It allows for separate definition of both horizontal and vertical 199 
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correlation functions, and the multivariate covariance between different variables is 200 

represented via statistical regression.  201 

 202 

2.3 Experimental design 203 

For comparison purpose, a baseline control forecast (CTL), using the GFS analysis 204 

at 1200 UTC, 9 September as the initial condition (IC) is first performed. The GFS 205 

analyses include surface observations, radiosondes, cloud-track winds, aircraft 206 

observations, satellite-based Global Positioning System (GPS) radio occultation and 207 

satellite radiances [Hamill et al. 2011] but not ground-based radar data. As briefly 208 

descried earlier, the first pair of experiments, ExpVr and ExpTrec (Table 1), assimilates 209 

Vr and T-TREC data using WRF 3DVAR at 1200 UTC, 9 September 2010, when the 210 

inner core region of typhoon Meranti first moved into the full coverage of XMRD 211 

reflectivity data (Fig. 1b) but was still beyond the full coverage of radial velocity data 212 

(Fig. 1a). The impacts of assimilating T-TREC wind versus Vr data on the analysis and 213 

forecasting of the structure, intensity and track of Meranti during 18 hour period are 214 

discussed in detail in section 3. 215 

To examine the relative impacts of T-TREC and Vr data at later times when the TC 216 

was closer to the radar, three additional pairs of experiments starting at 1400, 1600 and 217 

1800 UTC (see Table 1) are performed and discussed in section 4. For these experiments, 218 

the analyses use the forecasts of CTL valid at the corresponding times as the analysis 219 

background. 220 

Within the 3DVAR analysis, the standard deviations of the observational errors for 221 

Vr and T-TREC-retrieved wind data are prescribed to be 1.5 m s
-1

 and 4 m s
-1

, 222 
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respectively. Similar to those used in earlier studies [e.g., Zhao and Xue 2009; Zhao et al. 223 

2012; Dong et al. 2012], the Vr error includes instrumental error which is mainly due to 224 

spatial inhomogeneities in velocity and reflectivity within a radar sampling volume. It 225 

also includes representativeness error and errors due to data quality issues. For estimating 226 

the T-TREC wind retrieval error, the root mean square difference (RMSD) between the 227 

retrieved Vr (obtained by projecting T-TREC winds onto the radar radial directions) and 228 

the observed Vr is calculated. The error of the T-TREC retrieved winds is roughly 229 

estimated as the sum of the RMSD and the Vr error. Figure 3 shows the percentage 230 

histogram of the absolute difference between the retrieved and observed Vr, and a 231 

scattered diagram of the two during the entire retrieval period for Meranti. The 232 

percentage of wind differences of less than 4 m s
-1

 is about 75% while the overall RMSD 233 

is 2.6 m s
-1

. We therefore specify the T-TREC retrieval error to be 4 m s
-1

, which is in 234 

agreement with the statistics of data samples in Wang et al. [2011]. Overall, we see that 235 

correlation between the retrieved and observed Vr is as high as 0.96, suggesting the 236 

quality of the retrieval is rather good (Fig. 3). 237 

The procedure for assimilating Vr data in this study is similar with that described in 238 

Xiao et al. [2005] and Xiao and Sun [2007]. The retrieved T-TREC winds are horizontal 239 

wind components and are treated as sounding winds as was done with airborne Doppler 240 

radar wind retrieval in Xiao et al. [2009b]. For realistic analysis of TC circulations, the 241 

default horizontal background covariance correlation scale derived from the NMC 242 

method in WRF-3DVAR is scaled by a factor of 0.15, following Li et al. [2012], resulting 243 

a de-correlation scale of about 20 km, similar to that used in Zhao et al. [2012] with the 244 

ARPS 3DVAR [Xue et al. 2003]. Without the correlation scale adjustment, the 3DVAR 245 
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produces unrealistic wind increments, as shown in Li et al. [2012], because the 246 

NMC-method derived correlation scales reflect mainly synoptic-scale error structures. 247 

The data assimilation is performed on the 4-km domain and the analyses are transferred 248 

to the other two grids in the two-way interactive configuration. Only results on the 249 

1.33-km domain will be presented because they contain most details. 250 

 251 

3. Results of experiments with 1200 UTC analysis time 252 

In this section, we present and discuss the analysis and forecast results from 253 

experiments ExpVr and ExpTrec that analyze Vr and T-TREC data, respectively, at 1200 254 

UTC, and the results are also compared to those of experiment CTL that does not 255 

assimilate any radar data. 256 

3.1. Impact on the analyzed TC structures 257 

At the assimilation time of 1200 UTC, 9 September, Meranti is in category 1 and the 258 

maximum surface wind speed from Chinese Meteorological Administration (CMA) best 259 

track data is 33 m s
-1

. Figures 4a-c show the horizontal winds at 3-km height from CTL, 260 

ExpVr and ExpTrec at 1200 UTC. Apparently, the typhoon circulation directly from GFS 261 

analysis in CTL (Fig. 4a) is very weak with a broad eye. The main difference of the 262 

vortex circulation between ExpVr (Fig. 4b) and CTL takes place in the northern part of 263 

typhoon, indicating that the direct assimilation of Vr data for a single time has only local 264 

adjustments on the vortex structure. This can be largely attributed to the limited coverage 265 

of Vr data at this time (see Fig. 1a). The maximum wind in the inner core region in ExpVr 266 

is enhanced to 27 m s
-1

 in the northeastern quadrant, versus less than 10 m s
-1

 in CTL. 267 

Compared with ExpVr, ExpTrec (Fig. 4c) produces a much tighter and stronger 268 
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circulation in the inner core region. The highest wind speed is also located in the 269 

northeastern quadrant of the vortex, with a maximum wind speed of 30 m s
-1 

at this level. 270 

To confirm the better quality of the analyzed circulation in ExpTrec, we projected the 271 

analyzed winds onto the radial directions of Taiwan Chi-Gu (RCCG) radar (the location 272 

of RCCG is shown in Figs. 4a, b, c) to obtain analyzed Vr data and compared the data 273 

against RCCG Vr observations. The calculated RMSDs for CTL, ExpVr and ExpTrec are 274 

