
AnswerFinder at TREC 2006

Diego Mollá Menno van Zaanen Luiz Pizzato
Centre for Language Technology

Macquarie University
Sydney

Australia
{diego,menno,pizzato}@ics.mq.edu.au

Abstract

This article describes the AnswerFinder ques-
tion answering system and its participation in
the TREC 2006 question answering competi-
tion. This year there have been several improve-
ments in the AnswerFinder system, although
most of them in the implementation sphere.
The actual functionality used this year is almost
exactly the same as last year, but many bugs
are fixed and the efficiency of the system has
improved much. This allows for more extensive
parameter tuning. Here we will also present an
error analysis of the current AnswerFinder sys-
tem.

1 Introduction

This is the fourth year the AnswerFinder
project is participating in the TREC question
answering track. The underlying research ques-
tion has been the same over the years: what
shallow semantic representations are best suit-
able for representing the meaning of questions
and sentences in the context of question answer-
ing?

The underlying framework of the An-
swerFinder system has remained the same (or
nearly the same). The system implements
a step-wise reduction of data. This means
that when AnswerFinder receives a question,
the document selection phase selects a small
number of relevant documents, out of which
a smaller number of relevant sentences are se-
lected during the sentence selection phase and
finally within these sentences a selection of pos-
sible answers is selected. The best of these an-
swers is then returned to the user.

So far, the focus has mainly been on the
sentence selection and the answer extraction
phases. In the sentence selection phase, sev-
eral sentence selection methods have been im-
plemented. Special attention has been paid to
metrics that abstract over the exact word order
used in sentences and questions. This is done

by considering grammatical relations or more
semantically oriented metrics.

In the answer extraction phase, a baseline ap-
proach based on the extraction of named enti-
ties from the expected answer type was com-
bined with a rule-based method based on shal-
low semantics. We used logical graphs, and the
answer extraction rules were learnt automati-
cally from a small corpus of questions and an-
swer sentences where the exact answers were
manually annotated. Some initial experiments
on this method were tried in the 2005 system.
In the 2006 system, the method was reimple-
mented from scratch to increase speed.

For the 2005 competition, the system had
been completely redesigned and rewritten
(Mollá and van Zaanen, 2006). Based on our
experiences from last year, we have decided to
again rewrite large parts. Mainly third party
tools that were integrated in the 2005 system
introduced many problems, including memory
leaks and random crashes. By isolating these
problematic components and rewriting parts of
these, the 2006 system is much more stable and
much faster.

The rest of the article is structured as fol-
lows. We will first describe an overview of the
AnswerFinder system in Sections 2 and 3, fol-
lowed by a discussion on AnswerFinder in this
year’s competition. Next, we will do an error
analysis of the system, followed by conclusions
and future work.

2 AnswerFinder overview

AnswerFinder is a question answering system
mainly developed for research in the use of shal-
low semantic representations of text. The un-
derlying rationale behind this research is the
aim for reducing the impact of paraphrases in
text. There are different ways to say the same
thing (or something very similar). When look-
ing for answers to a question, it is necessary to
reduce the impact of this.

The system consists of several phases, each
reducing the amount of data that needs to be
processed. This allows the system to perform
more complex and computationally intensive al-
gorithms further down the pipeline. Figure 1
gives a graphical representation of the system.
Each of the phases will be described in more
detail below.

Document
Collection

Question Document
Selection

Question
Analysis

Sentence
Selection

Question
Type

Answer
Selection

Final
Answer(s)

Figure 1: AnswerFinder system overview

Document selection When the system re-
ceives a question from the user, it will first
search for documents relevant to the question
in the full document collection. This is called
the document selection phase. The aim in this
phase is to only select relevant documents and
thereby removing most of the document collec-
tion for further processing.

In previous competitions, we have always re-
lied on the preselected documents provided by
NIST. NIST provides the ranking of the top
1,000 documents retrieved by the PRISE search
engine when using the target as the query. Last
year, we selected the best 50 documents from
the list of relevant documents.

