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ABSTRACT 
 
This paper describes our participation in the TREC 2006 
Genomics evaluation campaign.  In an effort to find text 
passages that will meet user requests, we propose and 
evaluate a new approach to the generation of orthographic 
variants of search terms (mainly genomic names in our 
case).  We also evaluate the retrieval effectiveness of both 
the Okapi (BM25) model and the I(n)B2 probabilistic 
model derived from the Divergence from Randomness 
paradigm.  In our experiments, we find that in terms of 
mean average precision the latter model performs clearly 
better than the Okapi model (with a relative difference of 
50%).  Moreover when comparing a 5-gram indexing 
approach to word-based indexing schemes, the mean 
average precision decreases by about 10% when using the 
n-gram indexing scheme.  Additionally, including the 
article’s title in all passages generated from a given article 
does not improve retrieval effectiveness.  Finally, the 
generation of passages delimited by HTML tags was not a 
success.  The performance achieved was in fact rather 
poor, suggesting that there were too many sentences 
within such text passages.     

1. INTRODUCTION 
The biomedical domain presents the information retrieval 
(IR) community with a number of challenging problems.  
The main objective of the three last Genomics campaigns 
[1] was thus to retrieve bibliographic references 
(composed mainly of title, author names and abstract) 
from a large subset of the MEDLINE repository, in response 
to real user information needs.  The main goal this year is 
to retrieve text fragments or passages rather than the 
integral scientific articles available in the various journals. 
From IR point of view, this task lies somewhere between 
classical text retrieval where the response corresponds to 
documents (or references to these documents) and 
question/answering in which the output consists of very 
short passages extracted from documents. The definition 
of a “passage” is not of course very precise. 
When defining what might constitute a passage, the IR 
literature refers to a variety of passage types, mainly those 
based on delimiters such as text, window or semantic 
markers.  For the first type, passage boundaries are 

usually defined by markers supplied by the author [2] 
(e.g., punctuation marks, empty lines, indentations, etc.), 
as defined by paragraphs, sections or even sentences.  
Identifying these information units could be greatly 
facilitated by the use of XML markup languages.  For the 
window-based type, passages have a fixed length in terms 
of the number of words or bytes.  As a dynamic 
alternative to this approach, Kaszkiel & Zobel [3] suggest 
arbitrary passages starting at any given position within a 
document.  For the latter, passages may also be defined 
according to a text's subject or semantic content.  The 
main idea is to divide documents into logical units, with 
each unit being related to a single subtopic.  For more 
detailed information on passages, a survey can be found 
in [4].  
In order to retrieve pertinent passages two principal 
strategies may be used.  In the first, known as dynamic 
passage retrieval, passages are defined and retrieved at 
search time. In this case, specific scores are assigned 
during a query to portions of text and thus the exact 
passage presented to the user depends on the query 
parameters submitted.  As a second strategy, known as 
static passage retrieval, the elementary parameters 
assigned to index and search passages are predefined and 
identified. This is the one we adopted this year.  
In elaborating the protocol for the Genomic task, the 
organizers limited the passage definitions.  Given that the 
scientific articles available are in HTML format, the 
organizers required that a passage could be one or more 
sentences, as long as they did not cross the HTML 
paragraph tag (<P>).  This type of structural constraint 
means passages extending beyond the paragraph tag (<P>) 
would not be retrieved.   
Finally, in an effort to develop an effective search strategy 
for the biomedical publication domain, we decided to take 
this underlying domain into account.  In this domain both 
the type of information and the underlying terminology 
evolve very rapidly.  It is also well known that several 
names and symbols exist to denote the same protein or 
gene. Thus for this evaluation campaign, we decided to 
focus only on search terms and their possible 
orthographic variations in order to provide a partial 
solution to this problem.  Once a request is submitted to 
our system, it will automatically add all the orthographic 
variants (up to 10) of the search terms (or sequence of two 



search terms) found in the corpus.  External resources 
such as gene ontologies or biomedical databases were not 
used this year.  
The rest of this paper is organized as follows.  Section 2 
depicts the main characteristics of our test-collection and 
how the passages are derived from an article according to 
our passage definition.  Section 3 describes the indexing 
approach adopted to assign descriptors to passages and 
Section 4 briefly presents the two probabilistic models 
used to score these passage representations.  Section 5 
describes the approach we use to handle orthographic 
variations.  Section 6 evaluates the two IR models by 
applying different conditions.  Finally, the main findings 
of this paper are presented in Section 7. 