13.9, 6.1 and 3.8 m s
-1

, respectively, with that of ExpTrec being clearly the smallest. It is 275 

worth pointing that given the maximum surface winds from CMA at this time are ~33 m 276 

s
-1

, although ExpTrec obviously improved over the other analyses, it is likely weaker than 277 

the true maximum winds at 3-km height level. To examine the vertical structure of the 278 

analyzed typhoon, the corresponding azimuthal mean tangential winds are also plotted in 279 

Figs. 4d-f. The vortex circulations in CTL (Fig. 4d) and ExpVr (Fig. 4e) are much weaker 280 

than that in ExpTrec (Fig. 4f), which shows a well-defined TC circulation structure with 281 

strong winds (>20 m s
-1

) extending to about 8 km height while those in CTL and ExpVr 282 

are much shallower. Note that although the maximum wind speed at 3 km height in 283 

ExpVr reaches 27 m s
-1

, the maximum mean tangential wind located at this level is only 284 

16 m s
-1

 (Fig. 4e) owing to the asymmetric structure of vortex circulation (Fig. 4b). It is 285 

clear that the T-TREC-retrieved winds produce much more realistic wind structures of 286 

typhoon Meranti, especially in the inner core region, at this time when Meranti was of 287 

Category 1. 288 

 289 

3.2. Impact on the track and intensity prediction 290 
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The verifications of track and intensity forecasts for CTL, ExpVr and ExpTrec are 291 

discussed in this subsection. Figure 5 shows the 18-h predicted typhoon track, track error, 292 

minimum sea-level pressure (MSLP) and maximum surface wind speed (MSW), verified 293 

against the best track data from CMA. During the period of landfall, Meranti moves 294 

northward with slight northwestward turn first, and then turns slightly northeastward 295 

about 3 hours after landfall. In both CTL and ExpVr, the predicted typhoon tracks turn 296 

unexpected northwestward in the first 3 hours and then bias eastward with the 18-hour 297 

mean errors being 50 km and 72 km, respectively. The predicted landfall times are all 298 

delayed with eastward bias of landfall locations. ExpVr actually moves slower and has a 299 

larger track error than CTL, presumably due to the strong asymmetric structures 300 

introduced into the vortex inner region by the Vr DA (Fig. 4b). In comparison, ExpTrec 301 

produces a closed inner core vortex circulation that is more axis-symmetric (Fig. 4c). 302 

With the improved IC, the predicted typhoon in ExpTrec shows a mostly northward track 303 

closer to the best track, although slower than observed before landfall, resulting in an 304 

18-hour mean error of 32 km. Apparently, due to the limited spatial coverage and limited 305 

background error correlation scale, the radar data assimilation does not spread the impact 306 

very far from the data coverage regions, hence does not directly change the environment 307 

much. Still, the improvement to the typhoon structure by the T-TREC wind data is able to 308 

improve the track forecast (Fig. 5). One possible mechanism by which the inner core 309 

intensity and structure can affect TC track is the so-called ‘beta gyre’ effect [Holland et al. 310 

1983]. Through planetary vorticity advection, a ‘beta gyre’ circulation form inducing 311 

cross vortex center flow that affects TC track. 312 
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The MSLP and MSW of three experiments are plotted along with the best track data 313 

in Fig. 5c and Fig. 5d. Clearly, CTL under-predicts the intensity in terms of both MSLP 314 

and MSW, mainly owing to the weak vortex in the IC. ExpVr is little different, with the 315 

18-h mean MSLP (MSW) improvement over CTL [calculated as316 
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, where BEST is for the best track data] of only 21.7% 317 

(18.1%). It indicates that assimilating Vr data only once at the given time in this case 318 

cannot improve the intensity forecasting much; local adjustments to the wind fields (Fig. 319 

4b) bring limited impact to the forecast. ExpTrec shows a notable improvement in 320 

intensity forecast especially in terms of MSW. The 18-h mean MSLP (MSW) 321 

improvement over CTL [calculated as 

18

1

18

1

| ( ) ( ) |

1

| ( ) ( ) |

t

t

ExpTrec t BEST t

CTL t BEST t

 





 






] is 43.0% 322 

(59.6%). It is noted that the analyzed MSLP and MSW in ExpTrec are nearly the same as 323 

those in CTL. For the MSLP, the limited increment is attributed to the weak multivariate 324 

covariance in background error covariance matrix of WRF 3DVAR between pressure and 325 

wind fields. For the MSW, although the winds at the higher levels are significantly 326 

enhanced (Fig. 4f), the surface wind increment is determined by the vertical spatial 327 

covariance and the surface wind speed are not sufficiently influenced by radar 328 

measurements (see also Fig. 4f), which at the location of maximum wind speed (Fig. 4c) 329 

is about 3 km above sea surface. Despite these obvious limitations with the WRF 3DVAR 330 

analysis, MSLP drops from 1001h Pa to 992 hPa during the first hour of forecast while 331 

