
IBM in TREC2006 Enterprise Track

Jennifer Chu-Carroll Guillermo Averboch Pablo Duboue David Gondek
 J William Murdock John Prager

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{jencc, gaver, duboue, dgondek, murdockj, jprager}@us.ibm.com

Paul Hoffmann Janyce Wiebe

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA, USA
{hoffmanp, wiebe}@cs.pitt.edu

1. Introduction
In 2006, IBM participated for the first time in the Enterprise Track, submitting runs for both the discussion and
expert tasks. The Enterprise Track is intended to address information seeking tasks common in corporate settings
using information that is readily available on corporate intranets. Because of confidentiality issues, the corpus used
for this task is a snapshot of w3c.org as of June 2004, considering the W3C as a “corporation” that conducts its day-
to-day business on the web. This corpus consists of a heterogeneous set of data sources, including web pages,
mailing lists, code, wiki, etc. [Craswell et al. 2006]. The discussion task seeks e-mail messages that discuss the pro
or con of a given subject matter, while the expert task requires that experts for given topics be identified.

The main foci of our Enterprise Track experiments this year were on 1) problem-solving through adoption of
multiple discussion and expert finding strategies, 2) combination of structured, semi-structured, and unstructured
information for discussion and expert finding, 3) investigation of impact of select NLP techniques, such as multi-
document summarization for expert pseudo-document generation and pro/con sentiment identification and retrieval,
and 4) use of external resources for discussion and expert finding. The rest of this paper discusses the systems we
developed for Enterprise Track participation, focusing on the four aspects outlined above. We will also discuss
specific strategies we took to configure the systems for each of the four runs in both tasks, as well as their impact on
system performance.

2. Discussion Task
The discussion task utilizes only the lists section of w3c.org, which contains the archives of W3C mailing lists.
Given a topic, a ranked list of documents (e-mail messages) is returned in which an e-mail message contains at least
one pro or con statement regarding the topic in the “new content” portion of the message (i.e., the relevant pro/con
statements do not occur only in quoted text). In the discussion task, we focused our investigation on using multiple
problem-solving strategies, adopting NLP techniques for pro/con-based re-ranking of search results, and using
external resources for query analysis and expansion.

2.1. Corpus Processing
The lists portion of the w3c corpus was processed to identify the author, subject, and new vs. quoted texts for each
e-mail message. A corresponding new document is constructed that contains the author, subject, and new text
portion of each e-mail message. These documents form the corpus from which three keyword indices are built for
the three search engines we employ in our system. In addition, each document is annotated with our pro/con
sentiment analyzer and the annotated documents are stored for runtime use by the IBM pro/con assessor component.

2.2. Runtime System Architecture and Components
Figure 1 shows the architecture of our pro/con discussion retrieval system. Given a topic, which consists of a title, a
description, and a narrative, our query analysis component transforms the topic into one or more generic abstract
search query representations. The document retrieval module is implemented as a pluggable framework that accepts

query generator and search engine pairs to return document hit lists given the abstract query representations. The hit
lists returned by the retrieval engines are combined using a linear combination algorithm and additional potentially
relevant documents are included by the e-mail-thread-based augmenter. The resulting hit list contains topic-relevant
documents. The documents in the hit list are then evaluated for containment of pro/con statements again in a
pluggable pro/con re-ranking framework which accepts assessors that rescore the original document list. The
rescored lists are again combined to form the final ranked document list. The rest of this section describes select key
system components in further detail.

Lucene
Search

Juru
Search

Indri
Search

Query
Analysis

IBM
Pro/Con
Assessor

UPitt
Pro/Con
Assessor

Hit List Combiner

Juru Query
Generator

Lucene Query
Generator

Indri Query
Generator

Document Retrieval

Pro/Con Re-ranking

Combiner

Thread-Based Hit List Augmenter

Figure 1 Architecture for Pro/Con Discussion Retrieval System

2.2.1. Query Analysis
A discussion search topic contains a title, a description, and a narrative. Our system makes use of the title and
description fields of the topic to generate one or more abstract query representations from which specific search
engine queries can be generated. Aside from standard stopword removal, we perform query expansion as well as
identify important keywords and their respective salience in an iterative fashion through the use of an external
domain-specific dictionary.

