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Abstract: Advances in machine learning (ML) methods are important in industrial 
engineering and attract great attention in recent years. However, a comprehensive 
comparative study of the most advanced ML algorithms is lacking. Six integrated ML 
approaches for the crack repairing capacity of the bacteria-based self-healing concrete are 
proposed and compared. Six ML algorithms, including the Support Vector Regression 
(SVR), Decision Tree Regression (DTR), Gradient Boosting Regression (GBR), 
Artificial Neural Network (ANN), Bayesian Ridge Regression (BRR) and Kernel Ridge 
Regression (KRR), are adopted for the relationship modeling to predict crack closure 
percentage (CCP). Particle Swarm Optimization (PSO) is used for the hyper-parameters 
tuning. The importance of parameters is analyzed. It is demonstrated that integrated ML 
approaches have great potential to predict the CCP, and PSO is efficient in the hyper-
parameter tuning. This research provides useful information for the design of the 
bacteria-based self-healing concrete and can contribute to the design in the rest of 
industrial engineering. 
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prediction. 

1 Introduction 
Concrete is the most widely used construction material, which embodies energy of about 
0.95 MJ/kg [Chilana, Bhatt, Najafi et al. (2016)]. Due to the high rate of consumption, 
high energy is required. One disadvantage of concrete is its sensitivity to cracks because 
of its limited tensile strength. Hence, an efficient method which can heal the cracks of 
cement and concrete will save the total energy and reduce environmental impact greatly. 
Over recent decades, the notion of designing concrete with a self-healing behavior to heal 
the cracks has attracted great attention [Zhu, Chen, Yan et al. (2014); Zhu, Zhou, Yan et 
al. (2015a); Zhu, Zhou, Yan et al. (2015b); Zhu, Zhou, Yan et al. (2016); Zhou, Zhu, Yan 
et al. (2016); Zhou, Zhu, Ju et al. (2017); Zhuang and Zhou (2018); Quayum, Zhuang and 
Rabczuk (2015); Zhang and Zhuang (2018)]. Many self-healing strategies are developed 
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in the concrete and microbiologically-induced calcium carbonate precipitation (MICP) 
has been considered as a promising way.  
The bacteria-based self-healing concrete dates back to the mid-1990s [Gollapudi, 
Knutson, Bang et al. (1995)]. The idea is to introduce ureolytic bacteria in the enzymatic 
hydrolysis of urea and precipitation of calcium carbonate in the damaged regions. Then, 
non-ureolytic bacteria combined with organic calcium source is proposed in the bacteria-
based concrete [Jonkers (2007); Jonkers, Thijssen, Muyzer et al. (2010)]. It does not need 
bacteria added externally, which means the real self-healing concrete is developed. All 
the components are mixed into the concrete matrix, and organic calcium compounds are 
converted to calcium carbonate. The mechanism of MICP applied in the healing of 
concrete can be classified into two categories. They are mainly based on urea hydrolysis 
by ureolytic bacteria and respiration by non-ureolytic bacteria. MICP through ureolysis 
has many shortages, like the secondary pollution introduced by the ammonia generated 
and the limited ureolysis efficiency. Using non-ureolytic bacteria can increase the healing 
ability and avoid the pollution. Hence, only the non-ureolytic bacteria-based self-healing 
concrete is considered here due to its promising future in self-healing concretes. Even 
though a large amount of experiments have been conducted, there is no suggestion of the 
material design in practical use to control the crack width, which is important in civil 
engineering.  The cracking phenomena of materials [Hamdia, Silani, Zhuang et al. (2017); 
Nanthakumar, Lahmer, Zhuang et al. (2016); Vu-Bac, Lahmer, Zhuang et al. (2016); 
Zhuang, Huang, Rabczuk et al. (2014)] have been investigated widely including efficient 