MSW increases from 18 m s
-1

 to 27 m s
-1

 in 3 hours, clearly in response to the strong 332 
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analyzed typhoon circulations at the lower-middle and upper levels. After the adjustment 333 

period of about 6 hours, the predicted MSW agrees with the best track data very well 334 

through the rest of forecasting hours (Fig. 5d). In comparison, the predicted MSLP at the 335 

time of the lowest best track MSLP of about 970 hPa at 1800 UTC (6 hour) only reached 336 

988 hPa. The high MSLP forecast bias can be partly attributed to the mutual adjustment 337 

between pressure and analyzed wind fields after a single time analysis. The 338 

ineffectiveness of wind data in fully deepens a TC vortex in terms of MSLP has been 339 

found in earlier studies and the assimilation of additional reflectivity data tends to help 340 

within the ARPS system using the cloud analysis procedure [e.g., Zhao and Xue 2009]. 341 

It should also be pointed out that the best track MSLP estimation has large 342 

uncertainty. In this case, the lowest MSLP in the Japanese Meteorological Administration 343 

(JMA) best track data is actually only 985 hPa. To get some idea on the consistency 344 

between the best track MSLP and MSW, GBVTD wind retrieved which provide more 345 

accurate horizontal TC circulation with retrieval errors of only 2 m s
-1

 [Lee et al. 1999; 346 

Harasti et al. 2004] is performed using the radar Vr data; based on gradient wind balance 347 

with retrieved axis-symmetric circulation, the estimated MSLP is about 980 hPa [Zhao et 348 

al. 2012]. This suggests that the lowest CMA MSLP may be over-estimated.  349 

To better represent the storm intensity, the azimuthal mean tangential winds and 350 

temperature anomalies at 1800 UTC are plotted in Figs. 6a-c. For further comparison, 351 

GBVTD-retrieved tangential winds are also displayed in Fig. 6d. Compared to CTL and 352 

ExpVr, ExpTrec shows much stronger tangential winds that extend from the surface to 353 

the upper levels; the outwardly-sloping isotachs in the inner core region conform to 354 

typical observed TC structures [e.g., Marks and Houze 1987] or simulation studies [e.g., 355 
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Liu et al. 1997; 1999]. The predicted vortex in ExpTrec has a much smaller radius of 356 

maximum wind (RMW) of about 35 km and the maximum mean wind speed of 31 m s
-1 

357 

found in the boundary layer is comparable to the 35 m s
-1 

GBVTD retrieval (Fig. 6d). 358 

Consistent with the stronger vortex circulation, the maximum temperature anomaly of 3.5 359 

K (Fig. 6c) is much larger than those of 1 K in CTL (Fig. 6a) and 2.5 K in ExpVr (Fig. 360 

6b). These results further confirm that ExpTrec predicts a typhoon whose wind structures 361 

are more consistent with GBVTD retrieval circulation while those in CTL and ExpVr do 362 

not possess the structures typical of a category 1 typhoon at this time.  363 

To further examine the time trend of intensity predictions of three experiments, we 364 

plot in Fig. 7 the time-radius Hovmöller diagrams of azimuthal-averaged tangential wind 365 

speeds at 1 km height. Among the three experiments, only ExpTrec exhibits the correct 366 

intensity trend (c.f., Fig. 5d). In CTL (Fig. 7a), the typhoon remains weak throughout the 367 

forecast. Initially the storms are weak, with the peak tangential wind reaching only 12 m 368 

s
-1

 and broadly located around the radius of 120 km. During the entire forecast period, the 369 

maximum tangential winds do not change much and the RMW remains at close to 120 370 

km radius until after 7 hours or so. Even after that, the stronger winds remain very broad 371 

(Fig. 7a). In ExpVr (Fig. 7b), with the help of Vr data, the peak tangential wind reaches 372 

16 m s
-1

 and the RMW of about 60 km is much smaller than that in CTL at the initial time. 373 

The maximum tangential wind remains this level until about 8 hours (the landfalling 374 

time), however after that, the RMW shrinks with the tangential wind speed increased (Fig. 375 

7b). It shows the unreasonable intensity trend in which the vortex circulation is 376 

intensified after landfall. As the predicted typhoon takes an eastern track closer to the 377 

coast with almost half of the vortex remaining over ocean in ExpVr (Fig. 5c), the 378 
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intensity is over-predicted after 2000 UTC, because of slower decay of the vortex. In 379 

comparison, the peak tangential wind speed is about 24 m s
-1

 at 55 km radius at the IC 380 

time in ExpTrec (Fig. 7c). The RMW shrinks to about 40 km between 6 to 8 hours with 381 

the maximum wind increases to 32 m s
-1 

before landfall. After the landfall at 2000 UTC 9 382 

September (8 hours from the IC time), the RMW increases gradually and the wind speed 383 

decreases below 18 m s
-1

 at the end of the forecast. This ‘shrinking-expansion’ process 384 

represents a correct trend of intensity change before and after landfall, that is consistent 385 

with the best track data shown in Fig. 5.  386 

To estimate the thermal structure during the whole forecasting period, the 387 

time-height evolution of mean temperature anomalies (defined as the mean value of 388 

temperature anomalies within the radius of 150 km centered the typhoon’s surface 389 

minimum pressure for simulations) for simulated storms in CTL, ExpVr and ExpTrec are 390 

plotted in Figure 8. There is no obvious warm core structure at all heights in CTL (Fig. 8a) 391 

suggesting the vortex structure is not well established during the forecast. For ExpVr, 392 

during the first 8 hours before landfall, the warm anomalies are weak similar with CTL. 393 

