Nikita Gogin | Mika Hirvensalo

On the Generating Function of Discrete
Chebyshev Polynomials

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 819, April 2007






1

On the Generating Function of Discrete
Chebyshev Polynomials

Nikita Gogin
The author is with the University of Turku.
ngiri@si.ru

Mika Hirvensalo
TUCS-Turku Centre for Computer Science, and
Department of Mathematics, University of Turku
FIN-20014 Turku, Finland
m khi rve@t u. fi
Supported by the Academy of Finland under grant 208797

TUCS Technical Report
No 819, April 2007



Abstract

We give a closed form for the generating function of the @iseChebyshev poly-
nomials. The closed form consists of the MacWilliams transf of Jacobi poly-

nomials together with a binomial multiplicative factortlirns out that the desired
closed form is a solution to a special case of Heun diffea¢@ijuation, and that

the closed form implies combinatorial identities that appguite challenging to
prove directly.
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1 Introduction

The discrete Chebyshev polynomials belong to the rich faofibrthogonal poly-
nomials(see [8] for a general treatise on the orthogonal polynasraad [3] for a
previous work of the authors). The inner product associttdédde discrete Cheby-
shev polynomials is defined with a discrete weight functemg hence the vector
spacePy of polynomials having degree at mast forms a natural reference for
the orthogonal polynomials discussed in this article.

The sum and the scalar product ity are defined pointwise, and the inner
product is defined as

N
(P, @)w = > _wip(l)q(l). 1)
=0

The Krawtchouk polynomial¢see [6])K(()N), K{N), K](VN) (of order N) are
orthogonal with respect to weight functian, = (le) and the discrete Cheby-

shev ponnomialsDéN), D%N), D](év) of order V with respect to weight func-

tion w; = 1 for eachl. In addition to orthogonality, we haveeg(KlgN)) =
deg(D,iN)) = k for eachk € {0,1,...,N}.

As (orthogonal) polynomials with ascending degree, therdie Chebyshev
polynomials form a basis d?y, and hence any polynomiglof degree at mosv
can be uniquely represented as

p=doD{™ +d, DN + ..+ dy DY, @

whered; € C. Coefficientsd; in (2) are called thaliscrete Chebyshev coeffi-
cientsof p. Since the discrete Chebyshev polynomials are orthogoithalraspect
to constant weight function, they have the following prapémportant in the ap-
proximation theory: With respect to norip — ¢||> = 1, (p(1) —¢(1))?, the best
approximation ofp in P,; can be found by simply taking/ + 1 first summands
of (2) (see [4], for instance).

2 Preliminaries

2.1 TheDiscrete Chebyshev Polynomials

There are various ways to construct polynomials orthoguiiidl respect to inner
product (1) with weight functiony; = 1 so thatdeg(D,iN)) = k. We choose a
construction analogous to that bégendre polynomial§8]. We first define the
difference operatoA by Af(z) = f(x + 1) — f(x), the binomial coefficient by
(}) = Lz(z—1)...(x — k+ 1), and finally

DM (z) = (~1)F Ak ((i) (9” - JZ - 1)) . @3)

It is straightforward to see that polynomials, (here and hereafter, we omit the
superscriptV if there is no danger of confusion) defined above form a bdsizo



orthogonal with respect to inner product (1) with weight= 1. Moreover, clearly
deg(Dy) = k, since one application ak decreases the degree of a polynomial by
one [2].

In this article,we consider (3) as the definition of discrete Chebyshev pelyn
mials but it is also easy to see that the following explicit express hold (see

[2]):
e = S0
- ;(_l)l(k;‘l> (Z:;) <glc> @

Also, it is rather easy to verify that the discrete Chebygbmlynomials satisfy the
following recurrence relation:

ES|

k2Dy, = (2k —1)D1Dj_1 — (N + k)(N — k 4+ 2) Dy, (5)

Do =1,Dy = N — 2z (see [2]). The recurrence (5) also extends the definition of
D, to cases: > N.