remeshing techniques [Areias, Reinoso, Camanho et al. (2018); Areias and Rabczuk 
(2017); Areias, Rabczuk and Msekh (2016); Areias, Msekh and Rabczuk (2016); Areias, 
Rabczuk and Camanho (2014); Areias, Rabczuk and Dias-da-Costa (2013); Areias and 
Rabczuk (2013); Anitescu, Hossain and Rabczuk (2018)], phase field methods [Badnava, 
Msekh, Etemadi et al. (2018); Msekh, Cuong, Zi et al. (2017)], multiscale methods for 
fracture [Budarapu, Gracie, Bordas et al. (2014); Budarapu, Gracie, Yang et al. (2014); 
Talebi, Silani and Rabczuk (2015); Talebi, Silani, Bordas et al. (2014)], peridynamics 
[Ren, Zhuang and Rabczuk (2017); Ren, Zhuang, Cai et al. (2016)], DEM [Zhou, Zhu, Ju 
et al. (2017)], meshfree methods [Amiri, Milan, Shen et al. (2014); Amiri, Anitescu, 
Arroyo et al. (2014); Rabczuk, Gracie, Song et al. (2010); Rabczuk, Areias and 
Belytschko (2007); Zhuang, Cai and Augarde (2014); Zhuang, Zhu and Augarde (2014)], 
the phantom node method [Chau-Dinh, Zi, Lee et al. (2012)], the smooth extended finite 
element method [Chen, Rabczuk, Bordas et al. (2012)] as well as other partition of unity 
based methods like the extended isogeometric analysis [Ghorashi, Valizadeh, 
Mohammadi et al. (2015); Nguyen-Thanh, Valizadeh, Nguyen et al. (2015); Nguyen-
Xuan, Liu, Bordas et al. (2013)]. However, the healing effects of such materials are not 
well simulated. The optimized parameters of the bacteria-based self-healing concrete 
with the given crack width have not been studied previously. After artificial intelligence 
system is put forth, it has been widely used to substitute for the traditional regression 
analysis method, and begins to be used in forecasting works [Das, Biswal, Sivakugan et 
al. (2011); Gordan, Jahed Armaghani, Hajihassani et al. (2016); Hoang and Pham (2016)]. 
Only a few researches use ML in the optimization of the self-healing concrete [Ramadan 
Suleiman and Nehdi (2017)]. However, a systematic comparison of the available ML 
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algorithms still lacks since the performance differences may be substantial in their 
application to the optimization of the bacteria-based self-healing concrete.  
To address above problems, this paper proposes and compares six integrated ML 
approaches for the bacteria-based self-healing concrete optimization. ML algorithms are 
adopted for the relationship modeling and Particle Swarm Optimization (PSO) is utilized 
for the hyper-parameters tuning. Six ML algorithms, including the Support Vector 
Regression (SVR), Decision Tree Regression (DTR), Gradient Boosting Regression (GBR), 
Artificial Neural Network (ANN), Bayesian Ridge Regression (BRR) and Kernel Ridge 
Regression (KRR), are used. This research is a benchmark study in the application of ML 
approaches in biomaterials optimization. The objective of this work is to optimize the self-
healing materials for the required healing properties (i.e. the required CCP). ML and PSO 
algorithms are detailed in Section 2. Section 3 describes the dataset for the ML models. In 
Section 4, the methodology of the proposed integrated approaches is illustrated. Section 5 
provides the results and the discussion while Section 6 summarizes findings. 

2 Machine learning and PSO algorithms 
A brief introduction to ML and PSO is presented in this section. To predict the self-
healing capacity and provide useful information for the design of the bacteria-based self-
healing concrete, the six ML methods are selected to predict CCP since they have been 
widely used in industrial engineering and have a good predictive performance in 
nonlinear prediction. Meanwhile, PSO is adopted for the hyper-parameters tuning. Firstly, 
the PSO is used to obtain the optimum hyper-parameters in the six ML models. Then, a 
part of the dataset (i.e., the training set) is adopted to train the six ML models. Finally, the 
rest of the dataset (i.e., the testing set) is applied to test the results of the six ML models. 