While, after 9 hours or so, the warm core appears at the level of about 7 km height. The 394 

delayed formation of warm core structure is consistent with the incorrect intensification 395 

after landfall in ExpVr (Fig. 7b). In comparison, for ExpTrec, the maximum warm 396 

anomalies take place in the middle level of about 8 km at the initial several hours of 1300 397 

UTC to 1400 UTC (Fig. 8c) after the model adjustment. The layer of the warm core 398 

decreases to about 6 km after 9 hours as the storm declines due to the landfall. The peak 399 

anomaly in ExpTrec is much higher than that in ExpVr, suggesting the low predicted 400 

pressure (Fig. 5c) in ExpTrec. The results again indicate that the assimilation of T-TREC 401 
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wind data at the given time is much more effective than assimilating available Vr data at 402 

the time. 403 

 404 

3.3 Impact on the typhoon structure prediction 405 

The composite radar reflectivity and 3-km height horizontal winds at 6, 12 and 18 406 

hours from CTL, ExpVr and ExpTrec are plotted in Fig. 9, together with corresponding 407 

observed reflectivity fields (1
st
 column). 408 

At 1800 UTC, the 6-hour forecast time, reflectivity echoes are mainly found in the 409 

inner core region or are associated with the outer rainbands more on the south side (Fig. 410 

9a). In CTL (Fig. 9b), the vortex circulation is not well organized in the inner core region 411 

while most of the predicted precipitation is in the northeastern quadrant unlike observed. 412 

Similar to CTL, ExpVr (Fig. 9c) over-predicts the reflectivity in the northern quadrant 413 

and misses the main precipitation structure in the inner core region. Besides, the predicted 414 

typhoon location has more southward bias in ExpVr. In comparison, precipitation 415 

structures in the inner core region are much strong in ExpTrec (Fig. 9d), so is the 416 

rainband extending south and southwestward on the south side. The eyewall structure is 417 

also evident. Imperfect aspects of the prediction include overly strong predicted 418 

reflectivity, and southerly displacement of the typhoon compared to observations; the 419 

former may be linked to deficiencies in the Lin microphysics scheme used while latter is 420 

linked to the too slow movement of the typhoon before landfall, as mentioned earlier. 421 

Still, the improvements over CTL and ExpVr are clear. 422 

At 12 hours, Meranti has made landfall and the precipitation pattern becomes more 423 

asymmetric. The precipitation is mostly over land and the observed typhoon eye is now 424 
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filled due to landfall. The weak storm in CTL (Fig. 9f) moves north-northeastward within 425 

the background flow, deviating from the observation, and typhoon structures are no 426 

longer clear. In ExpVr (Fig. 9g), the disorganized vortex structure also appears more 427 

south than the observed typhoon location the same as situation in the 6
th

 forecast hour 428 

(Fig. 9c). However, the storm in ExpTrec still shows a much better organized vortex with 429 

reflectivity mostly found on the west side of the typhoon center (Fig. 9h), agreeing with 430 

observations (Fig. 9e). At 18 hours, the precipitation becomes even more asymmetric and 431 

weaker. The reflectivity structure nearly vanishes in CTL (Fig. 9j). While ExpVr (Fig. 9k) 432 

over-predict the reflectivity structure, indicating that the predicted typhoon is stronger 433 

than the observed typhoon during this time. The over-prediction is consistent with the 434 

incorrect intensity trend (Fig. 7b) shown before. In comparison, ExpTrec captures the 435 

distribution of strong echoes (Fig. 9l) in agreement with observations (Fig. 9i), although 436 

there is over-prediction in the reflectivity intensity which may be related to errors in the 437 

microphysics [Rogers et al. 2007]. 438 

To further quantify the reflectivity prediction skills, the Probability of Detection 439 

(POD) and False Alarm Rate (FAR) for CTL, ExpVr and ExpTrec at 1800 UTC, 0000 440 

UTC and 0600 UTC are displayed in Figure 10. The PODs in ExpTrec for each valid 441 

time are much higher than those in CTL and ExpVr (Fig. 10a), suggesting that more 442 

observed reflectivity structures are successfully predicted in ExpTrec. Furthermore, 443 

ExpTrec also gets the lowest FAR scores at all three times among all three experiments 444 

(Fig. 10b), indicating that ExpTrec has a lower false alarm rate compared to the other two 445 

experiments. The predicted skills for CTL and ExpVr are similar in POD and FAR scores 446 
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(Figs. 10a, b). These quantitative scores again indicate that the assimilation of T-TREC 447 

winds is advantageous. 448 

Overall, with improved IC, ExpTrec is able to capture the typhoon structures well 449 

during the entire 18-hourforecasting period. As Meranti in ExpTrec moves slower than 450 

the observation, the predicted typhoon eye is somewhat south of the observed center. 451 

Assimilating Vr data from a single radar for only one time in this case fails to reproduce 452 

the structure of typhoon inner core correctly, and actually the track forecasting even 453 

worse. Impacts are expected to be greater when more assimilation cycles and radars are 454 

used over a period of time [Xiao et al. 2005, Zhao and Xue 2009]. 455 

 456 

3.4. Impact on precipitation forecast 457 

Figure 11 compares the 6-hour accumulated precipitation fields valid at 0000 and 458 