The method of usingenerating functionss among the cornerstones of various
areas of mathematics, and does not need any further intiodu®Ve merely focus
on the very simple form of the generating function of Kravatak polynomials (see

[6]):

T+ N1 -t =Y KV (@), (6)
k=0
In fact, when studying binomial distributions, it is quitataral todefinethe Krawt-
chouk polynomials via (6).
On the other hand, the quest for the generating functioneoflibcrete Cheby-
shev polynomials seems to be a more complicated task. Infothaws, we give a
closed form for the generating function

i D™ ()", @)
k=0

It should be noticed, however, that some useful closed-fexpressions carrying
information about the discrete Chebyshev polynomials Heeen found before.
For instance in [5] an expression

1+0)*1+ )N 71— st)® (8)

having the property that the coefficient&f* equals toD,(CN) (x) is given.

2.2 Jacobi Differential Equation

For a natural numben, the Jacobi polynomiale(La’ﬁ) (z) is, up to the constant
factor, the unique entire rational solution to thecobi differential equation

(1-=2®)y'+(B-—a—(a+B+2)z)y +n(n+a+B+1y=0 (9

2



(see [1]).

In this article, we are interested in Jacobi polynomialwpiarameters: = 0,
B =—(N+1), whereN > 0 is a fixed integer. We also substitutefor n and
t for z in equation (9), and denotééNH)(t) = quo’_N_l)(t). We usually omit
superscriptV + 1 and denote/,.(t) = JQEN“)(t). ThenJ,(t) satisfies differential
equation

(1 —t)JI(t) — (N +1— (N —=1t)Jo(t) + x(x — N)J.(t) =0.  (10)

Recall that in this context; is a fixed nonnegative integer. Polynomiglt) can
be expressed as

ro=5 3 () (Y Ne-vrert ay

k=0

(coefﬁcientQ% is chosen for a special purpose) [1]. Since equation (10e&rly
invariant under substitutiom < N — x, we have symmetry

JNf:v(t) = Jx(t) (12)
(see [1]).

2.3 MacWilliams Transform

TheMacWilliams transfornof orderz for a polynomialP is defined as

1-t¢

As definition (13) shows, MacWilliams transform is a specese of Mobius trans-
formation together with facto(l + ¢)*. If the subscriptz is clear by context,
we may omit it. It is also straightforward to see thatrifis an integer so that
deg(P) < =, then P is again a polynomial. In this article, we will however face
situations with non-integer values of and it is worth noticing already here that
(13) shows that if > —1, thenﬁm(t) is a uniquely defined differentiable function
of real variabler.

In what follows, J,.(¢) stands for the MacWilliams transform df. of orderz.
It is then straightforward to uncover a representation]A[qut):

P.(t) = (1+t)*P(

Lo=T=S ()Y T)E as
k=0
The symmetry (12) implies straightforwardly
Taolt) = O o)v-alt) = 1+ 0 "I ()
_ox x 1—1 _ -2z 7
= W)V T = W)V T).
Equality R R
IN—a(t) = (1 + )N "2 J,(t) (15)

thus obtained will be important in understanding the atiéve representation of
the generating function introduced in Section 5.
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3 Heun Equation

A differential equation for the MacWilliams transform 8f(¢) can be found easily.
For short, we denoté(t) = .J,(t) andJ(t) = J,(¢) in the following lemmata.

Lemma 1. J(t) satisfies differential equation

tA+6)J"() + (Nt +1—2t(x — 1))J'(t) + 2(x — N —1)J(t) =0. (16)
Proof. By computing the derivatives of(t) = (1 + )7 J (1 t) we can represent
J(t), J'(t), andJ”(t) in terms of.J ( J'(1), andJ”(32). A direct calcula-

1+t) 1+t 1+t
tion allows us also to reverse the representations to get

1—-t¢

J) = +9770), (17)
J'(i—lz) _ %x(l )T — %(1 T2 (), and  (18)
J”(%) _ ix(x — 1)1+ 62T )
_ %(:c SN+ 0BT () + 3(1 ORI, (19)
Replacing with r ¢ in (10) and substituting (17)-(19) into (10) gives us thérla

Another way to prove the lemma is to use (14) and verify bydlicalculations
that differential equation (16) is satisfied. O

Lemma2. LetT(t) be defined ag'(t) = (1 +¢)N~27J(—t2). ThenT(t) satisfies
differential equation