2.1 ML algorithms 
2.1.1 SVR 
The basic idea of SVR is to map the data x into a high dimensional feature space via a 
nonlinear mapping and to perform a linear regression in this feature space by  
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Eq. (3) can be illustrated in Fig. 1. If the point lies in the blue area (i.e. the distance 
between the point and the line is less than ε ), the cost is zero. If the point lies outside of 
the blue area, the cost is i i(x ) yf ε− − . More details of SVR can be found in previous 
research [Cristianini and Shaw-Taylor (2000); Vapnik (1999)]. 

 
Figure 1: The illustration of the cost function in SVR 

2.1.2 DTR 
DTR is a non-parametric procedure for predicting continuous dependent variable where 
the data is partitioned into nodes on the basis of conditional binary responses [Breiman, 
Friedman, Olshen et al. (1984)]. Models use a binary tree to recursively partition the 
predictor space into subsets in which the distribution of y is successively more 
homogenous [Chipman, George and McCulloch (1998)]. A decision tree P with t terminal 
nodes is used for communicating the decision. A parameter 1 2 3( , , ,..., )tφ ϕ ϕ ϕ ϕ=  
associates the parameter value (i 1, 2,3,..., t)iϕ = with the ith terminal node. The partitioning 
procedure searches through all values of predictor variables to find the variable x that 
provides best partition into child nodes, which minimizes the weighted variance. A 
detailed discussion of DTR model can be found in previous research [Breiman, Friedman, 
Olshen et al. (1984); Chipman, George and McCulloch (1998)]. 

2.1.3 GBR 
Gradient boosting regression is a machine learning technique for regression problems, 
typically on the basis of decision trees. It builds the model in a stage-wise fashion and 
allows optimization of an arbitrary differentiable loss function. The goal in GBR is to 
find a loss function F*(x) and minimize the expected value of it over the joint distribution 
of all (y, x) values. Boosting evaluates F*(x) by an additive expansion. The gradient 
boosting algorithm improves F*(x) by adding an estimator h to provide a better model. A 
generalization of this idea to loss functions other than squared error is that residuals for a 
given model are the negative gradients of the squared error loss function. Hence, gradient 
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boosting is a gradient descent algorithm by adding a different loss. More details can be 
found in previous research [Friedman (2002)]. 

2.1.4 BRR 
BRR is composed of Bayesian Regression and the Ridge Regression (linear least squares 
with l2-norm regularization). The l2 regularization used in BRR is equivalent to finding a 
maximum a posteriori estimation under a Gaussian prior over the parameters w with 
precision 1λ− . Instead of setting lambda manually, it is possible to treat it as a random 
variable to be estimated from the data. The output y is assumed to be Gaussian distributed 
to obtain a probabilistic model. The prior for the parameter w is given by a spherical 
Gaussian. The priors over 𝜆𝜆 are chosen to be gamma distributions. More details can be 
found in previous research [MacKay (1992)]. 

2.1.5 ANN 
ANN is a mathematical technique using an analogy to biological neurons to generate a 
general solution to a problem [Rumelhart, Hinton and Williams (1986)]. All neural 
functions are stored in the neurons and the connections between them. After learning 
historical data, ANN can be used effectively to predict new data. The training of ANNs is 
considered as the establishment of new connections between neurons. ANN architecture 
may have one or more hidden layers between the input and output layers. Each layer 
constitutes neurons, which are connected with other neurons by the weights passing signals 
to others. When the amount of signals received by one neuron overtakes its threshold, the 
activation function is awoken and the outcome is treated as the input of next neuron. It can 
approximate an arbitrary nonlinear function with satisfactory accuracy [Zhang, Wu, Zhong 
et al. (2008)]. They learn from examples by building an input–output mapping without 
explicit derivation of the model equation. They have been widely used in pattern 
classification, function approximation, optimization, prediction and automatic control and 
in many different domains, such as load forecasting and strength forecast [Hadavandi, 
Shavandi and Ghanbari (2010); Khosravi, Nahavandi and Creighton (2013); Khotanzad, 
Elragal and Lu (2000); Bashir and El-Hawary (2009); Qi, Fourie, Chen et al. (2018)].  