0600 UTC, 10 September, respectively, from CTL, ExpVr and ExpTrec together with 459 

objective analyses of the automatic weather station rainfall measurements. During the 460 

landfall period, the observation (Fig. 11a) shows a band of strong precipitation along the 461 

coast of Fujian Province. Neither CTL (Fig. 11b) nor ExpVr (Fig. 11c) predicts this 462 

pattern or intensity, due to their eastward track bias and low intensity. On the contrary, 463 

ExpTrec (Fig. 11d) captures reasonably well the strong precipitation region near the coast. 464 

The precipitation distribution is more south than observation owing to its slower 465 

movement. After landfall, the main precipitation band moves north with the typhoon, 466 

producing an elongated region of high precipitation along 118.5 °E (Fig. 11e). CTL (Fig. 467 

11f) has a northeastward bias of precipitation distribution with much smaller magnitude. 468 

While, ExpVr (Fig. 11g) represents a similar pattern as the observation except for the 469 
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high precipitation located much more south. The precipitation of ExpTrec (Fig. 11h) 470 

compares with the observation much better in both distribution and intensity.  471 

To quantify the precipitation forecast skills, equitable threat scores (ETS) and 472 

frequency bias scores of 12-hour accumulated precipitation valid at 0600 UTC 10 473 

September against the rainfall observations are calculated and plotted for thresholds 474 

ranging from 0 mm to 150 mm in Figure 12. It is obvious that CTL has little skill in 475 

heavy rain prediction for thresholds above 50 mm (Fig. 12a). ExpVr has some 476 

improvement in the skill of heavy rain while the maximum ETS scores is only 0.22. Both 477 

of them also under-forecast the precipitation amounts for both weak and heavy rainfall 478 

(Fig. 12b). For all thresholds, ExpTrec has much higher ETS scores than other two 479 

experiments, with the maximum score being about 0.58 at about 20 mm threshold (Fig. 480 

12a). ExpTrec also produces excellent frequency biases that are very close to 1 for more 481 

thresholds (Fig. 12b). The improvements in precipitation forecast are attributed to the 482 

improved intensity and structure forecasting. 483 

 484 

4. Results of experiments with later analysis times 485 

In this section, the results of the experiments with analysis times at 1400, 1600 and 486 

1800 UTC are presented. For brevity, we focus on the predicted track and intensity in 487 

these experiments. 488 

Figure 13 displays the observed and T-TREC-retrieved Vr at 3-km height at 1400, 489 

1600 and 1800 UTC, 9 September. The T-TREC-retrieved Vr (Figs. 13b, d, f) shows quite 490 

similar patterns to observed Vr (Figs. 13a, c, e) at each time within the observed Vr 491 

coverage. At 1400 UTC, the observed Vr shows an incomplete velocity dipole pattern 492 
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associated with typhoon inner core, while the T-TREC-retrieved Vr yields a more 493 

complete velocity dipole pattern. As the typhoon gets closer to the radar at 1600 and 1800 494 

UTC, the observed Vr fully covers the typhoon inner core region (Figs. 13 c, e). However, 495 

the T-TREC-retrieved winds still have the advantage of being able to cover the complete 496 

TC circulation (Figs. 13d, f).  497 

Figure 14 shows the track and intensity forecasts of all experiments (Table. 1). For 498 

all experiments that assimilate T-TREC winds, the mean predicted track, MSLP and 499 

MSW errors are similar in ExpTrec, ExpTrec14 and ExpTrec16. The mean MSLP (MSW) 500 

errors are 12.1 hPa (3.8 m s
-1

), 12.4 hPa (3.7 m s
-1

) and 12.3 hPa (3.1 m s
-1

), respectively. 501 

However, since the assimilation time in ExpTrec18 is close to the landfall time of ~2000 502 

UTC, and without the benefit of a longer model spin up, the predicted MSLP and MSW 503 

(Figs. 14c, d) in ExpTrec18 are much weaker than in earlier experiments before landfall 504 

and decline quickly further after landfall. 505 

Among all the experiments that assimilate Vr data, the later assimilation times in 506 

ExpVr14 and ExpVr16 result in better track (Figs. 14a, b) and intensity forecasts (Figs. 507 

14c, d) than in ExpVr. The mean track errors in ExpVr14 and ExpVr16 are 51 km and 49 508 

km, respectively, smaller than the 72 km of ExpVr. The mean predicted MSLP (MSW) 509 

errors in ExpVr14 and ExpVr16 are 15.2 hPa (6.4 m s
-1

) and 13.7 hPa (3.6 m s
-1

), 510 

respectively, better than the 16.6 hPa (7.7 m s
-1

) of ExpVr. The improved track and 511 

intensity forecasts can be attributed to the increasingly larger Vr coverage as Meranti 512 

moves closer to the radar (Figs. 13a, c). It is worth pointing out that, as TC approaches 513 

the coastline, the performance of Vr assimilation in ExpVr16 and ExpVr18 becomes close 514 

to the T-TREC assimilation in ExpTrec16 and ExpTrec18. The mean MSLP (MSW) 515 
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errors are 13.7 hPa (3.6 m s
-1

