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Abstract

We give a closed form for the generating function of the discrete Chebyshev poly-
nomials. The closed form consists of the MacWilliams transform of Jacobi poly-
nomials together with a binomial multiplicative factor. Itturns out that the desired
closed form is a solution to a special case of Heun differential equation, and that
the closed form implies combinatorial identities that appear quite challenging to
prove directly.
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1 Introduction

The discrete Chebyshev polynomials belong to the rich family of orthogonal poly-
nomials(see [8] for a general treatise on the orthogonal polynomials and [3] for a
previous work of the authors). The inner product associatedto the discrete Cheby-
shev polynomials is defined with a discrete weight function,and hence the vector
spacePN of polynomials having degree at mostN forms a natural reference for
the orthogonal polynomials discussed in this article.

The sum and the scalar product inPN are defined pointwise, and the inner
product is defined as

〈p, q〉w =

N∑

l=0

wlp(l)q(l). (1)

The Krawtchouk polynomials(see [6])K(N)
0 , K

(N)
1 , . . ., K

(N)
N (of orderN ) are

orthogonal with respect to weight functionwl =
(N

l

)
and the discrete Cheby-

shev polynomialsD(N)
0 , D

(N)
1 , . . ., D

(N)
N of orderN with respect to weight func-

tion wl = 1 for eachl. In addition to orthogonality, we havedeg(K
(N)
k ) =

deg(D
(N)
k ) = k for eachk ∈ {0, 1, . . . , N}.

As (orthogonal) polynomials with ascending degree, the discrete Chebyshev
polynomials form a basis ofPN , and hence any polynomialp of degree at mostN
can be uniquely represented as

p = d0D
(N)
0 + d1D

(N)
1 + . . . + dND

(N)
N , (2)

wheredl ∈ C. Coefficientsdl in (2) are called thediscrete Chebyshev coeffi-
cientsof p. Since the discrete Chebyshev polynomials are orthogonal with respect
to constant weight function, they have the following property important in the ap-
proximation theory: With respect to norm||p− q||2 =

∑N
l=0(p(l)−q(l))2, the best

approximation ofp in PM can be found by simply takingM + 1 first summands
of (2) (see [4], for instance).

2 Preliminaries

2.1 The Discrete Chebyshev Polynomials

There are various ways to construct polynomials orthogonalwith respect to inner
product (1) with weight functionwl = 1 so thatdeg(D

(N)
k ) = k. We choose a

construction analogous to that ofLegendre polynomials[8]. We first define the
difference operator∆ by ∆f(x) = f(x + 1) − f(x), the binomial coefficient by(x
k

)
= 1

n!x(x− 1) . . . (x− k + 1), and finally

D
(N)
k (x) = (−1)k∆k

((
x

k

)(
x−N − 1

k

))
. (3)

It is straightforward to see that polynomialsDk (here and hereafter, we omit the
superscriptN if there is no danger of confusion) defined above form a basis of PN
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orthogonal with respect to inner product (1) with weightwl = 1. Moreover, clearly
deg(Dk) = k, since one application of∆ decreases the degree of a polynomial by
one [2].

In this article,we consider (3) as the definition of discrete Chebyshev polyno-
mials, but it is also easy to see that the following explicit expressions hold (see
[2]):

D
(N)
k (x) =

k∑

l=0

(−1)l
(

k

l

)(
N − x

k − l

)(
x

l

)

=

k∑

l=0

(−1)l
(

k + l

k

)(
N − l

k − l

)(
x

l

)
. (4)

Also, it is rather easy to verify that the discrete Chebyshevpolynomials satisfy the
following recurrence relation:

k2Dk = (2k − 1)D1Dk−1 − (N + k)(N − k + 2)Dk−2, (5)

D0 = 1, D1 = N − 2x (see [2]). The recurrence (5) also extends the definition of
Dk to casesk > N .

The method of usinggenerating functionsis among the cornerstones of various
areas of mathematics, and does not need any further introduction. We merely focus
on the very simple form of the generating function of Krawtchouk polynomials (see
[6]):

(1 + t)N−x(1− t)x =

∞∑

k=0

K
(N)
k (x)tk. (6)

In fact, when studying binomial distributions, it is quite natural todefinethe Krawt-
chouk polynomials via (6).