This year, instead of having a list of docu-
ments per topic, as generated by NIST, we have
experimented with a list of documents per ques-
tion. The idea behind this is that the document
selection is better tuned to the question. The
list was generated using a document retrieval
(DR) system built using the indexing and re-
trieval methods of Xapian1 toolkit.

The list of relevant documents for each ques-
tion is found by taking the words in the question
as search keywords in the DR system. Addi-
tionally, since not every question contains the
topic words, the queries for the DR stage were
extended using the words of the topic.

1http://www.xapian.org

The introduction of the question words in the
query may, in some cases, introduce undesirable
information that could cause a query drift. To
avoid this, we implemented another document
selection system that performs a filtering pro-
cess that only includes a document when it was
found by the DR and was in the original NIST
list.

Sentence selection Once the relevant doc-
uments are selected during the document se-
lection phase, the sentence selection phase is
started. The documents are segmented, result-
ing in a set of sentences. The size of this set of
sentences is reduced by only selecting sentences
that are considered relevant to the question.

Several sentence selection methods have been
implemented. Each of the methods rely on a
distance metric between a question and a sen-
tence. The distance is computed for each of the
sentences and based on that metric the best n

are selected.
The simplest metric is word overlap. The

score of a sentence with respect to a question is
the number of words that can be found in both.
To reduce the impact of function words (such
as “the” and “and”), we do not take these into
account. The idea behind this metric is that a
sentence should say something about one of the
content words of the question. The answer will
probably not be in the sentence if the sentence
is about something else.

The next metric is called grammatical rela-
tion overlap. The underlying idea is the same
as that of word overlap. However, instead of
simply counting words in both question and
sentence, the number of grammatical relations
(Carroll et al., 1998) are counted. Grammati-
cal relations are dependency relations computed
by the Connexor Functional Dependency Parser
(Tapanainen and Järvinen, 1997). In addition
to having the same words in question and sen-
tence, they must also be in a same relation to
each other.

Additionally, previous versions of An-
swerFinder also implemented logic form
overlap. Logical forms can be generated from
the grammatical relations that are output
by Connexor. They are shallow semantic
representations, which abstract away even
more over the grammatical realisation of the
actual sentence and question. The advantage
of using this representation is that the impact
of paraphrasing is reduced. However, the
computation of the overlap was done using

SICStus Prolog, which seemed to introduce
memory leaks.

Instead of using the flat logical forms, in the
current version we use a different representation
of the same information. Last year, we intro-
duced logical graph overlap. The implementa-
tion used then was slow and this year, the algo-
rithm that computes the overlap between the
graphs has been completely redesigned. The
format of the logical graphs and the method
used is presented in Section 3.

Question analysis Once the relevant sen-
tences are selected, the actual answer selection
process starts. The extraction of possible an-
swers is discussed in the next section. After
the answers are extracted, an answer selection
step is performed. This selects the actual an-
swer (one or more) that will be returned to the
user. During the answer selection step, infor-
mation from the question is used. The question
is analysed during the question analysis phase
for this information.

The question analysis phase looks for the kind
of answer the question is asking for. The ques-
tion is matched against a list of regular ex-
pressions. Depending on which regular expres-
sion matches, it indicates the question type.
For example, if the regular expression “Where”
matches the question, the answer should be a
location.

Answer selection From the small set of rel-
evant sentences, possible answers are extracted.
Again, several answer extraction methods have
been implemented. At the moment, only the
logical graph overlap sentence selection method
finds possible answers while computing the sim-
ilarity score of a sentence with respect to a ques-
tion (the previous AnswerFinder system also
used the logical form overlap, which found pos-
sible answers as well).

In addition to the answers found by the sen-
tence selection method, we find named entities
in sentences and keep these as possible answers.
We are currently investigating the requirements
for the used named entity recogniser (Mollá et
al., 2006). However, for this competition, we
used GATE’s ANNIE named entity recogniser2,
like in previous competitions.

