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ABSTRACT

We report on the participation of the Interactive Informa-
tion Access group of the CWI Amsterdam in the web, ses-
sion, and medical track at TREC 2011. In the web track
we focus on the diversity task. We find that cluster-based
subtopic modeling approaches improve diversification per-
formance compared to a non-cluster-based subtopic model-
ing approach. While gain was observed on previous years’
topic sets, diversification with the proposed approaches hurt
the performance when compared to a non-diversified base-
line run on this year’s topic set. In the session track, we
examine the effects of differentiating between ‘good’ and
‘bad’ users. We find that differentiation is useful as the
use of search history appears to be mainly effective when
the search is not going well. However, our current strategy
is not effective for ‘good’ users. In addition, we studied the
use of random walks on query graphs for formulating session
history as search queries, but results are inconclusive. In the
medical track, we found that the use of medical background
resources for query expansion leads to small improvements
in retrieval performance. Such resources appear to be espe-
cially useful to promote early precision.

1. INTRODUCTION

The Interactive Information Access group of the CWI Am-
sterdam participated in three tracks: the web track, the ses-
sion track and the medical track. For the web track, we
focused on the diversity task. We used a novel method to
find query aspects which is based on random walks on a
large query graph. The goal of our participation in the ses-
sion track was twofold. Firstly, we estimated the quality of
a search session and studied the effects of differentiating be-
tween ‘good’ and ‘bad’ users. Secondly, we examined the use
of random walks on query graphs for formulating query his-
tory as search queries. For the medical track the Search by
Strategy framework of Spinque was deployed. We evaluate
the use of external knowledge sources to improve medical
content retrieval.

2. RETRIEVAL FRAMEWORK

For the web and session track, we use the Indri search
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engine' to index the clueweb09 collection (set A). We use
the Waterloo Spam Rankings [4] to remove documents with
a spam rate < 70. CMU PageRank scores® are used as
document priors.

For the medical track, the Spinque framework was used
(see Section 5.1).

3. WEB TRACK

We focus on the diversity task of the Web track. The goal
of result diversification is to return a ranked list such that
top ranked documents are not only relevant to the given
query but also cover diverse aspects of the query. Following
previous work in result diversification [1, 8], we employ a
subtopic based approach in our experiments. Specifically,
we aim to extract relevant and diverse subtopics of a query
from query logs and use these subtopics for diversification.

3.1 Finding relevant and diverse subtopics

We extract subtopics for a query @ in two steps. First, we
find related queries of @ in a query log via random walks.
Second, we cluster these related queries and each cluster is
used as a subtopic.

Finding related queries.

Following [5], we use a random walk based approach to
find related queries in a click log. Let U/ be the set of urls in
a click log, and Q the logged queries. A weighted graph can
be constructed where the vertices are the union of the urls
and the queries, and the edges correspond to the user clicks
of a url for given a query, weighted by the number of clicks
w.

A one step transition probability from node j to k can
be calculated as pyy1p¢(k|j) = wjr/ Y, wji. Since we are
only interested in the relation between queries, instead of
constructing a query-url graph, we construct a query-query
graph. The one step transition probability from query j to
query k is given by

Pet1)e(qrlas) = Zpt+1\t(% [wi)peg1)e (wilgs). (1)

[3

"http:/ /www.lemurproject.org/
*http://boston.lti.cs.cmu.edu/clueweb09 /wiki/tiki-
index.php?page=PageRank



Further, we do not include an additional self-transition as
proposed in [5]. Instead, we use the self-transition probabil-
ity pit1)¢(qilgi) derived from Eq. 1.

With the above defined one-step transition probability, we
retrieve queries in Q for a given query ) and rank them in
the decreasing order of their t-step transition probability.
Similar to [5], we experiment with forward and backward
walking. We then take the top X related queries for subtopic
extraction.

Starting nodes.

While conducting random walk on the query-query graph,
we start with the a given query @, e.g., a new query that a
user issued to the search engine. Since the query click log
we use is a snapshot of the queries and clicks that happened
in Web retrieval, Q does not necessarily occurs in the log.
Further, queries that formulated slightly different from Q
may still refer to the same topic of interest and therefore it
may be also useful to include these queries as starting nodes.