2. TEST-COLLECTION 
The document collection used this year contains 
approximately 12 GB of uncompressed data, made up of 
162,259 full-text publications extracted from 49 
biomedical journals.  In accordance with the general 
approach adopted to retrieve passages, we first processed 
each article to generate its corresponding passages. As 
passage delimiters, we made use of the following HTML 
tags: H1, H2, H3, H4, H5, H6, P, BR, HR, TABLE, TD, TH, TR, 
OL, and UL.   
 
<PASSAGE> 
<FN> /raid/Genomics/peds/12118078.html 
<ID> 12118078.23 
<SO> 28541 
<L> 978 
<TGN> p 
<R> false 
<TITLE> Alterations in the Mouse and Human 
Proteome Caused by Huntington’s disease 
<TX> In addition to the cytoplasmic brain 
fraction that was used in the above experiments, 
proteins solubilized by urea and detergent 
treatment, yielding an extract enriched in 
membrane proteins, as well as DNA-binding 
proteins released by DNase, were screened to 
expand the range of protein classes studied. In 
both fractions no additional proteins were 
consistently different between R6/2 and control 
mice (data not shown). AAT was present at low 
amounts in the membrane fraction and 
undetectable in the fraction of proteins 
released by DNase in control mice, arguing for a 
mainly cytoplasmic localization of the protein 
(data not shown). ABC was found in all three 
fractions. A consistently lower expression of 
ABC and AAT expression below the detection limit 
were detected in R6/2 samples in all three 
fractions (data not shown). 
</PASSAGE> 

Figure 1.  Example of generated passage 

Figure 1 shows an example of a passage that might be 
generated.  All our passages are structured according to 
the following set of fields:   

 FN (article filename path), 
ID (passage identifier), 

SO (start offset), 
L (passage length in bytes), 
TGN (tag name from which the passage was extracted), 
R (indicates whether or not the passage is identified as 
a reference),  
TITLE (title of article), 
TX (passage contents).    

We first established a basic rule to determine whether or 
not a passage would be considered a reference.  As such, 
all passages appearing after a single line containing the 
word “References”, “Bibliography” or “Literature” were 
marked as references.  After filtering all passages 
containing fewer than 10 words, the resulting collection 
contained exactly 10,700,925 passages from which 
1,275,132 (11.9%) were marked as references. Table 1 
lists some of the statistics on our passages, and from this 
we can observe that the median is clearly smaller than the 
mean.    
 

 Collection set Relevant set 
# Passages 10,700,925 3,451 
# References 1,275,132 NA 
Length in words in bytes 
Mean 43.6 974.9 399.8 
Median 30 575 229 
Std. dev. 52.9 1,729.0 489.5 
Minimun 0 0 27 (#172) 
Maximum 4,863 237,885 6,928 (#169) 

Table 1.  Passage collection statistics 

Within this collection there are 28 topics corresponding to 
real information needs commonly expressed by biologists. 
The sample text showed in Figure 2 was selected from 
last year’s topic set and reformulated as a simple question, 
delimited by the <QUESTION> tag.  This topic set is 
subdivided into four different main scenarios (or Generic 
Topic Types).  Regardless of the topic, the IR system will 
return the same type of answer, namely a ranked list of 
“passages”. 
 