Our domain-specific dictionary was developed based primarily on FOLDOC,1 an online dictionary of computing
terms containing more than 14,000 entries. Entries in FOLDOC contain a natural language description of the terms
being defined and may also include hyperlinks to other entries in the dictionary. We automatically processed these
definitions in FOLDOC and extracted, for each term, its acronym (or expansion if the term is an acronym), if any,
and the system’s confidence that the acronym and expansion are co-referents of one another. In addition, we extract
phrases highly associated with each entry term. We further augment the dictionary with terms of interest that are not
present in FOLDOC, in particular, topics addressed by W3C standards.

Our query analysis process employs an iterative procedure that produces one or more abstract query representations
based on dictionary lookup and a set of heuristics. An initial abstract query representation contains terms in the title
and description fields in the topic, after stopword removal. Based on an n-gram (in our current implementation n=3)
dictionary lookup, the abstract query representation may be augmented/duplicated in the following ways. First, all
phrases present in the dictionary are marked as “phrase”. Second, all dictionary terms/phrases in the query are
marked as “required”. Third, all high-confidence acronyms/expansions for terms/phrases in the query are returned
and a duplicate abstract query representation is constructed in which the acronym/expansion substitutes the original

1 http://www.foldoc.org. Content downloadable from http://foldoc.org/source.html.

http://www.foldoc.org/
http://foldoc.org/source.html

term in the query. The resulting set of abstract query representations forms query representations of high salience.
In the second iteration, a set of query representations of medium salience is generated by removing the “required”
and “phrase” markers on all query terms from the high-salience set. The third and fourth iterations are identical to
the first and second, except that low-confidence acronyms/expansions are returned from the dictionary.

This ranked set of abstract query representations is the output of our query analysis component, and is used by
downstream document retrieval components to generate search engine specific queries.

2.2.2. Document Retrieval
As discussed previously, our document retrieval component is a pluggable framework that accepts one or more
query generator and search engine pairs. In our TREC system, we employed three publicly available, off-the-shelf
search engines: IBM’s own Juru search engine2 [Carmel et al., 2002], the Lucene search engine3 [Hatcher and
Gospodnetic, 2004], and UMass/CMU’s Indri search engine 4 [Strohman et al, 2005]. We developed query
generation components for each of these search engines in an attempt to generate search queries that best leverage
the expressiveness of the query languages of the underlying search engine.

We hypothesized that using multiple search engines and merging their hit lists will result in better performance
because the search engines support different query capabilities and employ different ranking algorithms. For
instance, Indri supports a window operator (either ordered or unordered) for grouping select query terms as well as
weights associated with terms, while Juru and its extension JuruXML support search over semantic types as well as
keywords.5 Furthermore, Indri supports pseudo-relevance feedback, while the other two search engines do not,6
leading to additional diversity in the documents in the hit lists. Typically, each search engine will use abstract query
representations starting from those in the highest salience set. If insufficient documents are retrieved after executing
queries at one salience level, then the query representations in the next salience level are used. Once each search
engine assembles its hit list, they are combined and augmented as described in the next section.

2.2.3. Hit List Combination and Augmentation
Our hit list combination component adopts a linear combination algorithm trained to optimally combine hit lists
from multiple search engines. The weights were trained on the TREC 2005 discussion task dataset using the topic
relevance judgments. In order to avoid overfitting, grid search was used to optimize for MAP score and the solution
was checked for stability.

Since the indexed portion of each e-mail message contains only the author, subject, and new text section of the
message, we developed an e-mail-thread-based augmentation component to ensure that all documents in the same
thread as a document in the hit list are also included for pro/con assessment. We made use of the e-mail-threading
information made available by William Webber [Webber, 2005] and appended all additional documents found
through this mechanism at the end of the hit list.