Here, we use the query @ to retrieve top n queries from
the query log using the Indri system and use these queries
as starting nodes N. Then the t-step transition probability
of ) to a query ¢ in Q is calculated as

Po(@lQ) = D p(nlQ)peo(gln). (2)

neN

Subtopic extraction with clustering on related queries.

While each related queries can be seen as a subtopic of
the query @, we expect that many of them are variants of
the same query and therefore not topically diverse. In order
to extract a diverse set of subtopics, we cluster the retrieved
related queries.

We use a spectral clustering approach, the normalized-cut
approach [9] to cluster the query-query graph. For a given
graph, the normalized-cut tries to create a partition on the
graph so that a normalized cut criterion Ncut is minimized.
The Ncut measures both the total dissimilarity between dif-
ferent groups and the total similarity within the groups. The
normalized-cut has been proved to closely related to random
walks [7]. In particular, if it cuts the graph into two parts
such that the value of Ncut is small, then the one-step tran-
sition probability from a node in one partition to a node in
the other partition is also small.

This property is especially appealing to our purpose. In-
tuitively, two queries with high transition probability are
likely to be requests on a same topic, as they share a large
amount of co-clicked urls. Further, it is relatively easy to
apply Ncut within our experimental setup, since the same
transition matrix that we have constructed from the query-
query graph can be re-used for clustering.

To cut a graph, normalized-cut uses the Laplacian matrix
of the graph. It finds a partitioning on the elements of the
eigenvector corresponding to the second smallest eigenvalue
of the matrix such that Ncut(A, A) is minimized. The par-
titioning of the eigenvector corresponds to a partitioning on
the graph. This procedure repeats until a stop criterion is
met. The stop criterion determines the resulting number of
clusters.

We find that for different Qs the retrieved number of re-
lated queries varies (random walks for some queries result in
very small local graphs compared to others), and we expect

that some queries have more diverse related queries than
others. Therefore it is not desirable to set a fixed number
of clusters for all @s. Here we determine the stop-criterion
for each query as follows. Assume in a graph there are m
possible points where a cut can be applied. We evaluate if
the chosen cutting point is better than a randomly picked
cutting point. Intuitively, if all points are equally good for a
cut, then the resulting clusters tend to be random. We calcu-
late the expected value of the Ncut scores for the m cutting
points E(z) = p(x)Ncut(x), where p(z) = 1/m, assuming
all cutting points are equally good. We then calculate the z-
score of the Ncut value of the chosen cutting point and only
apply a cut if the z-score exceeds a threshold. Heuristically,
we set the threshold to 3.2.

3.2 Diversification with extracted subtopics

Once the subtopics are extracted, we use them to diversify
an initially retrieved ranked list using the state-of-the-art
result diversification approach IA-Select [1]. With IA-select
the selection of a document is determined by its relevance to
the query as well as the probability that it covers subtopics
given that all previously selected documents fail to do so.

Given a candidate document set and a set of subtopics
C of a query @, the algorithm selects the document to be
included in the returned set S from a candidate set R that
maximizes the marginal utility at each step:

d = ar%é%axzp(dQ’S) V(d‘Q,C), (3)

ceC

where V(d|Q,c) is a quality value of d that is computed
using the retrieval score of d with respect to @, weighted
by the likelihood that d covers c¢. Further, P(c|Q,S) is the
conditional probability that @ is related to ¢, given that all
documents in S failed to provide information on c.

Here, two essential components need to be calculated: The
probability that a document d covers a subtopic p(d|c) and
the importance of a subtopic to the original query p(c|Q).
We implement these components in different ways, which
results in three submitted runs.

Runl - CWIIAt5bS.

This is our baseline run. Here, we simply use the top 10
related queries as subtopics of the original query. We then
use [A-select to re-rank the initial ranked list with these
10 subtopics. For each subtopic, we estimate the p(d|c) by
calculating the query likelihood of the related query ¢ = ¢
for a given document d using a multinomial language model.

p(dle) = [ p(tld) <. (4)

tec

Further, p(c|Q) is estimated as the t-step transition proba-
bility from @ to ¢ random walks.

Run2 - CWIcIAt5b1.