On the other hand, the quest for the generating function of the discrete Cheby-
shev polynomials seems to be a more complicated task. In whatfollows, we give a
closed form for the generating function

∞∑

k=0

D
(N)
k (x)tk. (7)

It should be noticed, however, that some useful closed-formexpressions carrying
information about the discrete Chebyshev polynomials havebeen found before.
For instance in [5] an expression

(1 + t)k(1 + s)N−x(1− st)x (8)

having the property that the coefficient ofsktk equals toD(N)
k (x) is given.

2.2 Jacobi Differential Equation

For a natural numbern, the Jacobi polynomialP (α,β)
n (x) is, up to the constant

factor, the unique entire rational solution to theJacobi differential equation

(1− x2)y′′ +
(
β − α− (α + β + 2)x

)
y′ + n(n + α + β + 1)y = 0 (9)
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(see [1]).
In this article, we are interested in Jacobi polynomials with parametersα = 0,

β = −(N + 1), whereN > 0 is a fixed integer. We also substitutex for n and

t for x in equation (9), and denoteJ (N+1)
x (t) = P

(0,−N−1)
x (t). We usually omit

superscriptN + 1 and denoteJx(t) = J
(N+1)
x (t). ThenJx(t) satisfies differential

equation

(1− t2)J ′′
x (t)− (N + 1− (N − 1)t)J ′

x(t) + x(x−N)Jx(t) = 0. (10)

Recall that in this context,x is a fixed nonnegative integer. PolynomialJ(t) can
be expressed as

Jx(t) =
1

2x

x∑

k=0

(
x

k

)(
x−N − 1

k

)
(t− 1)k(t + 1)x−k (11)

(coefficient 1
2x

is chosen for a special purpose) [1]. Since equation (10) is clearly
invariant under substitutionx← N − x, we have symmetry

JN−x(t) = Jx(t) (12)

(see [1]).

2.3 MacWilliams Transform

TheMacWilliams transformof orderx for a polynomialP is defined as

P̂x(t) = (1 + t)xP (
1− t

1 + t
). (13)

As definition (13) shows, MacWilliams transform is a specialcase of Möbius trans-
formation together with factor(1 + t)x. If the subscriptx is clear by context,
we may omit it. It is also straightforward to see that ifx is an integer so that
deg(P ) ≤ x, thenP̂ is again a polynomial. In this article, we will however face
situations with non-integer values ofx, and it is worth noticing already here that
(13) shows that ift > −1, thenP̂x(t) is a uniquely defined differentiable function
of real variablex.

In what follows,Ĵx(t) stands for the MacWilliams transform ofJx of orderx.
It is then straightforward to uncover a representation forĴx(t):

Ĵx(t) = (̂Jx)x(t) =

x∑

k=0

(−1)k
(

x

k

)(
x−N − 1

k

)
tk. (14)

The symmetry (12) implies straightforwardly

ĴN−x(t) = (ĴN−x)N−x(t) = (1 + t)N−xJN−x(
1− t

1 + t
)

= (1 + t)N−2x(1 + t)xJx(
1− t

1 + t
) = (1 + t)N−2xĴx(t).

Equality
ĴN−x(t) = (1 + t)N−2xĴx(t) (15)

thus obtained will be important in understanding the alternative representation of
the generating function introduced in Section 5.
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3 Heun Equation

A differential equation for the MacWilliams transform ofJx(t) can be found easily.
For short, we denoteJ(t) = Jx(t) andĴ(t) = Ĵx(t) in the following lemmata.

Lemma 1. Ĵ(t) satisfies differential equation

t(1 + t)Ĵ ′′(t) + (Nt + 1− 2t(x− 1))Ĵ ′(t) + x(x−N − 1)Ĵ(t) = 0. (16)

Proof. By computing the derivatives of̂J(t) = (1 + t)xJ(1−t
1+t) we can represent

Ĵ(t), Ĵ ′(t), andĴ ′′(t) in terms ofJ(1−t
1+t ), J

′(1−t
1+t), andJ ′′(1−t

1+t). A direct calcula-
tion allows us also to reverse the representations to get

J(
1− t

1 + t
) = (1 + t)−xĴ(t), (17)

J ′(
1− t

1 + t
) =

1

2
x(1 + t)−x+1Ĵ(t)−

1

2
(1 + t)−x+2Ĵ ′(t), and (18)

J ′′(
1− t

1 + t
) =

1

4
x(x− 1)(1 + t)−x+2Ĵ(t)

−
1

2
(x− 1)(1 + t)−x+3Ĵ ′(t) +

1

4
(1 + t)−x+4Ĵ ′′(t). (19)

Replacingt with 1−t
1+t in (10) and substituting (17)-(19) into (10) gives us the claim.