<TOPIC> 
<ID> 125 
<NEW-ID> 171 
<GENE> Nurr-77 
<PROCESS> preventing auto-immunity by deleting 
reactive T-cells before they migrate to the 
spleen or the lymph nodes 
<QUESTION> How does Nurr-77 delete T cells before 
they migrate to the spleen or lymph nodes and 
how does this impact autoimmunity? 
</TOPIC> 

Figure 2.  Example of a topic 

Based on relevance assessments made on this test 
collection, the mean number of relevant passages per 



topic is 132.73 (median: 35; standard deviation: 188.17).  
Topic #187 (“How do mutations in familial hemiplegic 
migraine …?”) returned only three pertinent passages 
while Topic #172 (“How does p53 affect apoptosis?”) 
produced the greatest number of relevant passages (593).  
Topics #173 (“How do alpha7 nicotinic receptor subunits 
affect ethanol metabolism?”) and #180 (“How do Ret-
GDNF interactions affect liver development?”) did not 
reveal any relevant passages and were thus discarded 
from the evaluation.   

3. INDEXING APPROACHES 
As a natural approach to indexing and searching into our 
defined passages, we chose words as the indexing units.  
Based on this scheme, our lexical analyzer applies the 
followings steps to process the input.  First, the text is 
tokenized (using spaces or punctuation marks), simple 
acronyms are normalized (e.g., P.S.A. is converted into 
PSA) and hyphenated terms are also broken up into their 
components.  For example, a word such as “COUP-TF1” 
generates three different forms, namely “COUP”, “TF1” 
and the original form “COUP-TF1”. 
Second, uppercase letters are transformed into their 
lowercase forms.  Third, stopwords are filtered out using 
the SMART list (571 entries).  Fourth, the S-stemmer 
algorithm [5] based on three rules removes the final ‘-s’ 
(the most common plural suffix for the English language).   
In our experiments last year [6], we showed that among 
the four evaluated stemmers (Lovins, S-stemmer, Porter 
and SMART) the S-stemmer achieved the best retrieval 
effectiveness.   
As an alternative and in order to reduce the negative 
impact caused by spelling errors or orthographic 
variation, we adopted the 5-gram as a second indexing 
approach. This method does not require any prior 
linguistic knowledge and is also more robust in handling 
typographical errors, both in the submitted query and in 
the documents retrieved.  Within this context, we adopt an 
overlapping 5-gram approach.  For instance, for the term 
“alzheimer” the system automatically generates the 
following 5-gram variants: “alzhe”, “lzhei”, “zheim”, 
“heime” and “eimer”.   

Both topics and documents are processed in the same 
way.  However, for topics only and based on [7], we 
apply an extended stopword list comprising seven 
additional terms (namely gene, impact, method, role, 
biological, disease and process).  These words occur very 
frequently in the biomedical domain and thus are not 
helpful in discriminating between relevant and non-
relevant documents.  Finally, in order to hopefully 
improve the retrieval effectiveness, we automatically 
include the document title in all tile passages generated 
from a given scientific article (listed under the <TITLE> 

tag in Figure 1).  Of course as shown in Section 6, it is 
also possible to ignore this indexing feature.   

4. GENERATION OF ORTHOGRAPHIC 
VARIANTS 
As is known, in biomedical literature several orthographic 
variants [7] can be found to represent a given name and 
these are generally introduced for a variety of reasons: 
1) Typographic errors and misspellings (e.g. “retrieval” 

and “retrieval”) or cognitive (e.g., “ecstasy”, 
“extasy”, or “ecstacy”; “occurrence” or 
“occurrence”); 

2) Alternative punctuation and tokenization, mainly due 
to the lack of a naming convention (e.g. “Nur77”, 
“Nurr-77” or “Nurr 77”); 

3) Regional language variations, such as British and 
American English (e.g. “colour” or “color”, “grey” or 
“gray”, etc.) 

4) Transliteration of foreign names (e.g., “Crohn” and 
“Krohn” or “Creutzfeld-Jakob” and “Creutzfeldt-
Jacob”); 

5) Morphological variations (inflections or derivations) 
which could be resolved by using a stemmer.  