For our second run, we cluster the top 100 related queries
found by random walk, and use the resulting clusters as
subtopics. Under this setup, we estimate the p(d|c) using

pldle) = p(dlq)p(gle), (5)

where p(g|c) = 1/|c|, that is, we assume all related queries
within a subtopic are equally probable to occur given the



RunID #starting nodes direction #steps
CWIIAt5b5 5 back 5
CWIcIAt5b1 5 back 1
CWIcIA2t5b1 5 back 1

Table 1: Parameter settings for random walk over
the query graph.

RunID a-nDCG@20 P-IA@20 ERR-IAQ20
Initial run 0.458 0.246 0.369
CWIIAt5b5 0.420 0.228 0.336
CWIcIAt5bl 0.431 0.221 0.347
CWIcIA2t5b1  0.432 0.230 0.349

Table 2: Results of diversity runs.

subtopic. p(d|q) is calculated using Eq. 4. To estimate
p(c|@), we have

p(elQ) = > p(ql@Q), (6)

geEc

where p(q|Q) is the t-step transition probability.

Run3 - CWIcIA2t5b1.

For this run, we use the same strategy as run2. The only
difference of the two runs is the estimation of p(g|c) in Eq.
5. Here we no longer assume a uniform distribution for
p(qlc), instead, we weigh each query ¢ € ¢ with their ¢-
step transition probability to the original query @, and bias
towards queries that are more likely to be related to Q.

_ pdlQ)
plale) = > e (@)

3.3 Experimental setup

Our diversity runs are created by re-ranking the top 100
documents of an initial ranked list. We generate the initial
ranked list using the Indri system as described in Section 2.

In our experiment, the Microsoft click log released in 2006
was used to extract related queries and to be grouped into
subtopics. In order to determine the parameters of random
walk used in our runs, we use the TREC 2009 and 2010
queries as training queries and use Set B as the training
collection. The parameter settings for each run is listed in
Table 1.

(7)

3.4 Results and Discussion

In this section we describe our results with an initial anal-
ysis of the results.

To our surprise, while on the training data, all three diver-
sification runs outperform our initial retrieved ranked list,
on this year’s topic set, they all fail to improve over the
initial retrieved results in terms of diversity measures. One
possible explanation may be that the difference between the
training and testing topic sets/collections (SetB for train-
ing and SetA for testing) is rather significant and different
strategies or parameter settings should be applied. On the
other hand, as described in the the Web track 2011 guide-
lines, this year’s topics tend to be less ambiguous and are
expected to have a lower number of relevant documents. As
a result, click information would naturally be less reliable
for this type of queries.

RunID nDCG@20 ERR@20 PQ@20
Initial run 0.201 0.115 0.278
CWIIAt5b5 0.181 0.103 0.255
CWIcIAt5bl 0.181 0.108 0.248
CWIcIA2t5b1  0.183 0.108 0.254

Table 3: Results of our runs in terms of precision
oriented measures.

A second observation is that within our submitted runs,
the cluster-based runs (CWIcIAt5bl and CWIcIA2t5b1) per-
form better compared to the baseline run (CWIIAt5b5),
where single queries are used as subtopics. This suggest that
cluster-based approach helps in extracting diverse subtopics
from the click log. This trend is consistent with our experi-
ments with the TREC 2009 and 2010 data.

A further analysis with the pure-precision based measure
(Table 3) shows that our diversification runs all perform
worse in terms of precision oriented measures, which par-
tially explains the reason why they underperform in compar-
ison to the initial retrieval results. That is, during rerank-
ing, non-relevant documents are pushed on to the top of the
ranked list.

4. SESSION TRACK

The goal of the TREC 2011 session track is to evaluate
whether and how a system’s performance in response to a
query at step t* improves when information about various
interactions at previous steps t; < t* is included in the
retrieval strategy. The 2011 TREC setting allows to sub-
mit the results of up to three different retrieval mechanisms
to rank the last query of 76 search sessions based on the
ClueWeb09 collection. The challenge is to improve a rank-
ing in the last step of the search sessions by gradually adding
more information: while the first task (RL1) does not con-
sider any session feedback, progressively adding past queries
(RL2), ranked results in response to those queries (RL3) and
clicked documents (RL4) as well as dwell times is expected
to lead to better performances.