Another way to prove the lemma is to use (14) and verify by direct calculations
that differential equation (16) is satisfied.

Lemma 2. LetT (t) be defined asT (t) = (1+ t)N−2xĴ(−t2). ThenT (t) satisfies
differential equation

(t3 − t)T ′′(t) +
(
2t(N − 2x) + 3t2 − 1

)
T ′(t)

+
(
N − 2x− tN(N + 2)

)
T (t) = 0 (20)

Proof. As in the previous Lemma, we can expressT (t), T ′(t), andT ′′(t) in terms
of Ĵ(−t2), Ĵ ′(−t2), andĴ ′′(−t2), and then to reverse the representations to get

Ĵ(−t2) = (1 + t)2x−NT (t) (21)

Ĵ ′(−t2) =
1

2t
(N − 2x)(1 + t)2x−N−1T (t)

−
1

2t
(1 + t)2x−NT ′(t) (22)

Ĵ ′′(−t2) =
1

4t3
(N − 2x)(1 + t)2x−N−2(t(N − 2x + 2) + 1)T (t)

−
1

4t3
(2t(N − 2x) + t + 1)(1 + t)2x−N−1T ′(t)

+
1

4t2
(1 + t)2x−NT ′′(t) (23)

by direct calculation. By substituting−t2 for t in (16) and by using (21)-(23), we
get differential equation (20) after some direct calculations.
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Differential equation (20) is a special case ofHeun differential equation

t(t− 1)(t− q)y′′(t) +
(
c(t− 1)(t− q) + d · t(t− q)

+ (a + b + 1− c− d)t(t− 1)
)
y′(t) + (abt− λ)y(t) = 0

(see [7]). Differential equation (20) can be obtained by taking q = −1, a = −N ,
b = N + 2, c = 1, d = N − 2x + 1, andλ = 2x−N .

4 The Generating Function

By equality (14) functionT (t) = (1 + t)N−2xĴx(−t2) can be represented as

T (t) = (1 + t)N−2x
x∑

k=0

(
x

k

)(
x−N − 1

k

)
t2k. (24)

If t ∈ (−1, 1), we should keep in mind that̂Jx(−t2) = (1 + t2)xJ(1+t2

1−t2
) can

be straightforwardly defined for any real values ofx. Hence fort ∈ (−1, 1) also
T (t) = (1 + t)N−2xĴx(−t2) can be defined for an arbitrary realx, even though
(24) is meaningful only for integer values ofx. Another way of generalizing (24)
even to complex values ofx is to expand (24) straightforwardly to see that if we
write

T (t) =
∞∑

k=0

τk(x)tk, (25)

then

τk(x) =
∑

0≤l≤k/2

(
N − 2x

k − 2l

)(
x

l

)(
x−N − 1

l

)
(26)

is a polynomial of degreek. For any fixedx, T (t) is an analytic function oft in the
disc|t| < 1 (we can use the principal branch of the logarithm to defined topower),
and hence it has a unique Maclaurin expansion (25) convergent when|t| < 1.

That (25) converges for|t| < 1 can be also verified by using the ratio test, but to
estimate|τk+1(x)/τk(x)| ask tends to infinity is not very straightforward. On the
other hand, the recurrence of the next lemma reveals thatlim

k→∞
|τk+1(x)/τk(x)| =

1.

Remark 1. Polynomialsτk(x) for small values ofk are easy to find by using (26).
For instance,τ0(x) = 1, τ1(x) = N −2x, andτ2(x) = 3x2−3Nx+ 1

2N(N −1).

Lemma 3. For k ≥ 2, polynomialsτk(x) satisfy the recurrence relation

k2τk(x) = (2k − 1)(N − 2x)τk−1(x)− (N + k)(N − k + 2)τk−2(x). (27)

Proof. This is a general property for a generic solution to Heun equation, see [7].
Recurrence (27) can be also obtained by differentiating andsubstituting (25) to
Equation (20).
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Remark 2. From (27) it follows that

τk(x)

τk−1(x)
=

(2k − 1)(N − 2x)

k2
−

(N + k)(N − k + 2)

k2

τk−2(x)

τk−1(x)
,

which shows thatlimk→∞ |τk+1(x)/τk(x)| = ∞ is impossible. Since clearly
τk(x) is a rational expression ink, the limit exists and is finite. Now

τk(x)

τk−1(x)
·
τk−1(x)

τk−2(x)
=

(2k − 1)(N − 2x)

k2
·
τk−1(x)

τk−2(x)
−

(N + k)(N − k + 2)

k2

shows thatlim
k→∞

|τk+1(x)/τk(x)| = 1.