# —)T"(1t) + (2t(N —2z) + 32 —1)T'(¢)
+ (N—22—tN(N+2)T(t)=0 (20)

Proof. As in the previous Lemma, we can exprddg), 7" (t), andT"(t) in terms
of J(—t%), J'(—t?), andJ”(—t?), and then to reverse the representations to get

~

(—t3) = (1462 N71(t) (21)

F—?) = %(N—Qx)(l—i—t)Qz*N*lT(t)

1+ 02T (22)
Fr—t?) = 4%3(]\/ —22)(1 4+ )2 V2N — 22 + 2) + 1)T(¢)
_41?(%(]\[ —22) +t+ 1)(1+ )% N 1T(1)
1

4t2(1 + )22 =N (1) (23)

+

by direct calculation. By substitutingt? for ¢ in (16) and by using (21)-(23), we
get differential equation (20) after some direct calcolasi O
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Differential equation (20) is a special caseHtdun differential equation

t(t—1)(t— @)y () + (clt =Dt —q) +d t{t - q)
+ (a+b+1—c—dt{t—1))y'(t)+ (abt — N)y(t) =0

(see [7]). Differential equation (20) can be obtained byrntgly = —1, a = —N,
b=N+2,c=1,d=N—-2x+1,and\ =2z — N.

4 The Generating Function

By equality (14) functioril’(t) = (1 + )N 27, (—t2) can be represented as

T(t) = (1+ )N i (i) (m - ZZ - 1)#’“. (24)

k=0

If t € (—1,1), we should keep in mind thak,(—t2) = (1 + t2)mJ(ﬁ—té) can
be straightforwardly defined for any real valuesrofHence fort € (—1,1) also
T(t) = (1 + t)N=2%J,(—t?) can be defined for an arbitrary real even though
(24) is meaningful only for integer values of Another way of generalizing (24)
even to complex values aof is to expand (24) straightforwardly to see that if we

write

T(t) = i () ¥, (25)
then N:)x 2\ [z —N—1
w- £ (DO

is a polynomial of degrek. For any fixedr, T'(¢) is an analytic function of in the
disc|t| < 1 (we can use the principal branch of the logarithm to definqubteer),
and hence it has a unique Maclaurin expansion (25) convevgeen|t| < 1.

That (25) converges fdt| < 1 can be also verified by using the ratio test, but to
estimate 71 (x) /7, (z)| ask tends to infinity is not very straightforward. On the
other hand, the recurrence of the next lemma revealskli_)lngt\rkﬂ(x)/m(x)] =

1.

Remark 1. Polynomialsr,(x) for small values of: are easy to find by using (26).
Forinstancery(z) = 1, 71 (z) = N — 2z, andry(z) = 32 — 3Nz + 3 N (N —1).

Lemma 3. For k > 2, polynomialsr (x) satisfy the recurrence relation
E*7.(z) = (2k — 1) (N — 22)7_1(z) — (N + k) (N — k+ 2)1p_o(z).  (27)

Proof. This is a general property for a generic solution to Heun touasee [7].
Recurrence (27) can be also obtained by differentiating @utastituting (25) to
Equation (20). O



Remark 2. From (27) it follows that
Ti(x) (2k — 1)(N — 2x) WV E)Y(N —k +2) 7_2(x)

Te1(z) 2 2 Te1(z)’
which shows thatimy_. |7x+1(2)/7%(x)| = oo is impossible. Since clearly
Tr(x) is a rational expression ik, the limit exists and is finite. Now

T(z)  Teoa(x) (26— 1N —2z) 7o) (N4E)N —k+2)

Tr_1(z) Tp_o(x) k2 Tr_o(7) k2

shows thaE;lim |Tht1 () /T (2)| = 1.
—00

We are now ready to state the main result.

Theorem 1. Function

Ty (t) = (1 + )N 22 ], (~1?) (28)
is the generating function of discrete Chebyshev polynismii@. 7 (x) = Dy(x)
for eachk > 0.
Proof. By (5), the Discrete Chebyshev polynomials satisfy the segaarrence
relation (27) as polynomials,(x) do. Since the initial conditiongy(z) = Dy(x)

andr (z) = Dy (z) hold by Remark 1, we have equality(x) = Dy (x) for each
k. O

Remark 3. It may be useful to compare (28) and (6).