4.1 Approach

Good users, bad users.

For each of the four tasks defined in the session track, we
submitted three runs. For all runs, the methods for each
task build on top of each other, i.e. each task adds some
retrieval mechanism with respect to the previous task, but
it does not alter previous methods that were already applied
in the preceding tasks.

The first task (RL1) is a baseline without any session in-
formation; only the test query can be used, that is: only the
final query submitted at step t*. We limited query prepro-
cessing to interpreting a sequence of N terms between single
or double quotation marks as a windowed query of length
N.

The rationale of the first two runs, CWIrunl and CWIrun2,
is to apply a user model that takes the increasingly more
thorough session information as input and gives back as its
output a set of weights. We use these weights to modify the
representation of the last query in a language model retrieval
system.

The goal of the first two runs is to investigate whether



an exponential discount model simulates the contribution of
interactions before t* to the retrieval model used to generate
the ranked list at t* and how far the parameters of this model
can be extracted from the session information only, without
a more thorough user profiling. Our proposed model, more
specifically a model of how interactions in the past should be
discounted, has fixed parameters for all the sessions in the
first run, whereas in the second run the discounting ratio
varies between different sessions.

The intuition behind these discount functions stems from
behavioural studies on the effect of past experiences on hu-
man attitudes. At least in the rather special case of com-
pulsive attitudes, such as excessive gambling and indulgent
drinking habits [10, 11] negative experiences have demon-
stratedly a much stronger impact [2] than experiences that
a subject would label as positive. Behavioural scientists
suggested both exponential and hyperbolic discount models
[6] with fixed or variable discount rates. Since the system
that is supposed to generate the collection does not have
any notion of past sessions when generating the ranked lists
at each step, we considered only exponential discount func-
tions. This model simulates interactions with a memoryless
system.

We aim to investigate whether a discount strategy that
is functionally similar to this behavioural model can be ap-
plied to a user’s search history. Our hypothesis is that this
discounted history, once included in the last query’s repre-
sentation, improves retrieval.

A fixed discount rate model assigns higher absolute weights
to negative information or experiences, whereas a variable
discount rate model assigns lower discount rates to negative
information, but absolute weights can possibly be drawn
from other features. Because of this flexibility, we map met-
rics for the quality of a search experience to the discount
rate parameter of the model.

We define a ‘good’ user as a user who is capable to is-
sue well-posed queries to a system and, because she learns
from interactions, her search experience is poised to be re-
warding. A perfectly good user needs a variable amount of
steps, where the number of steps only depends upon the dif-
ficulty of the topic, to learn a query that alone can produce
a satisfactory result. No amount of history will ever out-
perform a final query of this perfectly good user. On the
other hand, a ‘bad’ user should might just be unaware of a
system’s fallacies and fail to cope with the retrieval strat-
egy; additional interactions do not improve her capability
to issue more effective queries. Our hypothesis is that for
satisfying the needs of a bad user, search history is equally
valuable as the last query.

A unsuccessful learning step plays thus in our application
the role of a negative experience in a behavioural setting. In
our hypothesis a negative search experience is negative not
because does not provide any information at all on a topic,
but just because a user did not succeed in carrying the par-
tial information on the topic further to the final query. A
system should therefore supplement a user on this task. Vice
versa a positive (search) experience mirrors knowledge that
already contributes to the present behaviour. In both cases
we only put forward a functional similarity between expe-
riences and learning steps during a search session, without
any claim on the relevance of partial interactions to session
topic: if there were relevant aspects of the topic in the par-
tial interactions then a good user would carry them up to

the final query.

In the first run, CWIrunl, we assume an average user
in between these two extremes, i.e. a user who during an
average number of interactions L gets to know a system well
enough to issue queries of reasonably good quality. Under
these assumptions, we calculate query terms weights w; for
task RL2 according to:

wy = eQ'Idiﬁ"t7

where Q = % and Igifs is the ratio between the average
amount of interactions recorded in the log data and the num-
ber of interactions in a particular session.

