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ABSTRACT
Ivory is a web-scale retrieval engine we have been develop-
ing for the past two years, built around a cluster-based envi-
ronment running Hadoop, the open-source implementation
of the MapReduce programming model. Building on suc-
cesses last year at TREC, we explored two major directions
this year: more sophisticated retrieval models and large-scale
graph analysis for spam detection. We describe results of ad
hoc retrieval experiments with latent concept expansion and
a greedily-learned linear ranking model. Although neither
model is novel, our experiments provide some insight on the
behavior of these two approaches at scale, on collections
larger than those previously studied. We also discuss our
link-based spam filtering algorithm that operated on the en-
tire web graph of ClueWeb09. Unfortunately, results in the
spam track were worse than the baseline provided by the
track organizers.

1. INTRODUCTION
Compared to research in industry labs and search engine

companies, academic information retrieval faces two ma-
jor challenges: access to data and access to computing re-
sources. The first issue has been alleviated to some extent
by the availability of ClueWeb09,1 a recent web crawl by
CMU comprising approximately one billion pages. Indeed,
the dataset has allowed researchers to explore, through the
TREC framework, retrieval at web scale.

Clearly, web-scale datasets cannot be easily and efficiently
processed by individual machines, necessitating bringing to
bear the computation capacity made available by clusters.
Several convergent trends have improved researchers’ access
to computing resources. At the hardware level, falling prices
of commodity severs and alternative forms of access such as
utility computing have made computing resources more af-
fordable than ever. At the software level, emerging frame-
works for large-scale distributed programming such as Map-
Reduce [6] and DryadLINQ [26] allow IR researchers to fo-
cus on solving IR problems, as opposed to wrestling with
system-level details such as scheduling and synchronization.

For the past two years, we have been rethinking vari-
ous aspects of IR in the context of a cluster-based environ-
ment built around Hadoop, an open-source implementation
of MapReduce. Last year, we successfully developed, largely
from scratch, a web-scale retrieval engine called Ivory [13].
Accomplishments included a scalable, distributed indexer
based on MapReduce [7], a novel retrieval model whereby

1http://boston.lti.cs.cmu.edu/Data/clueweb09/

postings are directly fetched from the Hadoop Distributed
File System (HDFS), and integration of web page classifiers
for quality, spam, and adult content. Ivory was effective in
the ad hoc task in the TREC 2009 web track, on both the
50 million and 502 million subsets of ClueWeb09.

Building on Ivory and the successes of last year, we ex-
plored two major directions for TREC 2010: more sophisti-
cated retrieval models and large-scale link analysis for spam
detection. This paper is organized as follows: Section 2 de-
scribes improvements we made in the Ivory infrastructure.
Section 3 discusses our ad hoc retrieval experiments with
latent concept expansion and a greedily-learned linear rank-
ing model. Although neither model is novel, our experiments
provide some insight on the behavior of these two approaches
at scale, on collections larger than those previously studied.
Section 4 describes our link-based spam filtering algorithm
that operates on the entire web graph of ClueWeb09. Unfor-
tunately, our results were worse than the baseline provided
by the track organizers. We conclude in Section 5.

2. IVORY ENHANCEMENTS
We begin with a brief overview of indexing and retrieval

in the previous implementation of Ivory deployed in TREC
2009 [13]. In the indexing process, the collection is divided
into smaller document partitions; each is indexed separately,
producing a document-partitioned index. The English por-
tion of ClueWeb09, used in the evaluations, is divided into
ten segments, each of which serves as a partition. Our in-
verted indexing algorithm is written in MapReduce: docu-
ments are processed in the mappers, which emit postings.
Reducers receive postings grouped by term, and then write
compressed postings lists to disk. For retrieval, we adopted
a broker-mediated architecture: the user sends a query to
the broker, which then forwards it to every partition server.
Each server returns a ranked list over documents in its par-
tition to the broker, which merges all of the ranked lists to
produce the final results.