2.1.6 KRR 
Kernel ridge regression (KRR) combines Ridge Regression (linear least squares with l2-
norm regularization) with the kernel trick. For non-linear kernels, this corresponds to a 
non-linear function in the original space. The form of the model learned by KRR is 
identical to SVR. However, different loss functions are used. KRR uses squared error loss 
while SVR uses 𝜖𝜖-insensitive loss. Both adopt l2 regularization. In contrast to SVR, fitting 
KRR can be done in closed-form and is typically faster for medium-sized datasets. The 
learned functions are very similar. For larger training sets SVR scales better. SVR is 
faster than KRR for all sizes of the training set. More details about KRR can be found in 
previous research [Murphy (2012)]. 
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2.2 PSO algorithm 
There are many hyper-parameters in ML models, which need to be chosen properly. 
Traditional tuning methods, such as trial and error, are time-consuming. PSO can be 
utilized for the hyper-parameters tuning of the ML algorithm [Kennedy and Eberhart 
(1995)]. Compared with other metaheuristic algorithms [Montazeri-Gh, Poursamad and 
Ghalichi (2006); Ma, Xu, Wang et al. (2015); Long and Nhan (2012); Castaings, 
Lhomme, Trigui et al. (2016)], PSO requires fewer parameters to be tuned and less 
computational efforts for multi-objective optimization [Yang (2014); Geng, Mills and 
Sun (2014)]. Inspired by the social behavior of bird flocking, PSO is an evolutionary 
optimization algorithm in which a population of individuals changes with time. The 
major concepts of PSO come from the observations of the feeding behaviors of bird 
swarms, where flocks are formed through grouping of simple individuals and individuals 
interact with each other. Scientific simulation of the unpredictable collective behaviors 
generated from local information is performed. It is high-efficient and does not use 
gradient. The objective function value is then calculated for each particle. The PSO 
algorithm is described as below: 
𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑐𝑐1𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟()�𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖� + 𝑐𝑐2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅()�𝑝𝑝𝑔𝑔𝑔𝑔 − 𝑥𝑥𝑖𝑖𝑖𝑖�                            (4) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖                                                                                                            (5) 
where w is the constant inertia weight, c1 and c2 are positive constants, rand() and Rand() 
are two random functions in the range [0,1]; xi=(xi1, xi2, … , xiD) represents the ith particle; 
pi=(pi1, pi2, … , piD) represents the best previous position of the ith particle; the symbol g 
represents the index of the best particle among all the particles in the population; vi=(vi1, 
vi2, … , viD) represents the velocity for particle i. The swarm topology defines how particles 
are connected to one another to exchange information with the global best. The particles in 
the swarm make up a cloud that covers the entire search space in the initial iteration and 
gradually contracts as the iterations advance. It has been successfully applied to many 
problems such as artificial neural network training, function optimization, fuzzy control, 
and pattern classification, etc. Because of its ease of implementation and fast convergence 
to acceptable solutions, PSO has received broad attention in recent years [Poli (2008)]. 
More details can be found in previous research [Kennedy and Eberhart (1995)]. 