In the second run, CWIrun2, we attempt to extract the
quality parameter @ from the query terms: our assumption
is that a good user chooses highly selective terms that are
important in a idf sense. We therefore correct @), subtracting
from the CWIrunl value (Q = 1) the average term impor-
tance over all query terms, normalised to take into account
different query lengths. Our assumption here is that query
length is not an indicator of user quality, but it depends
mostly on the topic.

Task RL3 allows for the use of the ranked lists in response
to each intermediate query. Our assumption in this case is
that a good user will interact with a system in order to inves-
tigate either different aspects of a topic or different features
of the system. In both cases we expect little overlap in the
result set, at least locally from one step to the next one; even
when the queries seem very similar to each other. If the av-
erage overlap in consecutive steps, weighted for the average
session overlap, as some topics may be very specific and in-
herently prone to result in highly overlapping retrieval sets,
appears to show more than 10% overlap, the user quality is
decreased with the same amount. As this is already a ses-
sion dependent parameter, we do not test any alternatives
in the second run.

Finally our submission for task RL4, which allows us-
ing full log data, builds further on the second run of the
preceding sessions, but expands a query with 5 additional
terms from each clicked document, if any. These 5 terms
are the most important terms according to a tf-idf metric,
where the idf is calculated on the entire collection, and they
are weighted by the same user model as the user generated

query.

Random walk on the query graph.

In the first two runs, terms from clicked documents where
used to expand the user’s last query. However, these terms
were not designed to be queries and are not necessarily suit-
able as query terms. In the third run of the session track,
CWIpostRW, we examine whether the representation of the
interaction information in the queries can be improved by
exploiting queries that users have issued previously to a
web search engine. We used a random walk on a query
graph of a major search engine (see Section 3) to find web
search queries that represent similar information needs as
the TREC sessions.

We made use of the same query graph that was used for
the web track (see Section 3). On the basis of the interaction
information we constructed Indri queries in a similar way as
for CWIrunl. For RL2 and RL3 the users’ previous queries
(not including the last query) became the query terms. An
exponential discount function with a fixed exponential was



RL1 RL2 RL3 RL4

allsubtopics

CWIrunl 0.2427 0.2434 0.2481 0.2481
CWIrun2 0.2392 0.2424 0.2481 0.3114
CWIpostRW  0.2426 0.2571 0.2571 0.2496
lastquerysubtopics

CWIrunl 0.2047 0.1633 0.1677 0.1677
CWIrun2 0.2012 0.1618 0.1677 0.1997

CWIpostRW 0.2019 0.2115 0.2115 0.2048

Table 4: Expected Reciprocal Rank (ERR) of the
session track runs

used to give lower weights to less recent queries. For RIL4,
we used the users’ previous queries as well as terms from
the clicked documents with high tf-idf values. Weights were
based on tf-idf score and recency.

The constructed queries were used to retrieve an initial
set of web queries from our collection of web queries (see
Section 3). The web queries functioned as starting points
for a random walk on the click graph. As in run CWIIAt5b5
of the web track, a backwards walk was performed with at
most 5 steps. The 10 web queries that received the highest
probabilities in this walk were selected to represent the users’
session history.

For each selected query we used Indri to compute the
probability for the top 1000 documents retrieved by the
users’ last query. The final probability of a document was
computed as a linear combination of the probabilities based
on each of the selected queries and the probabilities based
on the last query.

4.2 Results

The TREC organisation measures performance under two
conditions. In the allsubtopics condition, a document is
considered relevant if it is relevant to one of the subtopics of
the main topic of the session. In the second condition, last-
querysubtopics, a document is considered relevant only
when it is relevant to a subtopic to which the last query
in the session refers.

In Table 4 we report the Expected Reciprocal Rank (ERR)
for our 3 runs. From the average results of CWIrunl and
CWIrun2 we can already notice that the allsubtopics con-
dition favours our method. Under that condition, although
our task RL1 performs below median (0.2392 vs 0.24295),
by using full log data, we achieve an improvement on that
baseline of more than 30% by using session history (RL2,
RL3, RL4) whereas the median does not exceed 5%. How-
ever, differences between the four tasks are not significant
(Wilcoxon signed-rank test, 2-sided p<.05). Some sessions
are even more remarkable (such as session 64): for that,
while our baseline task RL1 performs well below median, we
reported the highest score among all the participants when
adding session information.