This year, we added a preprocessing stage prior to in-
dexing. This stage consists of three major steps, all imple-
mented as MapReduce jobs. In the first step, all documents
are parsed into document vectors (with stemming and stop-
word removal), represented as associative arrays from terms
to term frequencies (tfs). At the same time we build a table
of document lengths, necessary for retrieval later. In the
second step, we construct a mapping from terms to integers
(term ids), sorted by descending document frequency (df),
i.e., term 1 represents the term with the highest df, term 2
represents the term with the second highest df, etc. During



this process, we discard all terms that occur ten or fewer
times in the collection, since these rare terms are unlikely
to be part of real-world user queries. The resulting dic-
tionary is then compressed with front-coding [22]. Finally,
in the third step a new set of document vectors are gener-
ated in which terms are replaced with corresponding integer
term ids. Furthermore, within each document the terms are
sorted in increasing term id, so that we are able to encode
gap differences (using γ codes). The final result is a compact
representation of the original document collection.

Why the addition of this preprocessing stage? Why go
through the extra steps of materializing the document vec-
tors? This is necessary to support relevance feedback, e.g.,
latent concept expansion (see Section 3.2). Relevance feed-
back requires access to document contents, so the two op-
tions are to reparse the documents on-the-fly or to store the
document vectors for easy access. Storing document vectors
with the actual vocabulary is inefficient, so this is why we
create document vectors with terms represented by integers.
Only these integerized document vectors are used in the re-
trieval process, but term document vectors may be useful
for independent reasons.

3. AD HOC RETRIEVAL

3.1 Term proximity linear ranking models
This year, in addition to the traditional baseline BM25

model, we explored various linear models for ranked re-
trieval. Linear ranking models offer a simple, yet princi-
pled way to combine different query-document features to
score documents effectively. Many widely used ranking mod-
els belong to this family of ranking functions [17, 1, 9].
Broadly, a linear ranking model is specified by a set of fea-
tures F = f1, . . . , fN and the corresponding model parame-
ters Λ = λ1, . . . , λN . Each feature fi is a function that maps
a query-document pair (q, d) to a real value. The relevance
score of document d with respect to query q is computed as:

Score(q, d) =
∑
i

λifi(q, d)

From this general form, different linear models can be in-
stantiated by specifying their corresponding feature sets and
the associated weights. Among the possible linear model in-
stantiations, we restricted our attention to the sequential
dependence model (SD) [17] and the weighted sequential de-
pendence model (WSD) [1]. Both of these models employ a
combination of term-based and term proximity features to
score documents. In addition to these features, since web
documents vary in quality, we also employed a document-
dependent spam feature provided by the University of Wa-
terloo [5]. The complete feature set used by our linear mod-
els is listed below:

• Number of occurrences of each unigram in the docu-
ment (weighted by BM25)

• Number of occurrences of the exact phrase “qj qj+1”
in the document (weighted by BM25)

• Number of occurrences of an unordered window con-
taining qj qj+1 (window span = 8) in the document
(weighted by BM25)

• Waterloo spam score for each document [5]

Feature Description

gt1(q) # times q occurs in the collection
gt2(q) # documents q occurs in the collection
gt3(q) # times q occurs in ClueWeb09
gt4(q) # times q occurs in a Wikipedia title
gt5(q) 1 (constant feature)

gb1(qj , qj+1) # times bigram occurs in the collection

gb2(qj , qj+1) # documents bigram occurs in the collection

gb3(qj , qj+1) # times bigram occurs in ClueWeb09

gb4(qj , qj+1) # times bigram occurs in a Wikipedia title

gb5(qj , qj+1) 1 (constant feature)

Table 1: Meta-features in the WSD model.

There are certainly other ways to define term-based and
term proximity features. However, the SD and WSD models
serve as strong baselines given previous results on TREC
datasets [17, 1].

In the case of the SD model, the weight on a particu-
lar feature fi depends on its type. In our experiments, all
term occurrence features receive a weight of 0.82, and the
term proximity features (e.g., exact phrase and unordered
window features) receive a weight of 0.09. These values re-
flect best-practice settings and have been used in our TREC
runs from last year [13]. The document-dependent spam fea-
ture receives a weight of 0.02, which is learned from a line
search—given the specified SD feature weights, we scan a set
of possible spam weights ranging from 0 to 1 in increments
of 0.01, and select the spam weight that results in maximum
MAP score when combined with the SD model.