3 Crack closure of the bacteria-based self-healing concrete 
The performance of six integrated ML approaches is verified and compared according to 
a dataset collected from the literature. Such dataset contains a considerable number of 
experimental cases where ML approaches can learn the relationship between CCP and its 
influencing variables. The whole dataset consists of 1223 cases collected from previous 
research for the training and the testing of prediction models [Stuckrath, Serpell, 
Valenzuela et al. (2014); Luo, Qian and Li (2015); Zhang, Zhou, Liu et al. (2017); Zhang, 
Liu, Feng et al. (2017); Khaliq and Ehsan (2016); Wiktor and Jonkers (2011)]. A wide 
range of variable values is covered. The successful application of proposed ML 
approaches for CCP is based on similar healing mechanisms and only the non-ureolytic 
bacteria-based self-healing concrete is considered. 
For the purpose of crack prediction, three attributes are used: the number of bacteria, the 
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healing time and the initial crack width. These attributes are considered to be the 
influencing variables that govern the healing of cracks. The carrier and nutrient medium 
are treated as the affiliated parameter of the number of bacteria here since they are used 
to keep the number of bacteria. Each of these influencing variables is introduced as 
follows: 
(1) The number of bacteria is defined as the number of bacteria in 1 g concrete. The data 
is in the range [0, 214993302] with a mean of 64085635. 
(2) Healing time is the time between crack initiates in experiments (i.e. the start of the 
healing introduction) and the time of the measure of crack width after healing. More details 
about the healing time can be found in previous research [Zhang, Zhou, Liu et al. (2017); 
Zhang, Liu, Feng et al. (2017)]. The data is in the range [0, 100] with a mean of 38. 
(3) The initial crack width is the crack width when the crack initiates. The data is in the 
range [0.06, 1] with a mean of 0.37. 
The CCP is defined as 

 
1 healed

initial

WCCP
W

= −
                                                                                                           (6) 

where Winital and Whealed are the width of cracks before and after healing, respectively. 

4 Methodology 
4.1 Dataset 
The dataset used for the implementation of the prediction is collected from 1223 
specimens with different influencing variables (in Supplementary). The output of the 
PSO is chosen to be the CCP. The whole dataset needs to be split into the training set and 
the testing set. The training set is used for the model training and the hyper-parameters 
tuning, while the testing set is adopted for the performance evaluation of the models. The 
training set is chosen randomly in the beginning. The rest of the database is the testing set. 
The same training set is used to train the six ML models in this paper. The testing set in 
the six ML models is also the same. In this paper, 70% of the whole dataset is included in 
the training set, and the remaining 30% is included in the testing set. 

4.2 K-fold cross validation 
k-fold cross validation is widely used during the process of hyper-parameters tuning 
[Stone (1974)]. By using this method, the original training set is divided into k folds. 
Then, k-1 folds are used to train ML models, while the remaining one fold is adopted to 
validate models. The training and validating process are repeated for k times with 
different fold as the validating fold. The performance of ML models is obtained by 
averaging performances from k iterations. Compared with other methods [Badawy, 
Msekh, Hamdia et al. (2017)], the advantage of k-fold cross validation is that all 
observations are used for both training and validation, and each observation is used for 
validation exactly once.  In this study, k is set as ten [van der Gaag, Hoffman, Remijsen 
et al. (2006)]. The mean squared error (MSE) and the correlation coefficient R are 
utilized for the hyper-parameters tuning and model evaluation. The MSE measures the 
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squared distances between the predicted and the experimental values. R evaluates the 
degree two variables’ change is associated. The MSE and the R can be calculated using 
Eq. (7) and Eq. (8): 
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where N is the number of samples, *yi  and yi  are the predicted and experimental CCP 
values of the ith sample, respectively. 

4.3 Hyper-parameters tuning 
Before the construction of ML models, several important hyper-parameters need to be 
determined. Hyper-parameters tuning is necessary since the predictive performance of 
ML models varies widely with different hyper-parameters. A good predictive 
performance can be achieved with suitable hyper-parameters. Here, hyper-parameters to 
be tuned in the ML algorithm are summarized in Tab. 1. The tuning range for each hyper-
parameter is determined by experience, trial tuning, and previous literature [Qi and Tang 
(2018); Qi, Fourie, Chen et al. (2018)]. The fitness function of PSO is chosen as the 
average MSE from 10-fold CV, which is minimized by PSO. The swarm size and the 
maximum iteration are chosen to be 300 [Armaghani, Hajihassani, Bejarbaneh et al. 
(2014)]. The w, c1 and c2 are set as 1

2
rand+ , 1.8 and 1.8 [Eberhart and Shi (2001)]. Details 

on the hyper-parameters of six ML algorithms tunned with PSO are shown in Tab. 1. 