At a session level we observe that when our baseline RL1
provides already reasonably good results (such as for sessions
51, 59, 60, and 61) our method does not affect much the ini-
tial performance, in accordance with the median. However,
when the score at the baseline turns out to be exceptionally
good (such as for session 8 or 68) our methods performance
rapidly decreases, again in accordance with, but at a higher
rate than the median. In summary these result reports on a

method that improves on weak baseline results, is relatively
neutral to an average baseline, but makes things worse when
the baseline is already adequate.

While the final version of this document will contain a
more thorough analysis of the results, the main lesson that
we draw from this preliminary assessment is that our method
seems able to capture the search process of bad users. Those
are the users who perform badly at the baseline. They do
not grasp the system features or they do not manage to work
around its fallacies. Given the diverging performance under
the allsubtopics and lastquerysubtopics conditions this
method seems more useful to support the exploratory phase
of a search process.

As a future work we should concentrate on dealing with
good users. While session data readily reports on a learn-
ing process, we should improve the way this knowledge is
used to update the query representation. A fixed quality
parameter does not seems to provide the required flexibil-
ity, as the disappointing results in run 1 seems to indicate.
We aim therefore to a well trained session dependent model
that takes into account good users: because they learn from
interactions, a system must ‘forget’ their intermediate and
less useful results.

As shown in Table 4, using the query graph to formulate
queries results in a marginal, non-significant, improvement
over the baseline: the results for RL2, RL3, and R14 are only
marginally higher than the the results for RL1. We assess
the added value of using the query graph for query represen-
tation by comparing this run to the CWIrunl run. In the
allsubtopics condition we again see the results are similar,
but in the lastquerysubtopics condition the query graph
method significantly outperforms the method without query
graph (for RL4: Wilcoxon signed-rank test, 2-sided z=2.19,
p=.0285). While in the latter condition the performance of
CWIrunl (like the track median) drops when query history
is taken into account, using query history by means of the
query graph marginally improves performance. This may
be an indication that the query graph provides an effective
way to use the wisdom of the crowd for representing query
history. However, it may also be the case that the results
in all four tasks look similar as a result of the conservative
reranking scheme that was used. In further experiments we
will examine the added value of this method in more depth.

S. MEDICAL TRACK

The goal of the Medical track is to retrieve “visits”, a
group of hospital discharge reports, given a query requesting
information about patients with certain diseases that have
certain conditions or treatment.

In this year’s participation of Medical track, we aimed to
exploit external resources to improve retrieval performance.
There exist many medical ontologies/taxonomies that con-
tain information about specific diseases, their definitions,
diagnoses, symptom descriptions, etc. These resources can
be used to enrich our queries that are usually short sentences
and we expect that the retrieval systems can benefit from
such enrichment. For instance, a query expansion with ex-
ternal medical taxonomy may be a typical way of reducing
term mismatching between queries and the medical reports.
In particular, we use the International Statistical Classifica-
tion of Diseases and Related Health Problems (ICD-10) as
our external resources.



Unlike in Web track and Session track, in the Medical
track, we use the Spinque retrieval system, which provides
a flexible way for incorporating external resources. Below,
we first introduce the Spinque system. We then describe
our submitted runs, followed by an initial analysis of the
evaluation results.

5.1 The Spinque retrieval system

We modeled and executed our runs for the Medical Track
as search strategies within the Spinque framework. In this
approach, nick-named ‘search by strategy’, search processes
are divided into two phases: the search strategy definition
and the actual search.

Modelling search strategies in this framework corresponds
to designing graph structures, where edges represent data-
flows consisting of terms, documents (e.g. medical reports),
document-sections (e.g. diagnoses) and named entities (e.g.
ICD codes, visits - which identify groups of reports belong-
ing to the same issue). The nodes connected by such edges
are general-purpose (but customisable) operational blocks,
that either provide source data (the medical report corpus
and the topics corpus) or modify their input data-flow ap-
plying operations such as selection based on ICD codes, ex-
traction of specific sections from documents, or ranking of
sections and documents, to name a few. In Figure 1 we
show an example of the designed graph structure of a search
strategy, which corresponds to our baseline run described in
Section 5.2.2.