An advantage of the parameter tying between the query-
document features in the same type is simplicity in the rank-
ing model. A drawback is that it cannot differentiate be-
tween “important” query concepts and less important query
concepts, since they will be assigned the same weight in the
ranking model if they are in the same feature class. For
instance, for the query “Shenandoah Valley Tourist Attrac-
tions”, the query concepts “Shenandoah Valley” and “Valley
Tourist” clearly have different importance. Intuitively, we
would consider “Shenandoah Valley” to be more important
than “Valley Tourist”. However, the SD model treats them
as equally important, by assigning their term proximity fea-
tures the same weight in the ranking model. The weighted
sequential dependence model (WSD) [1] improves on the SD
model by letting the feature weights (for query-dependent
features) vary with the query concepts, such that features
are assigned weights in accordance with the importance of
the concepts they are defined over. Formally, the weight λi

of feature fi(q) takes a parametric form:

λi(q) =
∑
j

wj gj(q)

where gj ’s are meta-features defined over the query for each
feature i, and wj ’s are the free parameters. Hence, λi de-
pends on q via gj and wj . For the query-dependent meta-
features gj , we use both collection features (collection fre-
quency and document frequency) and features from external
sources (English Wikipedia and ClueWeb09). The meta-
features are summarized in Table 1.

The free parameters wj ’s in the WSD model are trained
on the first segment of the ClueWeb09 collection using all



50 TREC 2009 web track queries. We employed a simple
line search to identify the values of the parameters [19].
This method iteratively optimizes the retrieval metric by
performing a series of one-dimensional searches. At each
iteration, the optimal value for a parameter is discovered
while holding all other parameters fixed. The process con-
tinues until the improvement in the objective metric drops
below a threshold. Given the trained values for the wj ’s,
we then learned an optimal weight for the document spam
feature (0.03 in this case).

3.2 LCE
Another retrieval model we explored this year is the latent

concept expansion model (LCE) [18]. LCE is a robust query
expansion model that provides a mechanism for modeling
term dependencies in query expansion. Since it is based on
the Markov Random Field (MRF) framework [17], it allows
us to incorporate a wide range of retrieval features. In our
experiments, we considered latent unigram concepts only.
We used our trained WSD model as the baseline, and let the
LCE model score the unigram concepts contained in the top
5 documents retrieved by WSD, and selected the top 4 terms
with the highest scores to form an expanded WSD model.
The weights of these unigram expansion features were com-
puted in the same way as the WSD query-dependent features
(e.g., as parametric functions of the meta-features described
in Section 3.1).

3.3 Learning to Rank
We also explored the use of a simple learning-to-rank ap-

proach [15] this year. Machine learning approaches have
been shown to be effective for learning highly effective rank-
ing functions, but lack of sufficient training data limits their
applicability in the TREC context. We used the TREC
2009 web track ad hoc queries and judgments as our train-
ing data. Given their small size, we were forced to use a
relatively simple model with a small number of features to
avoid over-fitting.

We used the same linear ranking function defined earlier
in Section 3.1:

Score(q, d) =
∑
i

λifi(q, d)

where λi’s are the model parameters we need to estimate
from the training data.

By limiting the complexity of the model, we discourage
over-fitting. In the future, we are interested in exploring
automatic methods for obtaining large amounts of (possibly
noisy) relevance judgments that can then be used with more
sophisticated learning to rank approaches, such as Lamba-
Rank [2] or gradient boosting [27].

We were primarily interested in three types of features
that are currently supported by Ivory. These include:

• Basic IR Scores: These features are simply the scores
computed using traditional IR models. The two fea-
tures of this type we used are the BM25 score and the
language modeling retrieval score (specifically, query
likelihood with Dirichlet smoothing).