) and 13.5 hPa (5.5 m s
-1

) in ExpVr16 and ExpVr18, in 516 

comparison to the 12.3 hPa (3.1 m s
-1

) and 13 hPa (5.3 m s
-1

) in ExpTrec16 and 517 

ExpTrec18. Yet, the assimilation of T-TREC data at 1600 UTC and 1800 UTC still 518 

maintains a slight advantage. 519 

Overall, except for the assimilation at 1800 UTC which is very close to landfall, the 520 

assimilation of T-TREC data 8 to 4 hours before landfall, shows consistently positive 521 

impacts on the forecast of typhoon Meranti. For Vr data, later analysis times result in 522 

larger positive impacts but the forecasts are generally poorer than the corresponding 523 

T-TREC assimilation experiments. The difference between Vr and T-TREC assimilations 524 

is largest at the earliest time when T-TREC retrieval can be successfully performed. The 525 

much improved forecast at a longer lead time with the T-TREC DA is especially valuable 526 

for real time decision making. 527 

 528 

5. Summary and conclusions 529 

An extended TREC technique, called T-TREC, was developed recently for 530 

retrieving wind circulations in TCs from single Doppler radar reflectivity (Z) and radial 531 

velocity (Vr) data from two consecutive times. This study explores, for the first time, the 532 

assimilation of T-TREC-retrieved wind data for the analysis and prediction of a TC. The 533 

WRF 3DVAR is used for the data assimilation while the landfalling typhoon Meranti 534 

(2010) near southeastern coast of China is chosen as the test case. The main conclusions 535 

are summarized as follows. 536 

A single-time analysis at 1200 UTC, 9 September is first performed when the center 537 

of Meranti was in the full coverage of reflectivity data (which has a 460 km range from 538 
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radar) of the Xiamen radar in Fujian Province, but the radial velocity only provides 539 

partial coverage of typhoon circulation and misses much of the inner core structure. 540 

Results show that the assimilation of T-TREC-retrieved wind data improves the inner 541 

core circulation of typhoon significantly, while the assimilation of Vr data only makes 542 

differences within the Doppler coverage at the given analysis time. The asymmetric 543 

vortex structure brought by the single-time assimilation of Vr data fails to reproduce the 544 

reasonable predicted typhoon throughout the entire forecasting period. The track forecast 545 

is actually even worse and the intensity forecast has incorrect trend especially after 546 

landfall. On the contrary, the effectiveness of the T-TREC-retrieved wind data is 547 

associated with the large spatial coverage of reflectivity data used for the retrieval and the 548 

complete typhoon inner core circulation that can be effectively represented by the 549 

T-TREC retrieval. The resulting improved typhoon intensity and structure leads to better 550 

track, intensity and structure predictions throughout the 18 hours of forecast. The 551 

predicted intensity shows a correct trend also. Benefiting from the improved track and 552 

structure forecasting, the heavy rain at coastal Fujian province of China is reproduced 553 

well in term of both intensity and distribution. Excellent precipitation ETS scores and 554 

frequency bias are obtained. The results indicates the efficacy of assimilating 555 

T-TREC-retrieved winds for TC initiations when such data can be retrieved from 556 

reflectivity data with much farther offshore reach than radial velocity data with typical 557 

operational weather radars. Additional experiments with later assimilation times and 558 

closer radar distances show that the assimilation of T-TREC winds consistently 559 

outperforms Vr assimilation, although the difference becomes smaller as the Vr coverage 560 

improves with time.  561 
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Because the T-TREC retrieval procedure is computationally rather efficient, the 562 

T-TREC-retrieved winds can be easily used for operational forecasting. The use of 563 

T-TREC winds can also help extend the utilization of radar data by several hours for a 564 

landfalling TC, because of the typical farther reach of the reflectivity data used for the 565 

retrieval, thereby benefiting advanced typhoon warning. Although conclusions drawn 566 

within this paper are based on a single landfalling typhoon, we have applied the same 567 

approach to typhoon Chanthu (2010) and all the results are consistent with the findings 568 

here. In the future, we will test the procedure with more cases. At the same time, we are 569 

also examining the impacts of Vr versus T-TREC winds by assimilating the data using the 570 

more advanced ensemble Kalman filter method for another typhoon [Wang et al. 2013]; 571 

similarly encouraging results are obtained. 572 

A few other issues will require further research. When the typhoon gets closer to 573 

the coast, it may be covered by several coast radars. Direct assimilation of Vr data from 574 

multiple Doppler radars may become more effective while the relative advantage of using 575 

T-TREC-retrieved winds may decrease. It is also possible to assimilate both Vr and 576 

T-TREC retrievals at the same time, and the data can be assimilated through continuous 577 

cycles. It would also be interesting to compare the assimilation of T-TREC winds and the 578 

assimilation of GBVTD retrieval winds [Zhao et al. 2011] when both are available. The 579 

relative impacts of assimilating each type of data alone or in combination through varied 580 

assimilation procedure are worthy topics for future research.  581 
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List of figures 725 

Fig. 1. The domain for radar data coverage at 1200 UTC, 9 September, with the 726 

CMA best track locations of Typhoon Meranti marked with 6-h interval from 1200 UTC, 727 

9 September to 0600 UTC, 10 September, 2010. The Vr data (color shaded, m s
-1

) is 728 

shown in (a), the Z data (color shaded, dBZ) and the T-TREC-retrieved wind data 729 

(vectors) are shown in (b), respectively at 3 km height. Small and large circles in both (a) 730 

and (b) are the 230-km range ring of Vr data and 460-km range ring of Z data.  731 

Fig. 2. A schematic diagram of the T-TREC method. OM  and OR  indicate the 732 

maximum searching distance and the referenced searching distance along the azimuth 733 

direction, respectively. AB  is twice as long as the radial referenced searching distance. 734 