Search strategies defined in this framework are automati-
cally translated into a probabilistic relational query language
and executed on top of an SQL database engine.

A major advantage of the strategy-based approach is that
input and output pins of a graph’s blocks are typed (doc-
uments, terms, named entities, etc) and certain blocks can
change their input type to a different type in output. For
example, a block can retrieve all ICD code named entities
mentioned in a ranked list of documents in input. When
connected on compatible types, it takes just a few blocks to
express in one simple strategy complex needs composed by
different retrieval units, such as e.g. “(1) use the topic text
to identify relevant ICD codes; (2) use these codes as input
to perform an ICD code-based search of medical reports; (3)
change the retrieval unit into visits by aggregating retrieved
reports”.

5.2 Approaches

5.2.1 Indexing

Two collections are used in our experiments: the collec-
tion of medical reports released by TREC, referred to as the
target collection, and the ICD-10 taxonomy, referred to as
the external collection. Note that because ICD-9 codes are
used instead in the target collection, we have enriched the
ICD-10 taxonomy to include ICD-9 codes as well.

Textual data was indexed by importing xml data in an
xml-powered relational dbms (MonetDB/XQuery [3]), and
mimicking an inverted file structure on relational tables, af-
ter a standard Porter stemmer was applied. Furthermore,
additional information about the structure of the collections
was extracted and stored as [subject,predicate,object] triples
with an additional probability column. All triples in the in-
dex are assigned probability 1, while intermediate results
carry computed probabilities. Important relations for the

[ ]

TRECMED _docs

keywords
C Keywords: Topic (knee)

[

stem_TERM
F STEMMER = snow ball-english

rank_DOC_BM25
F STEMMING = snow ball
F LANGUAGE = en

find_NE_from_DOC
F FUNCTION = MaX
F RELATION = includes_report

result

Figure 1: Strategy for Medical Track, run CWI1

two collections include the following information:
Target collection

e reports (documents)

e visits (named entities)

e triples [visit, includes, report|

e triples [report,has_discharge_diagnosis, /C Dcode]
External collection

e ICD codes (named entities)

e description,includes,excludes (textual sections)

e triples [section,belongs_to, IC Dcode]
5.2.2  Runs

In total we submitted 4 runs. Below we describe them in
detail.

CWII: baseline run.

As our baseline run, we apply BM25 to retrieve reports
using all the available text and finally aggregate them into
visits (visits may consist of several reports), using the fol-
lowing approach:

Score(visit) = max (Score(d) - Score([visit, includes, d])
€

(8)
where Score(d),d € D is the score of document d, as com-
puted at any previous computational step, from a document
candidate set D, and Score(|visit, includes, d]) denotes the
score of the event “visit includes report d” as described by
our index (in our case, this score is either 0 or 1).

CWI2: Combining rank lists.

For the second run, we incorporate the information con-
tained in the ICD10 taxonomy by combining a ranked list
retrieved using ICD codes with the baseline run.



Let R1 be the baseline ranked list of reports retrieved us-
ing BM25 (see CWI1). We create a ranked list R2 as follows.
First, we use BM25 to retrieve a ranked list of ICD codes
based on the estimated relevance of their ‘description’ sec-
tion to the query. Then, the report documents that mention
the ICD codes found at the previous step are selected and
ranked accordingly — the more high-scored ICD codes match
a report, the higher the report’s score.

Finally, we linearly combine the two ranked lists:

Score(d) = aScoreri1(d) + (1 — a)Scorera(d)  (9)

where d is a medical report, and aggregate reports into visits
using Equation 8.

As we do not have training data for finding the optimal
value of a, we tested different values of a with the 4 example
queries released by TREC for development. We set o to
0.084 based on the test. It gives surprisingly low emphasis
to the initial baseline scores, although given the number
of development queries, this value is most likely far from
optimal.

CWI3: Query expansion.