Finally, all found possible answers are con-
sidered. The scores associated with the answers
are computed. The logical graph overlap metric
assigns a score to the answer and answers found

2http://gate.ac.uk/

as named entities receive a score of one.
The answers are now matched against the

question type. The answer has to be of a type
that fits with what the question is asking for.
Within these answers, the one with the high-
est score is returned. For non-factoid questions,
all answers that match the correct question type
are returned. If no such answer exists, the ques-
tion type restriction is removed and all possible
answers are considered.

3 Logical Graphs

The main goal of using logical graphs is to pro-
vide a graph representation of the shallow se-
mantics of the sentences. By using a graph rep-
resentation it becomes possible to use graph-
based algorithms to compute the similarity be-
tween sentences and to find the answer to a
question (Mollá, 2006). A logical graph (LG)
is a directed, bipartite graph with two types of
vertices, concepts and relations.

Concepts Examples of concepts are objects
dog, table, events and states run, love, and
properties red, quick.

Relations Relations act as links between con-
cepts. To facilitate the production of the
LGs we have decided to use relation la-
bels that represent verb argument posi-
tions. Thus, the relation 1 indicates the
link to the first argument of a verb (that
is, what is usually a subject). The rela-
tion 2 indicates the link to the second argu-
ment of a verb (usually the direct object),
and so forth. Furthermore, relations intro-
duced by prepositions are labelled with the
prepositions themselves. Our relations are
therefore close to the syntactic structure.

By using graphs, the task of finding the com-
mon elements between a question and a text
sentence is reduced to the task of finding the
maximum common subgraph (MCS) between
the corresponding LGs. The similarity between
two sentences can be computed as the size of
the resulting MCS.

To find the exact answer we use the MCS
to automatically learn question-answering rules.
The method is basically the same as described
in our entry to TREC 2005 and is presented
in Figure 2. Given a question with LG q, an
answer candidate sentence with LG s and the
actual answer with LG a, the rules learnt have
the following structure:

Rp is the MCS of q and s, that is, MCS(q, s).

Re is the path between the projection of Rp in
s and the actual answer a.

Ra is the graph representation of the exact an-
swer, that is, a.

FOR every question/answerSentence pair
q = the graph of the question
s = the graph of the answer sentence
a = the graph of the exact answer
FOR every overlap O between q and s
FOR every path P between O and a

Build a rule R of the form
Rp = O
Re = P
Ra = a

Figure 2: Learning of graph rules

The rules learnt this way are generalised so
that they can be applied to unseen data. The
process to generalise rules takes advantage of
the two kinds of vertices. Basically, relation ver-
tices represent names of relations and we con-
sidered these to be important in the rule. Con-
sequently relation vertices are left unmodified in
the generalised rule. Concept vertices are gener-
alised by replacing them with generic variables,
except for a specific set of “stop concepts” which
are left unmodified. The list of stop concepts is
very small:

and, or, not, nor, if, otherwise, have,
be, become, do, make

The only difference between the system pre-
sented in TREC 2006 and that of TREC 2005 is
the implementation of the algorithm that com-
putes the MCS, which is based on the algorithm
developed by (Myaeng and López-López, 1992)
and summarised in Figure 3. The basic ap-
proach of the algorithm is to reduce the size
of the graphs in a preliminary stage by merg-
ing some of the vertices of the related associa-
tion graph. The problem of finding the MCS of
two graphs is NP-complete but, given that the
graphs are relatively small, the algorithm is fast
enough for the task of learning and applying the
QA rules.

The system used in TREC 2006 applies
the above method to logical graphs, but the
methodology is independent of the actual graph
formalism. We are exploring the use of other
graph representations, such as syntactic depen-
dencies.