Table 1: Hyper-parameters explanation and their range 

Algorithms Parameters Definition Scope 

SVR 
Cpenalty Penalty parameter of the error term 0.1-10 

epsilon It specifies the epsilon-tube within which 
no penalty is associated 0.001-0.5 

DTR 

Depthmax The maximum depth of the tree 1-20 

Splitmin 
The minimum number of samples required 
to split an internal node 2-30 

Leafmin 
The minimum number of samples required 
at a leaf node 1-30 

GBR 
Depthmax 

The maximum depth of the individual 
regression estimators 3-50 

nestimators The number of boosting stages 1-200 
learningrate It shrinks the contribution of each tree by 0.0001-
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learningrate 0.99 

Splitmin 
The minimum number of samples to split a 
node 2-30 

Leafmin 
The minimum number of samples required 
at a leaf node 1-30 

BRR 

alpha1 shape parameter for the Gamma distribution 
prior over the alpha parameter 10-10-10-4 

alpha2 
inverse scale parameter (rate parameter) for 
the Gamma distribution prior over the alpha 
parameter 

10-10-10-4 

lambda1 shape parameter for the Gamma distribution 
prior over the lambda parameter 10-10-10-4 

lambda2 
inverse scale parameter (rate parameter) for 
the Gamma distribution prior over the 
lambda parameter 

10-10-10-4 

NN 
nlayer The number of hidden layers 1-3 
nsize Number of neurons in each hidden layer 1-20 

KRR 
gamma Interpretation of the default value is left to 

the kernel 0.01-100 

degree Degree of the polynomial kernel 2-10 
 

5 Results and discussion 
5.1 Results of hyper-parameters tuning 
As mentioned above, PSO is utilized in this paper for the hyper-parameters tuning of six 
ML algorithms. Once MSE is stable, the minimum MSE values are found and their 
corresponding hyper-parameters are considered as the optimum hyper-parameters. The 
whole dataset is split into the training set and the testing set. Prediction models with the 
optimum hyper-parameters are trained using the training set. Their predictive 
performance is evaluated on the testing set. The optimum hyper-parameters of six ML 
algorithms are described as follows: 
• DTR: Depthmax=5, Splitmin=25, Leafmin=9. 
• GBR: nestimators=200, Depthmax=10, Splitmin=2, learningrate=0.0057, Leafmin=1. 
• SVR: Cpenalty=0.144, epsilon=0.201. 
• ANN: nlayer=3, nsize=(23, 5, 7). 
• BRR: alpha1=10-10, alpha2=10-4, lambda1=10-4, lambda2=10-4. 
• KRR: gamma=0.056, degree=3.  

5.2 Comparison of integrated ML approaches 
Six integrated ML approaches have been used for the prediction of CCP and their 
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predictive performance on the testing set is compared and discussed in this section. MSE 
value and R value are utilized for the performance evaluation. 
Fig. 2 describes MSE value and R value of six ML models on the testing set with the 
hyper-parameters obtained by PSO in Section 5.1. As can be seen in Fig. 2(a), the best 
prediction model regarding the MSE is GBR. The MSE values of the training set and the 
testing set are 0.028 and 0.057 respectively, when GBR is adopted. DTR also shows a 
good performance, with 0.051 and 0.061 as the MSE of the training set and the testing set, 
respectively. The other 4 models have a similar MSE about 0.7. In Fig. 2(b), GBR also 
shows the greatest R in all 6 models. The R values of the training set and the testing set 
are 0.93 and 0.74, respectively. With 0.74 and 0.7 as the R values of the training set and 
the testing set, DTR also proves a good predictive ability. The R values of other 4 models 
are similar and around 0.6. The R value of the testing set is a little greater than that of the 
training set in SVR, NN, BRR and KRR. Compared with DTR and GBR, the 
performance of BRR is relatively poor according to MSE and R values. Fig. 2 proves that 
DTR and GBR can achieve better predictive performance in predicting CCP of the 
bacteria-based self-healing concrete. The R value between the experimental and predicted 
CCP values is not high enough [Smith (1986)]. The main reason is due to the great 
variability of CCP data in experiments. With the lowest MSE and the highest R value, the 
optimum GBR model obtains better results than the other ML models. The optimum 
GBR and DTR models are recommended in predicting CCP of the bacteria-based self-
healing concrete. 