We are now ready to state the main result.

Theorem 1. Function

TN,x(t) = (1 + t)N−2xĴx(−t2) (28)

is the generating function of discrete Chebyshev polynomials, i.e. τk(x) = Dk(x)
for eachk ≥ 0.

Proof. By (5), the Discrete Chebyshev polynomials satisfy the samerecurrence
relation (27) as polynomialsτk(x) do. Since the initial conditionsτ0(x) = D0(x)
andτ1(x) = D1(x) hold by Remark 1, we have equalityτk(x) = Dk(x) for each
k.

Remark 3. It may be useful to compare (28) and (6).

5 Further Remarks

Example 1. Expression (28) shows that ifx is an integer at mostN/2, thenTN,x(t)
is a polynomial int of degreeN − 2x + 2x = N . Thus we can find expressions

TN,x(t) =

N∑

n=0

D(N)
n (x)tn

by simply evaluatingDn(N)(x) for n ∈ {0, 1, . . . , N} by using (5) or (26). For
example,N = 6 gives

T6,0(t) = 1 + 6t + 15t2 + 20t3 + 15t4 + 6t5 + t6 = (1 + t)6

T6,1(t) = 1 + 4t + 0 · t2 − 20t3 − 35t4 − 24t5 − 6t6 = (1 + t)4(1 − 6t2)

T6,2(t) = 1 + 2t− 9t2 − 20t3 + 5t4 + 30t5 + 15t6

= (1 + t)2(1− 10t2 + 15t4)

T6,3(t) = 1− 12t2 + 30t4 − 20t6,

which is in full accordance with (28) and (14). Forx ∈ {4, 5, 6} the power6− 2x
of 1 + t in (28) is no longer positive, so it is not clear thatT6,x(t) would be a
polynomial anymore. But ifT6,x is not a polynomial forx ∈ {4, 5, 6}, there would
be a rather mysterious asymmetry betweenx ≤ 3 andx > 3. Fortunately it is easy
to show thatTN,x(t) is indeed a polynomial for eachx ∈ {0, 1, . . . , N} and the
asymmetry actually vanishes via trivial equality1− t2 = (1 + t)(1− t).
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Theorem 2. The generating functionTN,x(t) can be also represented as

TN,x(t) = (1− t)2x−N ĴN−x(−t2). (29)

Proof. Equality (15) implies

ĴN−x(−t2) = (1− t2)N−2xĴx(−t2) = (1− t)N−2x(1 + t)N−2xĴx(−t2),

and the claim follows immediately.

Example 2 (Example 1 continued). Since by Theorem 2T6,x(t) is a polynomial
in t of degree6, we can evaluate its values forx ∈ {4, 5, 6} as

T6,4(t) = 1− 2t− 9t2 + 20t3 + 5t4 − 30t5 + 15t6

= (1− t)2(1− 10t2 + 15t4)

T6,5(t) = 1− 4t + 0 · t2 + 20t3 − 35t4 + 24t5 − 6t6 = (1− t)4(1 − 6t2)

T6,6(t) = 1− 6t + 15t2 − 20t3 + 15t4 − 6t5 + t6 = (1− t)6.

This is again in full accordance with (29) and (14).

To combine Theorems 1 and 2 into a single presentation is straightforward:

Theorem 3 (The explicit polynomial form forx ∈ {0, 1, . . . , N}). The generating
functionTN,x(t) can be presented as

TN,x(t) = (1 + t · sign(N − 2x))|N−2x|Ĵ
(N)
min{x,N−x}(−t2).

Remark 4. Theorem 1 implies that (5) and (26) are equal, i.e.

∑

0≤l≤k/2

(
N − 2x

k − 2l

)(
x

l

)(
x−N − 1

l

)
=

k∑

l=0

(−1)l
(

k

l

)(
N − x

k − l

)(
x

l

)
. (30)

A direct combinatorial proof of (30) appears challenging. Theorem 2 implies an
identity similar to (30).
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