• Term Proximity Features: Term proximity has been
shown to be important for effective retrieval, especially
for very large collections such as the web. Therefore,
we considered a large family of term proximity scores

Feature Weight

BM25(q, d) 0.7294
BM25bigram(q, d) 0.0616
BM25pairs(q, d) 0.0433

Spam(d) 0.0674
AntiSpam(d) 0.0915

PageRank 0.0069
All other features 0.0

Table 2: Learned parameter values for the learning
to rank model.

as features. We used various combinations of ordered
and unordered windows, with different window sizes
and scoring approaches (i.e., BM25 and language mod-
eling). Additional details can be found in [16].

• Document Features: Query-independent features are
useful for inferring the a priori importance of a given
document. The document features that we computed
are Anti-TrustRank (see Section 4 for more details),
the Waterloo spam score [5], and PageRank [21].

This results in a total of 45 features (2 basic, 40 proxim-
ity, and 3 document). It should be noted that field-specific
text matching scores (e.g., anchor text match, title match,
etc.) were omitted because Ivory currently does not support
indexing semi-structured documents.

The model parameters (i.e., the λi weights) are learned us-
ing a greedy feature selection strategy [16]. In this approach,
features are added to the model, one at a time, according to
a greedy selection criterion. At each iteration, the feature
that yields the largest gain in effectiveness (as measured by
ERR [3]) after being added to the existing model is selected.
This results in a sequence of one-dimensional optimizations
that can be solved using simple line search techniques. The
learning algorithm halts when the difference in ERR between
successive iterations drops below a given threshold (10−4).
This training procedure is simple, fast, and yields a model
with minimal correlation/redundancy between features.

Table 2 shows the values learned for the model parame-
ters from the 2009 TREC web track ad hoc queries and rele-
vance judgments, where BM25(q, d) is the traditional BM25
score, BM25bigram(q, d) is the BM25 score of the query bi-
grams, BM25pairs(q, d) is the BM25 score of all pairs of
query terms, and Spam, AntiSpam, and PageRank are the
three document features described previously.

It is interesting that the learned model contains just 6
features among a total of 45. The greedy feature selection
strategy determined that the remaining features were mostly
redundant, and thus not worth including in the model. The
selected features do, in fact, capture different aspects of
relevance, such as a term score (BM25), a phrase score
(BM25bigram), a proximity score (BM25pair), and various
query-independent scores.

3.4 Evaluation
We now provide an empirical evaluation of our experi-

ments. All of the model parameters used in our runs were
tuned using the TREC 2009 web track data. Furthermore,
all statistical significance testing was performed using a one-
tailed paired t-test at the p < 0.05 level.



Run ID P@10 MAP NDCG@20 ERR@20

IvoryBM25a 0.2313 0.1008 0.1183 0.0693
IvorySDa 0.2458 0.0992 0.1315 0.0711

IvoryWSDa 0.3354 0.1142 0.1579 0.0860
IvoryWSDb 0.3625 0.1309 0.1975 0.1045
IvoryLCEb 0.3937 0.1370 0.2143 0.1127
IvoryL2Rb 0.4000 0.1333 0.2255 0.1340

Table 3: Summary of ad hoc task results.

3.4.1 Ad Hoc Task
Table 3 summarizes the results of our ad hoc retrieval

runs. The run identifiers denote the retrieval method (e.g.,
BM25, SD, WSD, LCE, and L2R for “learning to rank”)
and the subset of ClueWeb09 documents that were used for
the run (the suffix “a” denotes Category A while the suf-
fix “b” denotes Category B). The effectiveness of the runs
are evaluated in terms of precision at 10 (P@10), mean av-
erage precision (MAP), normalized discounted cumulative
gain at 20 (NDCG@20), and expected reciprocal rank at 20
(ERR@20).

The results show a natural progression of effectiveness
from our baselines (IvoryBM25a and IvorySDa) to our more
sophisticated approaches (IvoryLCEb and IvoryL2Rb). A
deeper analysis reveals our results can be broken into three
tiers of effectiveness. The bottom tier consists of BM25 and
SD, which are statistically indistinguishable across all met-
rics. The WSD model, which is statistically significantly
better than both BM25 and SD in terms of ERR@20, oc-
cupies the middle tier. Finally, LCE and L2R make up the
top tier, as the two models are statistically indistinguishable
from one another, but statistically significantly better than
the WSD model with respect to ERR@20.