During previous TREC campaigns, many methods were 
proposed to resolve the problem of orthographic 
variations, as for example [8].  The algorithms proposed 
were usually rule-based and were essentially concerned 
with secondary causes described above (e.g., see [9]). 
In order to automatically find a ranked list of alternative 
spellings for each search word, we modified the Lucene 
[10] Spell Checker1.  In its initial stage this tool required a 
lexicon containing the correct spelling, so in our case we 
used the words extracted from the TREC 2005 corpus, a 
large subset of the MEDLINE collection. We then 
introduced a single term or a short sequence of words, 
limited in the current case to two terms.  In response, the 
spell checker returned a ranked list of the top 100 hits 
extracted from the given lexicon.  In our case we re-
ranked this list according to the minimal edit-distance 
measure and its length, for each candidate that was a 
variant of the original (misspelled) term submitted as 
follows: 
   Score  =  1 – [ edit-distance / length(term) ] 
When the two similar candidates were deemed to be equal 
(which occurred relatively frequently), they were ordered 
according to popularity (or df, document frequency), 
ranging from most to less frequent.   

                                                           
1 http://wiki.apache.org/jakarta-lucene/SpellChecker  



For each topic available in this TREC campaign, we 
submitted each search word or group of two successive 
words to the spellchecker engine.  As shown in Figure 3, 
the top ten suggested spelling candidates, which were 
then re-sequenced by the edit and df measure, and 
automatically added to topic following the <S> tag 
(followed by the alternative number).    
 
<TOPIC> 
<ID> 125 
<NEW-ID> 171 
<GENE> Nurr-77 
<PROCESS> preventing auto-immunity by deleting 
reactive T-cells before they migrate to the 
spleen or the lymph nodes 
<QUESTION> How does Nurr-77 delete T cells before 
they migrate to the spleen or lymph nodes and 
how does this impact autoimmunity? 
<S1 input="nurr 77" df="1">nurr-77 
<S2 input="nurr 77" df="28">nurr77 
<S1 input="nurr-77" df="41">nur-77 
<s2 input="nurr-77" df="28">nurr77 
… 
<s1 input="auto immunity" df="32">auto-immunity 
<s2 input="auto immunity" df="6527">autoimmunity 
… 
<s1 input="lymph node" df="202">lymph-node 
<S2 input="lymph node" df="4">lymphonode 
<S3 input="lymph node" df="38">lymphnode 
</TOPIC> 

Figure 3.  Example of topic with orthographic variants 

In Figure 3, the input attribute describes what was 
submitted to the spellchecker.  The df attribute indicates 
the number of passages indexed under the suggested 
variant.  For example, the first orthographic variant 
proposed by the spell checker for the sequence “nurr 77” 
is “nurr-77” and its popularity is 1 (the proposed term 
“nurr-77” occurs only in one passage).  A more complete 
example is given in the Appendix, Figure 4.  In our 
experiments we did not use the popularity information for 
weighting additional search term and we only considered 
the top ten orthographic alternatives.   

5. RETRIEVAL MODELS 
In our evaluations, we considered two probabilistic 
retrieval models. As a first approach, we used the Okapi 
(BM25) model [11] in which the score of the document Di 
for the current query Q was evaluated using the following 
formula: 
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As a second approach, we used the I(n)B2 model derived 
from the Divergence from Randomness (DFR) paradigm 
[12].  In this case, the document score is evaluated as: 
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where the weight wij of term tj in document Di is based on 
combining two information measures as follows: 
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in which probij
1 is the pure chance probability of having 

tfij occurrences of the term tj in a document.  On the other 
hand, probij

2 is the probability of encountering a new 
occurrence of term tj in the document, given that we 
already found tfij occurrences of this term. 
Within these two retrieval models, qtf denotes the 
frequency of term tj in query Q, dfj indicates the number 
of documents indexed with the term tj, n the number of 
documents in the corpus, tcj the number of occurrences of 
term tj in the collection, li is the length (number of 
indexing terms) of document Di, avdl is the average 
document length, and k1, b and c are constants.  In our 
experiments, we set the values of c, k1, b and avdl to be 
5.0, 1.2, 0.55 and 146 respectively for the main field 
content (<P>) and 1.5, 1.2, 0.55 and 61 for the title 
(<TITLE>) field.  These values were chosen according to 
our experiments, based on the Genomic TREC-2005.   