1. Find the association graph GA

2. For each vertex (x, y) in GA, find the set
of incoming vertices IN(x,y) and outgoing
vertices OUT(x,y) in the original graphs

3. Split IN(x,y) and OUT(x,y) into sets of
compatible vertices

4. Propagate elements of IN(x,y) by explor-
ing the value of IN(z,w) when (x, y) is in
IN(z,w) for active vertices of GA; do sim-
ilar treatment with OUT(x,y)

5. Build a new association graph G′

A by tak-
ing each set of IN(x,y) and OUT(x,y) as
a vertex and the compatibility between
vertices as an edge

6. An MCS is a clique of G′

A

Figure 3: Sketch of the MCS algorithm
by (Myaeng and López-López, 1992)

4 TREC 2006

This year, our aim was to consolidate the im-
plementation we are current working on. The
results generated for last year’s competition re-
quired a lot of manual restarting of the system
due to memory leaks and bugs. This year we
concentrated on removing the components that
created these problems. The current system is
much faster and much more stable.

Unfortunately, while running the final test ex-
periments before submitting the actual results
for this year, we found a bug in the system in
the final answer selection phase. Due to time
constraints, we could not fix this bug in time,
which meant that the submitted results were
generated by the system with this bug.

It turns out that when a sentence contains
several possible answers, all of these answers are
counted as many times as there are answers in
that sentence. This means that the system has
a high preference for answers that occur in sen-
tences that also contain many other (possibly
incorrect) answers. In practice, even fewer sen-
tences were considered than were returned by
the sentence selection phase.

We will now describe the parameters of the
system that were used to generate the results
submitted to the TREC QA track and inves-
tigate how the results would be different when
the bug had been fixed. Next, we will take a
look at the error analysis of the system on the
TREC 2005 data.

4.1 Parameters

We have submitted three runs: lf10w10g5,
lf10w10g5l5, and lf10w20g5l5. These names al-
ready indicate the most important settings of
the system. The run tags can be divided into
different components. The first part of the run
“lf” indicates that we have used our own docu-
ment selection method. The “l” stands for Luiz
(Pizzato), who implemented the information re-
trieval part and the “f” stands for filtered. His
system filters the preselected documents pro-
vided by NIST.

The rest of the tags are composed of sentence
selection methods. The “w” stands for word
overlap sentence selection and the number indi-
cates the number of selected sentences based on
that metric. Similarly, “g” stands for grammat-
ical relation overlap and “l” is the logical graph
overlap sentence selection method.

Finding possible answers is done using logi-
cal graph overlap (when that sentence selection
method is used) and by applying the ANNIE
named entity recogniser to the remaining sen-
tences after sentence selection. The best answer
is then selected as described above.

4.2 Results

AnswerFinder currently concentrates on an-
swering factoid questions and therefore, we will
look at the results of these kinds of questions.
List type questions are answered by return-
ing all answers that are found in the sentences
that are selected and match the question type.
“Other” type questions are found by treating
“What is 〈topic〉?” as a list question. We do
not expect these types of questions to return
very useful answers.

Even when considering only factoid questions,
the results of the submitted runs are very disap-
pointing. Accuracies of 0.072, 0.042, and 0.040
are reported for runs lf10w10g5, lf10w10g5l5,
and lf10w20g5l5, respectively.

To be able to compare the submitted results
to the results of the system with the bug fixed
(and with the same settings), we have used Ken
Litkowski’s patterns to compute the results of
the runs. The results are shown in Table 1.
The “submitted” part in the table contains the
results we submitted to the competition, while
“fixed” are the results with the bug fixed.

The parameters used in the submitted runs
have been selected by performing a simple pa-
rameter search by hand on the 2005 question
answering track data. Due to time constraints,

Table 1: Results according to Ken Litkowski’s
patterns on TREC2006 data

submitted fixed
correct exact correct exact

lf10w10g5 8.5% 7.8% 9.8% 7.9%
lf10w10g5l5 5.4% 4.1% 6.8% 5.3%
lf10w20g5l5 4.9% 3.9% 7.0% 5.7%

only low values of the parameters have been
tried. Although one would expect that a larger
number of selected sentences would perform
better, initial parameter tuning indicated that
this is not the case. In the next section, we will
investigate this further.