 
Figure 2: Predictive performance of six models (a) MSE; (b) R 

Detailed results about the performance of the six ML models on the training set are 
shown in Fig. 3. In Fig. 3, the data of the training set are close to the ideal fit line when 
GBR is adopted, which means GBR is more likely to predict the correct CCP. In contrast, 
the data in other 5 models are very scattered on the training set. It is caused by avoiding 
the overfitting when K-fold cross validation is adopted. 
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(a) DTR                                                  (b) SVR                          

 
(c) BRR                                                (d) KRR   

 
                                     (e) GBR                                                   (f) ANN 

Figure 3: Performance of the 6 ML models on the training set: (a) DTR; (b) SVR; (c) 
BRR; (d) KRR; (e) GBR; (f) ANN 

The comparison of experimental and predicted CCP values of the 6 ML models with the 
optimum hyper-parameters on the testing set is displayed in Fig. 4. It can be seen that the 
optimum ML models, which are adjusted according to the training set, can be generalized 
to the testing set. GBR is better than the other 5 models since the points are in the vicinity 
of the ideal fit line. The predicted CCP values of most samples match the experimental 
CCP values by GBR. This performance can improve when more experimental data are 
obtained. The data of other 5 models are away from the ideal fit. The GBR model with 
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the optimum hyper-parameters can simulate the non-linear relationship between CCP 
values and influencing variables from Fig. 4.  

 
(a) DTR                                              (b) SVR                        

 
(c) BRR                                              (d) KRR 

 
                                   (e) GBR                                                    (f) ANN 

Figure 4: Performance of the 6 ML models on the testing set: (a) DTR; (b) SVR; (c) 
BRR; (d) KRR; (e) GBR; (f) ANN 

The performance of the six ML models with the optimum hyper-parameters is presented 
on the testing set in Fig. 5 by the histogram. The predicted/experimental CCP values are 
analyzed. It visualizes the histogram plots of the predicted/experimental CCP values ratio 
by the optimum ML models on the testing set. It displays that the mean of density curves 
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are around one, which illustrates that the optimum ML models have a good predictive 
performance on testing sets. The GBR has the peak at 1.0, denoting that the optimum 
GBR model is accurate at predicting the CCP. The histogram for SVR, KRR, ANN and 
BRR models is slightly right-skewed of the peak ratio, indicating that the optimum ML 
model tends to predict a slightly greater CCP values than experimental values on the 
testing set. From this point, the performance of the optimum GBR model and DTR model 
on the testing set can be considered better as the peak ratio is approximate 1.0. It is worth 
mentioning that some predicted/experimental ratios are greater than 3 on the testing set, 
which is not shown in Fig. 5. The main reason of the discreteness in histograms is that the 
self-healing effect varies greatly in different cases in experiments. The randomness of the 
self-healing effect widely exists in experiments, which makes it difficult to determine the 
relationship between the influencing parameters and the healing result [Zhu, Zhou, Yan et 
al. (2015b)]. Hence, the experimental CCP data is scattered, which decreases the 
accuracy of ML models.  