6. EVALUATION 
To evaluate our various search strategies, we used the tool 
provided, that is TRECGEN2006_SCORE.  Based on the 
retrieval of 1,000 passages per query, this program 
computed the performance at three different levels:  
1) mean average precision (MAP); 2) mean average 
passage precision (MAPP); and 3) mean average aspect 
precision (MAAP).  To statistically determine whether or 
not a given search strategy would be better than another, 
we applied the t-test [13].  In our statistical tests, the null 
hypothesis H0 stated that both retrieval schemes resulted 
in similar retrieval performance. Therefore in the 
experiments presented in this paper, statistically 
significant differences were detected by a two-sided t-test 
(significance level α = 5%).    

6.1 Indexing Strategies 
Table 2 depicts the various evaluations achieved by the 
word-based indexing approach (columns 2 to 4), by the 5-
gram indexing scheme (columns 5 to 7), as well as the 
relative performance difference between the word and the 
5-gram indexing strategies.  This table also lists the best 
performance under a given condition (depicted in bold), 
which will be used as the baseline for statistical testing. 



 

  \ Index word 5-gram % difference (5-gram vs. word) 

Measure MAP MAPP MAAP MAP MAPP MAAP MAP MAPP MAAP 

BASE 0.3734 0.0418 0.2573 0.3351 0.0343 0.1962 -10.26% -17.94% -23.75% 

  +SPELL 0.3642 
(-2.46%) 

0.0404 
(-3.35%) 

0.2538 
(-1.36%) 

0.3106 
(-7.31%) 

0.0337 
(-1.75%) 

0.1886 
(-3.87%) -14.72% -16.58% -25.69% 

  +TITLE 0.2943 
(-21.18%) 

0.0328 
(-21.51%) 

0.2027 
(-21.22%) 

0.2489 
(-25.72%) 

0.0230 
(-32.94%) 

0.1294 
(-34.05%) -15.42% 29.88% -36.16% 

  +TITLE & 
SPELL 

0.3017 
(-19.20%) 

0.0322 
(-22.97%) 

0.2027 
(-21.22%) 

0.2257 
(-32.65%) 

0.0225 
(-34.40%) 

0.1175 
(-40.11%) -25.19% -30.12% -42.03% 

Table 2.  Performance of the I(n)B2 model under various schemes (26 queries) 
 

  \ Index word 5-gram % difference (5-gram vs. word) 

Measure MAP MAPP MAAP MAP MAPP MAAP MAP MAPP MAAP 

BASE 0.2426 0.0270 0.1248 0.2624 0.0233 0.1262 +8.18% -13.70% +1.12% 

  + SPELL 0.2422 
(-0.16%) 

0.0265 
(-1.85%) 

0.1214 
(-2.72%) 

0.2310 
(-11.97%) 

0.0188 
(-19.31%) 

0.1032 
(-18.23%) -4.62% -29.06% -14.99% 

  + TITLE 0.1827 
(-24.69%) 

0.0197* 
(-27.04%) 

0.1075 
(-13.86%) 

0.1740 
(-33.69%) 

0.0157 
(-32.62%) 

0.0890 
(-29.48%) -4.76% -20.30% -17.21% 

  +TITLE & 
SPELL 

0.1776 
(-26.79%) 

0.0192 
(-28.89%) 

0.1081 
(-13.38%) 

0.1519 
(-42.11%) 

0.0141 
(-39.48%) 

0.0700 
(-44.53%) -14.47% -26.56% -35.25% 

Table 3.  Performance of the Okapi model under various schemes (26 queries) 