The hatching indicates the area with larger weight. (reproduced from Wang et al. 2011) 735 

Fig. 3. Percent cumulative histogram of the difference between measured Doppler 736 

radial velocities and the retrieved radial component of T-TREC winds for typhoon 737 

Meranti. N represents the total number of available radial velocities. R and E represent 738 

the correlation coefficient and the mean difference, respectively. 739 

Fig. 4. The analyzed horizontal wind vectors and speed (color shaded, m s
-1

) at 3 km 740 

height after one time analysis at 1200 UTC for (a) CTL initialized from GFS analysis at 741 

1200 UTC, (b) the analysis from ExpVr using Vr data, and (c) the analysis from ExpTrec 742 

using T-TREC-retrieved wind data. Also shown are the analyzed azimuthal winds at the 743 

same time from experiments (d) CTL, (e) ExpVr, and (f) ExpTrec. Black dots in both (a), 744 

(b) and (c) are the typhoon centers from CMA best track. 745 

Fig. 5. The 18-h predicted (a) tracks, (b) track errors, (c) MSLP (hPa), and (d) MSW 746 

(m s
-1

), for typhoon Meranti (2010), from 1200 UTC, 9 September to 0600 UTC, 10 747 
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September 2010. The numbers in (b) represent the mean track errors over the 18 hours 748 

period. Best track data are shown in black and 3 hours apart in (a). 749 

Fig. 6. Azimuthal mean tangential winds (color shaded, m s
-1

) and temperature 750 

deviation (solid isolines) of the 6-hour forecast valid at 1800 UTC for experiments (a) 751 

CTL, (b) ExpVr, and (c) ExpTrec, as compared with the (d) GBVTD-derived azimuthal 752 

mean tangential wind. 753 

Fig. 7. Time-radius Hovmöller diagrams of azimuthal-averaged tangential wind (m 754 

s
-1

) at 1 km height from three experiments: (a) CTL, (b) ExpVr and (c) ExpTrec. The 755 

thick line denotes the RMW at the same height. 756 

Fig. 8. Time-height diagrams of mean temperature anomalies from three 757 

experiments: (a) CTL, (b) ExpVr and (c) ExpTrec. The average is computed within the 758 

radius of 150 km centered at the typhoon’s surface minimum pressure for simulations. 759 

Fig. 9. Composite reflectivity (color shaded) and wind vectors at 3 km height 760 

predicted by experiments CTL (2nd column), ExpVr (3rd column) and ExpTrec (4th 761 

column), as compared to observed composite reflectivity (1st column). The 762 

corresponding times are 1800 UTC (6h), 9 September, and 0000 UTC (12h), 0600 UTC 763 

(18h), 10 September. 764 

Fig. 10. (a) Probability of detection and (b) False alarm rate for the predicted 765 

composite reflectivity from CTL, ExpVr and ExpTrec at 1800 UTC 9 September, 0000 766 

UTC 10 September and 0600 UTC 10 September, verifed against the observed composite 767 

reflctivity.  768 

Fig. 11. Six-hour accumulated precipitation (mm) valid at 0000 UTC (1
st
 row) and 769 

0600 UTC (2
nd

 row), on 10 September 2010 fromautomatic weather station hourly 770 
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observations (1
st
 column), CTL (2

nd
 column), ExpVr (3

rd
 column), and ExpTrec (4

th
 771 

column). 772 

Fig. 12. (a) Equitable threat scores and (b) bias scores of the 12-h accumulated 773 

precipitation forecast valid at 0600 UTC 10 September from CTL, ExpVr and ExpTrec 774 

verified against the automatic weather station obervations. 775 

Fig. 13. (a, c, e) Observed radial velocity and (b, d, f) the radial velocity calculated 776 

from T-TREC winds at 3 km height at 1400 UTC (1
st
 row), 1600 UTC (2

nd
 row) and 1800 777 

UTC (3
rd

 row), 9 September 2010. ‘+’ denotes the center of vortex. 778 

Fig. 14. The predicted (a) tracks, (b) track errors, (c) MSLP (hPa), and (d) MSW (m 779 

s
-1

), for experiments ExpVr, ExpVr14, ExpVr16, ExpVr18, ExpTrec, ExpTrec14, 780 

ExpTrec16 and ExpTrec18. The numbers in (b), (c) and (d) represent the mean track 781 

errors, mean MSLP errors and mean MSW errors, respectively. The vertical dashed line 782 

in (c) and (d) represent the landfalling time for typhoon Meranti (2010). 783 
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Table 1. Description of experiments 785 

 786 

Experiments Description 

CTL No radar data assimilation 

ExpVr Assimilating radial velocity once at 1200 UTC, 9 September 

ExpTrec Assimilating T-TREC winds once at 1200 UTC, 9 September 

ExpVr14 Same as ExpVr, but assimilating radial velocity at 1400 UTC 

ExpTrec14 Same as ExpTrec, but assimilating T-TREC winds at 1400 UTC 

ExpVr16 Same as ExpVr, but assimilating radial velocity at 1600 UTC 

ExpTrec16 Same as ExpTrec, but assimilating T-TREC winds at 1600 UTC 

ExpVr18 Same as ExpVr, but assimilating radial velocity at 1800 UTC 

ExpTrec18 Same as ExpTrec, but assimilating T-TREC winds at 1800 UTC 
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 787 
 788 

Fig. 1. The domain for radar data coverage at 1200 UTC, 9 September, with the CMA 789 

best track locations of Typhoon Meranti marked with 6-h interval from 1200 UTC, 9 790 