In this run, we incorporate the ICD taxonomy using a
query expansion strategy. First, a ranked list of ICD-code
description sections is retrieved using BM25 with the topic
query. Only the 10 top-ranked description sections are con-
sidered, and all terms ¢ € T' from those sections are ranked
using their normalized aggregated score for the considered
section group E:

isf(t) Y eptsf(t,s)
maxy er (isf(t’) : ZSEE tsf(t, S))

Let isf(t) denote the inverse section-frequency of term ¢
and tsf(t, s) the term-section frequency of term ¢ in section
s. The 10 top-ranked terms from this list are used to expand
the original query. This run uses a linear combination to mix
the original and the extracted query terms, whose scores are
denoted by Scoreq(t) and Scoreg(t) respectively:

Scoreg(t) =

Score(t) = aScoreq(t) + (1 — a)Scoreg(t)(d).

The new queries obtained for this run were formulated
assigning a weight of 0.99 to «, empirically found, and used
to rank report documents with BM25. Finally, reports are
aggregated into visits using Equation 8.

CWI4: Combination with alternative query.

This run is similar to run CWI3, in that it extracts addi-
tional terms from the ICD taxonomy. Additional terms are
however not used to expand the original query, but rather
to build alternative queries. The original and alternative
queries are used to create two ranked lists of reports, which
are then linearly combined.

Again, the topic query is used to retrieve the 10 top-
ranked description sections of the ICD taxonomy. From each
section, the 3 top-ranked terms are extracted, using nor-
malized scores based on inverted section and term-section
frequencies, but not aggregated:

isf(t) - tsf(t,s)
maXe er,s'es (Zsf(t) ' tsf(t, 5))

This yields 10 new queries ¢’ € @', of 3 terms each, which are
used to create one new ranked list of reports, by aggregating

Scoreg(t,s) =

RunID R-prec  bpref pa1io pas

CWI1 0.2641 0.3568 0.3882 0.3824
CWI2 0.2664 0.3507 0.3676  0.3647
CWI3 0.2676 0.3573 0.3882 0.4059
CWI4  0.2648 0.3577 0.3794  0.4000

Table 5: Results of our submitted runs.

at document level using the max function:

Scorera(d) = ma(s( (BM25(d,q"))
q/e ’

The rationale for not aggregating terms into a single large
query is to preserve the context of where terms co-occur and
avoid to generate false term co-occurrence assumptions (e.g.
it terms A,B are in query 1, terms B,C in query 2, avoid the
false co-occurrence of terms A and C).

If we let again R1 be the baseline ranked list of reports
retrieved using BM25 (see CWI1), the final report ranking
is given by a linear combination of rankings R1 and R2, as
in Equation 9, for which the best value for o was empirically
found at 0.98. Reports were aggregated into visits using the
same approach as in run CWI1, as in the previous runs.

5.3 Results

In table 5 we list the evaluation results of our submitted
runs in terms of R-prec, bpref, P@Q10 and P@5. In general,
the impact of incorporating external resources, positive or
negative, is marginal. Run CWI2 is in general worse com-
pared to the baseline, which suggests that ranking using ICD
codes contained in the medical reports may not be effective.
On the other hand, CWI3 and CWI4 improves over the base-
lines in most of the cases, although the improvements are
marginal. In particular, these two runs have a relatively ob-
vious improvement over the baseline run in terms of PQ@5.
This suggests that query expansion with external medical
taxonomy may be useful to promote early precision.

One final remark is that since we do not have sufficient
data to determine the optimal parameter settings, more ex-
tensive experiments and analysis need to be done in order to
draw a conclusion on the usefulness of incorporating external
resources in medical content retrieval.

6. CONCLUSION

For the diversity task of the web track. We used a random
walk based approach to find related queries in a query log
and use a spectral clustering approach to extract subtopics
from the related queries. We find that cluster-based subtopic
modeling approaches improve diversification performance com-
pared to a non-cluster-based subtopic modeling approach.
However, while gain was observed on previous years’ topic
sets, diversification with the proposed approaches hurt the
performance when compared to a non-diversified baseline
run on this year’s topic set.

From our experiments in the session track we conclude
that including session history can improve search perfor-
mance, especially in the exploratory phases of a search ses-
sion. However, differentiating between ‘good’ and ‘bad’ users
is essential, as with our current strategy results deteriorate
when searchers are doing well. We observe a marginally pos-
itive effect from the use of random walks on a query graph
for query formulation.



In the medical track we found that the use of medical
background resources for query expansion leads to small im-
provements in retrieval performance. Using such resources
appears to be especially useful to promote early precision.
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