 

 
(a) SVR                                              (b) ANN 

 
(c) GBR                                              (d) KRR 
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(e) BRR                                                (f) DTR 

Figure 5: Histogram of predicted/experimental CCP values with testing sets using the 
ML models: (a) SVR; (b) ANN; (c) GBR; (d) KRR; (e) BRR; (f) DTR 

5.3 Relative importance of influencing variables 
The sensitivity analysis of the influencing variables is implemented in the optimum GBR 
models to investigate the effect of variables for the prediction of CCP. The GBR is 
selected according to its outstanding performance on the testing set. The importance is 
calculated by the Gini importance, which is a measure of variable importance based on 
the Gini impurity index [Breiman, Friedman, Olshen et al. (1984)]. Normalization is 
performed on the feature importance scores and the result is shown in Fig. 6. 

 
Figure 6: Relative importance of influencing variables for crack healing 

Apparently, the initial crack width is the most sensitive variable. It accounts for more 
than a half of importance score among all variables influencing the CCP, which agrees 
with previous research [Qian, Chen, Ren et al. (2015)]. Importance scores of the other 
two influencing variables on the crack healing are almost equal. The number of bacteria 
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accounts for 22.7%, which is a low value compared with the initial crack width. There are 
many reasons which contribute to its low value. Normal concrete samples, even without 
any bacteria, show some crack healing as well. The continued hydration process of 
cement particles, the swelling of cement matrix and the precipitation of calcium 
carbonate crystals can also heal the concrete to some extent [Wiktor and Jonkers (2011); 
Homma, Mihashi and Nishiwaki (2009); Khaliq and Ehsan (2016)]. Meanwhile, many 
bacteria are dead in concrete due to the pressure during the mixing stage and the 
formation of the dense microstructure after a period of time [Qian, Chen, Ren et al. 
(2015)]. Hence, the importance of the number of bacteria decreases. The healing time 
makes up 22.2%, which means the healing time is also a necessary variable in designing 
the bacteria-based self-healing concrete. Different importance scores may be evaluated 
with different dataset [Guyon, Gunn, Nikravesh et al. (2006)]. More representative results 
can be obtained as more valid experimental results about CCP are available in the future. 

5.4 Contribution and limitations 
The primary strength of this study is to propose and compare six integrated ML 
approaches on predicting CCP of bacteria-based self-healing concretes. This study 
contributes to the concrete design and other fields of industrial engineering. On one hand, 
the integrated ML approaches based on ML algorithms and PSO are very promising for 
prediction problems. On the other hand, the model recommendation has been made for 
CCP and the methodology in this paper can be adopted for a wider application in the rest 
of industrial engineering.  
The ignorance of other influencing variables for crack healing, such as the carrier of 
bacteria and the nutrient medium of bacteria, is a limitation of the present study since 
there is not enough experimental data. Meanwhile, the experimental results are scattered, 
which decreases the predictive accuracy of models. The performance of proposed ML 
approaches will improve when more experimental data is available in the future.  

6 Summary and conclusion 
In this study, a model for predicting CCP of the bacteria-based self-healing concrete is 
proposed based on ML and PSO. The ML algorithms are used for the non-linear 
relationship modeling between CCP and its influencing variables, and PSO is applied for 
the hyper-parameters tuning. The dataset is obtained through extensive experiments with 
different combinations of influencing variables. Inputs are selected to be the number of 
bacteria, the healing time and the initial crack width. The output is selected as CCP. 10-
fold CV is used as the validation method. The performance of the optimum ML model is 
verified using the MSE and the R value.  
The results show that the PSO-ML method has great potential for the prediction of CCP. 
PSO is efficient in the hyper-parameters tuning of ML models with minimum MSE 
values being achieved for all 6 ML methods. The optimum GBR model has a quite good 
performance on the training set and the testing set. The low MES and high R value 
between predicted CCP values and experiments on the training and testing sets denote 
that a good prediction is achieved by the optimum GBR model compared with other 5 
models. The relative importance of influencing variables is studied, and the initial crack 
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width is found to be the most important variable. The influence of the healing time and 
the number of bacteria is less important compared with the initial crack width. The 
finding of this paper can be used for a more suitable bacteria-based self-healing concrete 
and in a wider application in the rest of industrial engineering. 
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