The lines in this table represent various features that we 
used during the indexing and search process.   
First, we wanted to verify the relative performance of our 
suggested orthographic variants generation.  The third line 
contains the baseline approach while the line labeled 
“+SPELL” depicts the retrieval performance for the 
orthographic variation.  In the fourth line (labeled 
“+TITLE”) the article’s title is always included for each 
passage (as shown in Figure 1).  Finally, the performance 
achieved using both the article’s title and the orthographic 
variants are depicted (label “+TITLE & SPELL”).   
Table 3 shows the same information using the Okapi 
probabilistic model.  From these two tables, the following 
conclusions can be drawn.  The overall best retrieval 
performance is always obtained by the simplest system, 
without considering the article’s title or the orthographic 
variations. The performance difference is relatively small 
(around -2.2%) when we do or do not include the 
orthographic variants of query terms.  On the other hand, 
taking the article’s title into account for clearly hindered 
the retrieval performance (the differences are always 
statistically significant and therefore underlined in Tables 2 
and 3).   
Moreover, when comparing word-based indexing strategy 
with the 5-gram, the word-based approach usually has the 
best retrieval performance.  The only exception to this rule 
was the performance achieved with the simplest model, 
using the Okapi approach (word: 0.2426, 5-gram: 0.2624).   

6.2 Official Runs 
Table 4 lists the evaluation results for our three official 
runs, together with their various components.  Our runs are 
based on the two probabilistic models including some of 
the search features described previously.  Thus in this table 
we first considered the I(n)B2 model with and without 
orthographic variants (lines 1 and 2), and the same model 
based on the 5-gram approach (line 3).  For the Okapi 
model (word-based, line 4), we also considered the 
orthographic variants (line 5).   
The run labeled “UniNE1” combines both the I(n)B2 
model (word-based and 5-gram) and the Okapi approach 
(word-based).  As a data fusion approach, we used the z-
score method [14].  Within this scheme, we normalized 
document scores (or passage score in the current case) for 
each Dk provided by the ith result list, as computed by: 

Z-score RSVk = [((RSVk-Meani) / Stdevi)+ δi], 

δi = ((Meani- Mini) / Stdevi ) (6) 
within which Meani denotes the average of the RSVk, and 
Stdevi the standard deviation.    
The second official run “UniNE2” was also based on the 
combination of different search strategies.  In this case, we 
generated the I(n)B2 with the article title included in each 
passage (line 7), or with both the article title and 
orthographic variants (line 8).  The result lists are 
combined using a simpler normalization procedure (for 
each result list, each passage score was divided by the 
maximum score).   

 



IR Models MAP MAPP MAAP 
1.  I(n)B2 (word) 0.3734 0.0418 0.2573 
2.  I(n)B2 (word) + orthographic variants 0.3642 0.0404 0.2538 
3.  I(n)B2 (5-GRAMS) 0.3351 0.0343 0.1962 
4.  Okapi (word) 0.2426 0.0270 0.1248 
5.  Okapi (word) + orthographic variants 0.2422 0.0265 0.1214 
6.  Data fusion (2, 3 & 5), Z-SCORE (UNINE1) 0.3539 0.0390 0.2070 
7.  I(n)B2 (word) with T field 0.2943 0.0328 0.2027 
8.  I(n)B2 (word) with T field + variants 0.3017 0.0322 0.2027 
8.  Data fusion (8, 3 & 5), NORM rsv (UNINE2) 0.3460 0.0384 0.2018 
9.  Data fusion (1 & 2), Z-SCORE (UNINE3) 0.3725 0.0407 0.2259 

Table 4.  Results of our official runs and their components 
 

Finally, the third run “UniNE3” was a simple 
combination of the I(n)B2 with and without the 
orthographic variations.  An overall view of Table 4 
indicates that “simpler approaches are more effective than 
complex ones”, just as we concluded last year [6].  
However, combining very different indexing and search 
strategies seem to effective [15], but such an approach 
requires more processing effort. 