Our results also suggest that better effectiveness can be
achieved by only retrieving documents from Category B of
ClueWeb09. Similar results were also observed by ourselves
and others at the TREC 2009 web track. These findings are
in line with the analysis of the relative quality of Category
A vs. Category B that we undertook previously [13]. Our
analysis showed that Category B generally had higher qual-
ity documents, less spam, and fewer adult pages, and thus
was generally a better source of relevant documents.

It is also interesting to note that our LCE run, which
used the WSD model with a spam feature as its base rank-
ing function, was highly effective. Previous attempts to ap-
ply pseudo-relevance feedback to web search have yielded
inconsistent results. Our preliminary investigation suggests
that highly-focused pseudo-relevance feedback (i.e., a few ex-
pansion terms selected from a few top-ranked documents),
combined with an effective base ranking function, can be
effective for web search. Additional analysis and experi-
mentation are necessary to fully understand the observed
effects.

Our most effective run, IvoryL2Rb, was a simple machine-
learned ranking function that uses only 6 features. There
are various ways that one could improve upon this model,
such as using additional features (e.g., those based on anchor
text and document structure), and perhaps even combining
LCE, or some other form of pseudo-relevance feedback, with
learning to rank.

Now that we have described the positive aspects of our
runs, we briefly describe several cases where our ranking

Figure 1: Comparison of ERR@10 for faceted and
ambiguous queries across runs.

models failed. In particular, there were four topics that none
of our runs retrieved any relevant documents for. The four
topics were “to be or not to be that is the question” (topic
70), “kiwi”(topic 74), “the wall”(topic 92), and“titan”(topic
94).

3.4.2 Query Types and Diversity
Each of the topics used in this year’s track were man-

ually annotated as being either “faceted” or “ambiguous”.
Faceted topics have a well-defined focus. The “facets” arise
from the fact that different users may be interested in dif-
ferent aspects of the general focus. For example, “horse
hooves”(topic 51) has facets that include“caring for hooves”,
“pictures of horse hooves”, “diseases of horse hooves”, and
“anatomy of horse hooves”. Ambiguous topics are less well-
defined and it may be difficult to infer the actual intent from
a single query alone. For example, “avp” (topic 52) can re-
fer to “Association of Volleyball Players”, “AVP anti-virus
software”, “Avon products company”, and so on.

Figure 1 compares the effectiveness of our runs for faceted
and ambiguous queries. The results suggest that our base-
line runs (BM25 and SD) are actually more effective on am-
biguous queries than faceted ones, whereas our more ad-
vanced runs (WSD, LCE, and L2R) are markedly better for
faceted queries. The WSD-based runs (WSDa, WSDb, and
LCEb) show substantial gaps between faceted and ambigu-
ous queries, which suggests that the methods may not ad-
equately account for query ambiguity. On the other hand,
the learning to rank approach shows a significant increase
in ambiguous query effectiveness over these approaches, al-
though the gap between ambiguous and faceted queries still
remains.

Finally, we evaluated the effectiveness of our runs with
respect to several diversity-aware metrics. It is important
to note that we did not officially participate in the diver-
sity task and none of our runs perform any diversity-specific
processing. We include these results for completeness and
to better understand the strengths and weaknesses of our
approaches.

The results of the diversity evaluation are provided in Ta-
ble 4. The diversity results closely track the ad hoc results
presented in Table 3. It is unclear if this is the result of in-
trinsic correlations between diversity-agnostic and diversity-



Run ID ERR-IA@20 α-NDCG@20 NRBP

IvoryBM25a 0.1448 0.2300 0.1049
IvorySDa 0.1459 0.2284 0.1087

IvoryWSDa 0.1716 0.2601 0.1320
IvoryWSDb 0.2214 0.3277 0.1777
IvoryLCEb 0.2201 0.3169 0.1799
IvoryL2Rb 0.2847 0.3934 0.2468

Table 4: Summary of diversity task results.

aware metrics or if our more advanced approaches implicitly
account for diversity in some way.