2.2.4. Pro/Con Assessment
Our pro/con assessment component is again designed as a pluggable framework for experimenting with and
combining multiple assessment algorithms. In our TREC system, two assessment components were used, a rule-
based pro/con sentiment recognizer developed at IBM, and a statistical topic independent pro/con recognizer
developed at the University of Pittsburgh.

The IBM pro/con assessor makes use of a rule-based sentiment recognizer built on top of ESG, a slot-grammar
parser [McCord, 1990]. These rules are developed through manual compilation of 700+ sentiment keywords such as

2 Available as part of the open source UIMA framework, http://sourceforge.net/projects/uima-framework
3 http://lucene.apache.org
4 http://www.lemurproject.org/indri/
5 We did not make use of this semantic search feature of Juru in our TREC system, but we plan to exploit this
functionality for discussion search in the future.
6 It is, of course, possible to implement some pseudo-relevance feedback mechanism for use with the other two
engines. However, because of time constraints, we did not explore this option.

http://sourceforge.net/projects/uima-framework
http://lucene.apache.org/
http://www.lemurproject.org/indri/

“deficient” and “compelling”, and development of a rule set that makes sentiment annotations based on these
keywords in the context of a parse tree. A sample sentiment annotation is shown in the following:

<REL name="Sentiment">
 <RNG type="Obj">HTTP with simple XML</RNG> may be most
 <DMN type="SentimentKeyword">appropriate</DMN>
</REL>

Given a document, our assessment component identifies text snippets relevant to the topic and determines the
pro/con relevance of the document based on the proximity of the sentiment annotations and the relevant text snippets.
Other features such as depth of e-mail message in a thread chain, presence of relevant pro/con statements in the
quoted texts portion of a document, as well as the frequency that passages in the current document are quoted by
others, are also taken into account in the determining the final ranking of the documents.

The UPitt topic independent pro/con classifier takes as input a document and returns a confidence score on whether
or not it contains a pro/con argument. The classifier uses the BoosTexter AdaBoost.MH machine learning algorithm
[Schapire and Singer, 2000] with two features. The first feature is a bag-of-words representation of words with the
following parts of speech: adverb, verb, noun, pronoun, adjective, modal, existential there, and number. The other
feature is a bag-of-words representation of pro/con and non-pro/con extraction patterns generated using AutoSlog-
TS from the Sundance/AutoSlog package [Riloff and Phillips, 2004]. AutoSlog-TS takes a set of positive examples
(documents judged as pro/con in the TREC 2005 dataset) and negative examples (topic-relevant but not pro/con
documents), and generates extraction patterns, ranked in the order of their association with the positive examples
(most extraction pattern types used are listed in Figure 1 of [Riloff et al., 2006]). During development, the classifier
was cross-validated with the TREC 2005 discussion task dataset. For our TREC 2006 submission, all topic-relevant
documents in the 2005 dataset were used to train the classifier.

The ranked hit lists from the assessment components are again combined using a linear combination algorithm to
generate the system’s final ranked list of documents.

2.3. Evaluation Results
We submitted four runs to the discussion task. For all runs, FOLDOC was used in the query analysis process for
query expansion. When the description field is used, only terms found in FOLDOC are included in the query. The
key characteristics of the four runs are as follows:

• IBM06JAQ: This run used only the title field of the query. For document retrieval, only the Juru search
engine is used, and for pro/con assessment, only the IBM pro/con assessor was used.

• IBM06JAQD: This run is identical to IBM06JAQ except that both the title and description of the query
were used.

• IBM06JILAQD: This run used both titles and descriptions. For document retrieval, all three search engines
were used, but only the IBM pro/con assessor was used for sentiment analysis.

• IBM06JILAPQD: This run is identical to IBM06JILAQD, except that both pro/con assessors were used to
re-rank the documents returned by the search engines.

In order to better determine the contributions of individual components, we ran three additional configurations of the
system which were not included in our submission, as follows:

• JQ: This run used only the title field of the query. For document retrieval, only the Juru search engine was
used and no pro/con sentiment analysis was performed.