The fixed results are actually more like what
we would expect. Fixing the bug increased
the results. However, the systems with logi-
cal graphs are clearly outperformed by the one
without. The main reason for that is the way
answers are combined. Logical graphs can gen-
erate answers with much higher scores than
those generated from named entities. This in-
dicates that a better method for consolidating
the scores of the answers needs to be designed.
Finally, as expected, the system that selects
the best sentences from 20 sentences selected
based on word overlap outperforms that which
is based on 10 sentences.

You have to keep in mind that we did our
parameter tuning beforehand and we used the
system with the bug in it. We cannot expect the
parameters to be optimal. Further parameter
tuning may improve the results greatly with the
current system. In fact, one would expect that
returning more (> 20) sentences after sentence
selection may result in higher scores.

5 Error analysis

In this section, we will take a closer look at
where the system looses the correct answers.
We will investigate all the phases in turn, start-
ing with the document selection phase, followed
by the sentence selection phases, and finally we
quickly look at the answer selection phase.

We can evaluate the results of the system af-
ter each phase by taking the full output of that
phase as an answer. For example, after docu-
ment selection, we concatenate the contents of
all selected documents and pretend that that is
the answer. We can then compute the score
using Ken Litkowski’s patterns (as substring

0

20

40

60

80

100

0 20 40 60 80 100%
of

q
u
es

ti
on

s
th

at
ca

n
st

il
l
b
e

an
sw

er
ed

of selected documents

PRISE and Xapian
Xapian
PRISE

Figure 4: Results after document selection

matching) and take that as the upper bound
of the percentage of questions that can still be
answered.

After each phase, we expect the score to go
down. The aim is to reduce the amount of data
as much as possible on one hand and keep the
score as high as possible on the other hand. In
other words, we want to reduce the data that
does not contain the answer.

5.1 Document selection

The first phase in AnswerFinder is the docu-
ment selection phase. From the 1,033,461 doc-
uments contained in the Aquaint corpus, only
a small selection can be handled in the next
phases due to time and memory constraints.

In Figure 4, we show the percentage of ques-
tions that can still be answered after docu-
ment selection with different selection meth-
ods. PRISE is the system provided by NIST,
whereas Xapian is the system developed for An-
swerFinder. The combination of PRISE and
Xapian is the list of documents found by the
Xapian system that are also found in the PRISE
list. The last system is used the current An-
swerFinder system.

As could be expected, increasing the number
of documents for further processing will increase
the upper bound of the number of questions
that can be answered. The combined Xapian
and PRISE systems outperform the PRISE sys-
tem by itself. However, after about 50 docu-
ments, all upper bounds do not increase much

anymore, whereas the amount of data that
needs to be considered in the next phase does
increase.

5.2 Sentence selection

The first two curves of Figure 5 indicate the per-
centage of questions that can still be answered
against the number of sentences selected using
word overlap. Here, we see that overall, we loose
several percent of answerable questions with re-
spect to document selection. This is obvious,
since we remove a lot of sentences from the set of
sentences contained in the selected documents.

Selecting from sentences from 50 documents
generates better results than selecting from 10
documents. However, this difference is rela-
tively small when only a small number of sen-
tences are selected. This difference can perhaps
be explained from the fact that the maximum
score when selecting 10 documents is just over
80% whereas after selecting 50 documents still
over 90% possible questions can be answered.

The third curve of Figure 5 indicates what
happens when we select 50 documents, from
these select 100 sentences using word overlap
and from these 100 sentences, select sentences
based on grammatical relation overlap. It is in-
teresting to see that selecting 100 sentences first
based on word overlap and then apply a new se-
lection based on grammatical relation overlap is
often better than directly reducing the number
of sentences based on word overlap only. This
shows the need for multi-stage sentence selec-

0

20

40

60

80

100

0 20 40 60 80 100%
of

q
u
es

ti
on

s
th

at
ca

n
st

il
l
b
e

an
sw

er
ed

of selected sentences

10 docs, word overlap
50 docs, word overlap

50 docs, 100 word overlap, gram rel

Figure 5: Results after sentence selection

tion. Similar effects occur with other settings
of the number of sentences for each sentence se-
lection method. Further work needs to go into
this aspect of sentence selection.