4. SPAM FILTERING

4.1 Model
Given the large size of the ClueWeb09 collection, spam

has led to rising concerns about the effectiveness of clas-
sic retrieval methods. Cormack et al. [5] presents a sim-
ple, minimally-trained, content-based classifier that post-
processes ranked lists to yield significant improvements on
a variety of metrics. In an attempt to further explore the
structure of spam in ClueWeb09 and to properly counter-
balance its effect on retrieval, we tackled this problem from
a different approach.

Web graphs provide important information about their
components’ interconnections and there has been a broad
range of studies [10, 12, 25, 24, 8, 28, 23] on how to ex-
ploit link-based characteristics to detect more sophisticated
forms of spam, e.g., link spamming. Link spamming involves
boosting the rank of certain pages by setting up specific
link structures among them. It cannot be properly mod-
eled by content-based filters, as these filters are generally
designed to recognize term spam (i.e., misleading document
content) [8, 28, 20].

Gyöngyi et al. [10] exploits the intuition that good pages,
i.e., those of high quality, are unlikely to point to low qual-
ity or spam pages. Having collected a set of good pages as
its seed in a supervised manner, their proposed algorithm,
called TrustRank, then propagates “trust” throughout the
web graph. The propagation is done iteratively with a bi-
ased PageRank algorithm. Pages are then labeled by apply-
ing a certain threshold to the TrustRank scores. Krishnan
and Raj [12], on the other hand, address the problem in
a slightly different way and show their proposed algorithm
outperforms TrustRank. Following the intuition that spam
pages are unlikely to be pointed to by good pages, their al-
gorithm, called Anti-TrustRank, starts with a set of spam
pages as its seed and then runs a biased PageRank to prop-
agate “anti-trust” in the reverse direction. Wu et al. [24]
show that combining trust and anti-trust (i.e., distrust) is
more effective than using only trust scores. Given the trust
and distrust values, they propose a linear combination in the
form below for a page Pi as a way to take into account both
properties:

Score(Pi) = α · Trust(Pi) − β · AntiTrust(Pi)

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are two coefficients that
give different weights to trust and anti-trust scores.

Despite the fact that these two approaches are mathe-
matically well-formulated and easy-to-implement, there are
certain drawbacks to consider. As discussed by Gyöngyi et

Figure 2: Convergence of spam scores.

al., selection of seed pages can skew the final scores, which,
after applying the threshold, will alter the effectiveness of
the filter. Moreover, in most cases a set of seed pages does
not guarantee full coverage of the entire web graph. This gap
in coverage comes from the possibility that certain parts of
the graph might not be reachable from the seeds. To reduce
the effect of these problems, Jiang et al. [11] suggest the use
of a large, automatically-generated seed set, as opposed to
a small, carefully-selected seed set.

Instead of developing our own classifier, our goal for the
spam task was to use Wu et al.’s approach [24] by inter-
polating between TrustRank and Anti-TrustRank scores for
each page in the collection. Additionally, we studied the ef-
fects of seed page selection. After extracting the complete
web graph from the ClueWeb09 collection, we developed our
MapReduce implementation of PageRank [14] in order to
have the necessary tools to efficiently run the TrustRank
and Anti-TrustRank algorithms. In our experiments, we
limit the number of iterations to 30. Based on changes be-
tween the iterations measured by the difference of the L1
norm of the score vectors, we can detect algorithm conver-
gence. Figure 2 plots the convergence (difference in L1 norm
of score vectors) versus the iteration number.

To compute an interpolated score, we assign a value of 1
to both coefficients α and β in the equation above. The page
scores are converted to a percentile rank for the purpose of
comparing effectiveness [5].