7. CONCLUSION 
During the TREC 2006 Genomic evaluation campaign we 
evaluated various indexing and search strategies.  The 
empirical evidence collected shows that a word-based 
approach performs better than a 5-gram indexing scheme 
(relative difference around 15%).  This comes as a 
surprise, given that the 5-gram approach is usually more 
robust than the word-based scheme.  The inclusion of 
orthographic variants for search words (or two-word 
query sequences) does not improve retrieval 
effectiveness, at least as implemented in our system.  
When comparing the I(n)B2 model derived from the 
Divergence from Randomness paradigm with that of the 
Okapi approach in which various indexing strategies 
(word or 5-gram) are considered, the resultant MAP is 
better (by about 50%) and in favor of the I(n)B2 model.   
The generation of passages delimited by HTML tags was 
not a success.  The performance achieved was in fact 
rather poor, suggesting that there were too many 
sentences within our text passages.  As another extreme 
alternative, we might generate one passage per sentence, 
yet for the moment results for this passage definition 
remains unknown.   
From an IR point of view, the automatic inclusion of the 
article title in each passage is not effective. In all cases 
studied during this evaluation campaign, the inclusion of 
this logical element actually hinders retrieval 
performance.    
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<TOPIC> 
<ID> 125 
<NEW-ID> 171 
<GENE> Nurr-77 
<PROCESS> preventing auto-immunity by deleting reactive T-cells before they migrate to the 
spleen or the lymph nodes 
<QUESTION> How does Nurr-77 delete T cells before they migrate to the spleen or lymph nodes and 
how does this impact autoimmunity? 
<S1 input="nurr 77" score="0.86" df="1"> nurr-77 
<S2 input="nurr 77" score="0.83" df="28"> nurr77 
<S1 input="nurr-77" score="0.83" df="41"> nur-77 
<S2 input="nurr-77" score="0.83" df="28"> nurr77 
<S1 input="preventing" score="0.80" df="31802"> prevention 
<S1 input="auto immunity" score="0.92" df="32"> auto-immunity 
<S2 input="auto immunity" score="0.92" df="6527"> autoimmunity 
<S3 input="auto immunity" score="0.85" df="28"> autoimmmunity 
<S4 input="auto immunity" score="0.85" df="1"> autoimmuinity 
<S6 input="auto immunity" score="0.83" df="1"> autoimmunita 
<S7 input="auto immunity" score="0.82" df="1"> utoimmunity 
<S8 input="auto immunity" score="0.82" df="1"> autommunity 
<S1 input="auto-immunity" score="0.92" df="6527"> autoimmunity 
<S1 input="reactive t" score="0.80" df="14"> reactively 
<S2 input="reactive t" score="0.80" df="1"> reactiveyy 
<S1 input="cell t-cell" score="0.91" df="15"> cell-t-cell 
<S2 input="cell t-cell" score="0.82" df="4366"> cell-to-cell 
<S3 input="cell t-cell" score="0.82" df="3"> cell-b-cell 
<S4 input="cell t-cell" score="0.82" df="3"> cells-t-cell 
<S5 input="cell t-cell" score="0.82" df="3"> cell-tocell 
<S6 input="cell t-cell" score="0.82" df="1"> cellto-cell 
<S1 input="lymph node" score="0.90" df="202"> lymph-node 
<S2 input="lymph node" score="0.90" df="4"> lymphonode 
<S3 input="lymph node" score="0.89" df="38"> lymphnode 
<S1 input="nurr 77" score="0.86" df="1"> nurr-77 
<S2 input="nurr 77" score="0.83" df="28"> nurr77 
<S1 input="delete" score="0.83" df="32760"> deleted 
<S1 input="cell migrate" score="0.83" df="1"> cell-migrated 
<S1 input="lymph node" score="0.90" df="202"> lymph-node 
<S2 input="lymph node" score="0.90" df="4"> lymphonode 
<S3 input="lymph node" score="0.89" df="38"> lymphnode 
</TOPIC> 

Figure 4:  Full example of topic with its orthographic variants 
 