5.3 Answer selection

Once the sentence selection phase has been
done, the actual answers are found. Named en-
tities are found in the relevant sentences and if
logical graph sentence selection was used, the
found answers in these are taken into account
as well.

Table 2 illustrates the results of this phase.
The first column contains the percentage of
questions that can still be answered after sen-
tence selection. The next column has the per-
centage of questions that can be answered us-
ing the named entities and answers found by
the logical graphs. The third column gives the
results when the question type restriction is ap-
plied and the final column gives the actual sys-
tem output.

The results of the experiments including the
logical graphs show some interesting aspects of
the system. The first two runs perform similarly
up to the point where question information is
used to select answers. This is interesting. Ap-
parently, the logical graphs do not add many
more new answers. However, the scoring of the
answers found by the logical graphs is typically
higher than that of the named entities. The fact
that the full system results are quite similar in-
dicates that the answers found by logical graphs

are still quite good. A better integration of the
scores of the named entities and logical graphs
could possibly further increase the results.

Interestingly, selecting the best 5 sentences
from 20 sentences selected based on word over-
lap gives worse results. Apparently selecting
sentences using grammatical relations should
only be performed on relatively small collec-
tions. The rest of the third system simply per-
colates the slightly lower results.

From the final results, we see that in this case,
we lost about half of the answers (that were
still possible after document selection) to sen-
tence selection. Finding possible answers seems
to work quite well, although we still lost over
10%. The question type hardly lost us answer-
able questions, but the final selection should be
improved.

6 Conclusions and future work

The current implementation of AnswerFinder is
efficient and stable. All of the phases have dif-
ferent methods, which can be used in combina-
tion with each other.

The interaction between the algorithms in the
different phases needs to be investigated fur-
ther. In this article, we have included an er-
ror analysis, which indicates that choosing the
parameters for each of the phases is not trivial.
The choice for parameters is driven by two con-
flicting goals: reducing the amount of data and
keeping the number of questions that can be an-
swered as high as possible. We need to measure

Table 2: Results from sentence selection to final system output on TREC2005 data
sentence possible with full
selection answers question type system

lf10w10g5 44.7% 30.8% 28.2% 8.9%
lf10w10g5l5 44.7% 30.8% 28.2% 8.2%
lf10w20g5l5 43.8% 29.6% 27.0% 7.6%

the impact of selecting parameters on these two
different goals to come to the best setting for
the whole system.

At the moment, selecting the exact answers
from the set of possible answers is the phase
where most answers are lost. This is to be ex-
pected as it is in a sense the most difficult phase.
The final reduction to an exact answer has to be
made. Whereas previous phases are allowed to
include some spurious text for further process-
ing, the final phase does not have this luxury.
This is the phase that we will focus our work on
for the next competition.

Acknowledgements

This research is funded by the Australian
Research Council, ARC Discovery Grant no.
DP0450750.

References

John Carroll, Ted Briscoe, and Antonio Sanfil-
ippo. 1998. Parser evaluation: a survey and
a new proposal. In Proc. LREC98.

Diego Mollá and Menno van Zaanen. 2006.
Answerfinder at TREC 2005. In Ellen M.
Voorhees and Lori P. Buckland, editors, Proc.
TREC 2005. NIST.

Diego Mollá, Menno van Zaanen, and Luiz A.S.
Pizzato. 2006. Named entity recognition for
question answering. In Proceedings ALTW
2006, page 8 pages.

Diego Mollá. 2006. Learning of graph-
based question answering rules. In Proc.
HLT/NAACL 2006 Workshop on Graph Al-
gorithms for Natural Language Processing,
pages 37–44.

Sung H. Myaeng and Aurelio López-López.
1992. Conceptual graph matching: a flexible
algorithm and experiments. Journal of Ex-
perimentation and Theoretical Artificial In-
telligence, 4:107–126.

Pasi Tapanainen and Timo Järvinen. 1997. A
non-projective dependency parser. In Proc.
ANLP-97. ACL.