TrustRank creates a seed set by manually labeling pages
with high PageRank scores in the inverse web graph [10],
while in Anti-TrustRank, pages with high PageRank scores
in the original web graph are labeled manually [12]. For
TrustRank, good pages are used as the seed set while in
Anti-TrustRank, spam pages are used as the seed set. Due
to the large size of our web graph, in lieu of manually la-
beling the pages, we define thresholds θTrust and θAntiTrust

and apply them to Waterloo spam scores [5] to generate seed
sets. Pages with a spam score of θTrust or higher are then
used as the seed pages for TrustRank and pages with a spam
score of θAnitTrust or lower are chosen to form the seed set
for Anti-TrustRank. This allows us to easily generate larger
seed sets that cover larger portions of the web graph.

In our experiments we used the pairs (70, 30) and (90, 10)



System ham% spam% lam% 1-ROCA%

Baseline 24.32 18.60 21.36 13.6051
IVORY.70.30 29.49 20.93 25.00 21.52
IVORY.90.10 33.11 27.44 30.23 19.36

Table 5: Summary of spam filtering results.

as values for (θTrust, θAntiTrust). The first pair produces a
larger seed set but leaves fewer unlabeled pages. However,
the tradeoff is, as we lower θTrust and raise θAntiTrust, al-
though we obtain larger seed sets, we increase the chance of
having inaccurate seed sets, i.e., a good seed set that might
contain spam pages and a bad seed set that might contain
good pages.

4.2 Evaluation
We now provide an evaluation of our spam filters. Evalu-

ation data provided by NIST use the metrics introduced by
Cormack et al. [4]. More specifically, ham% is the percent-
age of misclassified non-spam pages (i.e., non-spam pages
that are classified as spam), spam% is similarly the percent-
age of misclassified spam pages (i.e., spam pages that are
classified as non-spam), and, logistic average misclassifica-
tion percentage (lam%) defined as

lam% = logit−1

(
logit(ham%) + logit(spam%)

2

)
where logit(x) = log( x

100%−x
) [4]. Additionally, since both

ham% and spam% measure failure rather than effectiveness,
the spam track reports the area above the Receiver Operat-
ing Characteristic (ROC) curve. This last metric is equiv-
alent to (1 - ROCA%), where ROCA% is the area under
the ROC curve. The dataset against which the filters are
tested contains 16956 ham (non-spam) pages and 645 spam
pages. Waterloo spam [5] scores are used as a baseline in
the provided evaluation.

As mentioned earlier, our model takes two parameters
θTrust and θAntiTrust as thresholds to form the seed sets. We
submitted two runs, IVORY.70.30 and IVORY.90.10, cor-
responding to the (70, 30) and (90, 10) threshold settings,
respectively. Table 5 summarizes the evaluation results for
the baseline and the two variants of our spam filter. Un-
fortunately, neither of our runs beat the baseline (unaltered
Waterloo spam scores).

A simple comparison between these two filters shows that
IVORY.90.10 has a higher rate of misclassification but a
lower (1-ROCA%). Looking at the ROC curves offers an
explanation for the behavior of these filters. As depicted in
Figure 3, IVORY.90.10 outperforms IVORY.70.30 when the
false positive rate is low. This behavior lies in the choice of
thresholds for our filter, (90, 10) versus (70, 30). A thresh-
old of 70 for θTrust is relatively more likely to include more
spam pages in the “good” seed set (set of non-spam pages
used in the TrustRank algorithm). A threshold of 70 assigns
high trust scores to some pages that are in fact spam. This
explains why IVORY.90.10 is more effective when the false
positive rate is low. However, a threshold of 90 is more likely
to cover a smaller portion of the web graph when compared
to a threshold of 70, thus propagating trust to fewer pages
in the web graph. This might explain why IVORY.90.10 has
a higher rate of misclassification than IVORY.70.30.
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Figure 3: ROC curves for the spam filtering systems.

5. CONCLUSIONS
Participation in both last and this year’s TREC web tracks

has taught us valuable lessons in working with web-scale col-
lections. In addition to sharing experimental results, Ivory
is publicly-available as an open-source software package.2

Code necessary to replicate most of the experiments here
are included. We hope that this makes it easier for others
to build on our results.
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