5 Further Remarks

Example 1. Expression (28) shows thatifis an integer at mosV/2, thenTy ,(t)
is a polynomial int of degreeN — 2z + 22 = N. Thus we can find expressions

N
Twa(t) = Y DIV (@)t

n=0
by simply evaluatingD,,(N)(z) for n € {0,1,..., N} by using (5) or (26). For
example,N = 6 gives

Too(t) = 1+46t+ 1562 + 20t + 15t + 6% + 16 = (1 4-1)°
Tsa(t) = 14+4t4+0-1% —20t3 — 35t — 24¢° — 615 = (1 +1)*(1 — 6t%)
Too(t) = 142t — 9t — 20> + 5t + 30> + 15¢°
= (14t)%(1 —10t* + 15t%)
Tos(t) = 1—12t* +30t* — 205,

which is in full accordance with (28) and (14). Fore {4, 5,6} the power6 — 2z
of 1 + t in (28) is no longer positive, so it is not clear th&f,(¢) would be a
polynomial anymore. But ifs . is not a polynomial for: € {4, 5,6}, there would
be a rather mysterious asymmetry between 3 andxz > 3. Fortunately it is easy
to show thatl'y ,(t) is indeed a polynomial for each € {0,1,..., N} and the
asymmetry actually vanishes via trivial equality- t*> = (1 + ¢)(1 — t).
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Theorem 2. The generating functioff’y ,.(t) can be also represented as
T a(t) = (1=t N o(—17). (29)
Proof. Equality (15) implies
j\fo(_tQ) =(1- t2)N72xj;(_t2) =(1- t)N72x(1 + t)Nf2a:j;(_t2)’

and the claim follows immediately. O

Example 2 (Example 1 continued)Since by Theorem Z5 ,.(t) is a polynomial
in ¢ of degrees, we can evaluate its values forc {4,5,6} as

Toa(t) = 1—2t—9t% + 206> + 5t* — 3067 + 15¢°

= (1—1)%1—10t2 + 15t%)
Tos(t) = 1—4t+0-t>4+20t3 —35t* 4245 — 6t5 = (1 — t)*(1 — 6t?)
Toe(t) = 1—6t+15t% —20t3 4+ 15t* — 6t° +10 = (1 — 1)°.

This is again in full accordance with (29) and (14).
To combine Theorems 1 and 2 into a single presentation ig/stfarward:

Theorem 3 (The explicit polynomial form for: € {0,1,..., N}). The generating
functionTy . (t) can be presented as

Tra(t) = (14t - sign(N — 22)) V21700 0 (—12).

Remark 4. Theorem 1 implies that (5) and (26) are equal, i.e.

AR )| G IR e [

A direct combinatorial proof of (30) appears challenginche@rem 2 implies an
identity similar to (30).

References

[1] H. Bateman and A. Erdelyi: Higher Transcendental Functions Vol. 2
McGraw-Hill (1953).

[2] M. Hirvensalo: Studies on Boolean Functions Related to Quantum Comput-
ing. Ph.D thesis, University of Turku (2003).

[3] N. Gogin and M. HirvensaloRecurrent Construction of MacWilliams and
Chebyshev Matrice§ UCS Technical Report 812 (2007).

[4] A.N.Kolmogorov and S.V. Fomintntroductory Real AnalysiDover (1975).

7



[5] T. Laihonen: Estimates on the Covering Radius When the Dual Distance is
Known Ph.D thesis, University of Turku (1998).

[6] F.J. MacWilliams and N.J.A. Sloan&he Theory of Error-Correcting Codes
North-Holland (1977).

[7] S. Yu. Slavyanov and W. LaySpecial Functions, A Unified Theory Based on
Singularities Oxford University Press, 2000.

[8] G. Szego: Orthogonal PolynomialsProvidence, Rhode Island: American
Mathematical Society, Colloquium Publications, Volume IKX1975).






TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi




)4 , . .

\\ ) / University of Turku

§ é e Department of Information Technology
— T~ .

%‘ “\% e Department of Mathematics

o)

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-1896-5
ISSN 1239-1891