September to 0600 UTC, 10 September, 2010. The Vr data (color shaded, m s
-1

) is shown 791 

in (a), the Z data (color shaded, dBZ) and the T-TREC-retrieved wind data (vectors) are 792 

shown in (b), respectively at 3 km height. Small and large circles in both (a) and (b) are 793 

the 230-km range ring of Vr data and 460-km range ring of Z data. 794 
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 795 
 796 

Fig. 2. A schematic diagram of the T-TREC method. OM  and OR  indicate the 797 

maximum searching distance and the referenced searching distance along the azimuth 798 

direction, respectively. AB  is twice as long as the radial referenced searching distance. 799 

The hatching indicates the area with larger weight. (reproduced from Wang et al. 2011) 800 

 801 

  802 
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 803 
 804 

Fig. 3. Percent cumulative histogram of the difference between measured Doppler radial 805 

velocities and the retrieved radial component of T-TREC winds for typhoon Meranti. N 806 

represents the total number of available radial velocities. R and E represent the 807 

correlation coefficient and the mean difference, respectively.808 
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 809 
 810 

Fig. 4. The analyzed horizontal wind vectors and speed (color shaded, m s
-1

) at 3 km 811 

height after one time analysis at 1200 UTC for (a) CTL initialized from GFS analysis at 812 

1200 UTC, (b) the analysis from ExpVr using Vr data, and (c) the analysis from ExpTrec 813 

using T-TREC-retrieved wind data. Also shown are the analyzed azimuthal winds at the 814 

same time from experiments (d) CTL, (e) ExpVr, and (f) ExpTrec. Black dots in both (a), 815 

(b) and (c) are the typhoon centers from CMA best track. 816 

  817 
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 818 
 819 

Fig. 5. The 18-h predicted (a) tracks, (b) track errors, (c) MSLP (hPa), and (d) MSW (m 820 

s
-1

), for typhoon Meranti (2010), from 1200 UTC, 9 September to 0600 UTC, 10 821 

September 2010. The numbers in (b) represent the mean track errors over the 18 hours 822 

period. Best track data are shown in black and 3 hours apart in (a). 823 

  824 
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 825 
 826 

Fig. 6.Azimuthal mean tangential winds (color shaded, m s
-1

) and temperature deviation 827 

(solid isolines) of the 6-hour forecast valid at 1800 UTC for experiments (a) CTL, (b) 828 

ExpVr, and (c) ExpTrec, as compared with the (d) GBVTD-derived azimuthal mean 829 

tangential wind. 830 

  831 
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 832 
 833 

Fig. 7. Time-radius Hovmöller diagrams of azimuthal-averaged tangential wind (m s
-1

) at 834 

1 km height from three experiments: (a) CTL, (b) ExpVr and (c) ExpTrec. The thick line 835 

denotes the RMW at the same height. 836 

  837 
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 838 
 839 

Fig. 8. Time-height diagrams of mean temperature anomalies from three experiments: (a) 840 

CTL, (b) ExpVr and (c) ExpTrec. The average is computed within the radius of 150 km 841 

centered at the typhoon’s surface minimum pressure for simulations. 842 
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 843 
 844 

Fig. 9. Composite reflectivity (color shaded) and wind vectors at 3 km height predicted 845 

by experiments CTL (2nd column), ExpVr (3rd column) and ExpTrec (4th column), as 846 

compared to observed composite reflectivity (1st column). The corresponding times are 847 

1800 UTC (6h), 9 September, and 0000 UTC (12h), 0600 UTC (18h), 10 September. 848 

  849 
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 850 
 851 

Fig. 10. (a) Probability of detection and (b) False alarm rate for the predicted composite 852 

reflectivity from CTL, ExpVr and ExpTrec at 1800 UTC 9 September, 0000 UTC 10 853 

September and 0600 UTC 10 September, verifed against the observed composite 854 

reflctivity.  855 

  856 
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 857 
 858 

Fig. 11. Six-hour accumulated precipitation (mm) valid at 0000 UTC (1
st
 row) and 0600 859 

UTC (2
nd

 row), on 10 September 2010 fromautomatic weather station hourly 860 

observations (1
st
 column), CTL (2

nd
 column), ExpVr (3

rd
 column), and ExpTrec (4

th
 861 

column). 862 
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 864 
 865 

Fig. 12. (a) Equitable threat scores and (b) bias scores of the 12-h accumulated 866 

precipitation forecast valid at 0600 UTC 10 September from CTL, ExpVr and ExpTrec 867 

verified against the automatic weather station obervations. 868 
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 870 
 871 

Fig. 13. (a, c, e) Observed radial velocity and (b, d, f) the radial velocity calculated from 872 

T-TREC winds at 3 km height at 1400 UTC (1
st
 row), 1600 UTC (2

nd
 row) and 1800 873 

UTC (3
rd

 row), 9 September 2010. ‘+’ denotes the center of vortex. 874 
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 876 
 877 

Fig. 14. The predicted (a) tracks, (b) track errors, (c) MSLP (hPa), and (d) MSW (m s
-1

), 878 

for experiments ExpVr, ExpVr14, ExpVr16, ExpVr18, ExpTrec, ExpTrec14, ExpTrec16 879 

and ExpTrec18. The numbers in (b), (c) and (d) represent the mean track errors, mean 880 

MSLP errors and mean MSW errors, respectively. The vertical dashed line in (c) and (d) 881 

represent the landfalling time for typhoon Meranti (2010). 882 
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