• JILQ: This run is identical to JQ except that for document retrieval, all three search engines were used.
• JILQD: This run is identical to JILQ except that both the title and description were used.

Error! Not a valid bookmark self-reference. shows the results of our runs. The top four rows are the results of our
official submitted runs while the last three are additional runs performed post TREC. The columns labeled “topic”
measure topic relevance of the hit list, while those labeled “p/c” additionally take into account the presence of
pro/con statements in the document. As expected, the run IBM06JILAPQD in which both titles and descriptions
were used in query analysis, and where all available search engines and pro/con assessors were employed and their
results merged, outperformed other configurations of the system in almost all cases. Our results show that 1)
leveraging information provided in the description field of the topic for query analysis results in more effective
search queries than using the title alone (JILQD vs. JILQ; rows 7 and 6), 2) effective combining hit lists from

multiple search engines can substantially outperform using a one search engine alone (JQ vs. JILQ; rows 5 and 6; as
well as IBM06JAQD vs. IBM06JILAQD; rows 2 and 3), 3) leveraging NLP technologies to perform pro/con
analysis on the resulting hit list results in further substantial improvement in performance (JILQD vs.
IBM06JILAQD; rows 7 and 3), and 4) adopting multiple pro/con assessment components can further improve
system performance compared with single strategy pro/con analysis (IBM06JILAPQD vs. IBM06JILAQD; rows 4
and 3). Interestingly, when including the pro/con assessment components in the pipeline, the scores for both topic
relevance and pro/con relevance are improved. We hypothesize that this is partially due to the fact that the IBM
pro/con assessor performs finer-grained topic relevance analysis at the text snippet level, thus affecting the relative
ranked order of topic relevant documents as a side effect of pro/con re-ranking.

Table 1 Discussion Task Results

MAP R-prec bpref P@10 P@100 Run Tag
topic p/c topic p/c topic p/c topic p/c topic p/c

IBM06JAQ 0.3146 0.2030 0.3527 0.2481 0.3572 0.2337 0.5440 0.3391 0.3998 0.2487
IBM06JAQD 0.3069 0.1967 0.3493 0.2485 0.3499 0.2336 0.5400 0.3283 0.4054 0.2467
IBM06JILAQD 0.3305 0.2004 0.3709 0.2509 0.3700 0.2294 0.5600 0.3326 0.4184 0.2493
IBM06JILAPQD 0.3310 0.2021 0.3717 0.2558 0.3709 0.2323 0.5640 0.3391 0.4186 0.2515
JQ 0.2745 0.1654 0.3257 0.2209 0.3218 0.2082 0.4950 0.2800 0.3590 0.2038
JILQ 0.3017 0.1762 0.3524 0.2288 0.3472 0.2083 0.5360 0.2978 0.3844 0.2250
JILQD 0.3095 0.1835 0.3621 0.2422 0.3559 0.2174 0.5360 0.3065 0.3998 0.2359

3. Expert Task
For the expert task, a system is expected to return a ranked list of up to 100 people from a list of 1092 candidates
who it considers experts for a given topic. The system may make use of the entire W3C corpus as well as any
external resources in determining the ranked list of experts. The expertise of each expert, however, should be
justified by up to 20 documents from the W3C corpus. In the expert task, we focused our investigation on using
multiple problem-solving strategies, adopting NLP techniques for expertise-driven information extraction and
pseudo-document generation, exploiting use of structured, semi-structured, and unstructured information on expert
finding, and augmenting strategies that make use of the W3C corpus with those that consult external resources.

Figure 2 shows the architecture of our multi-agent expert search system. At the heart of the system there are six
agents each adopting different problem-solving strategies to identify zero or more experts for a given topic. Three
of the agents adopt the pseudo-document approach, which is inspired by the top-performing system from TREC
2005 in which a pseudo-document is generated for each candidate expert to represent their expertise [Fu et al., 2006];
although the strategies we adopted for pseudo-document generation differ from theirs substantially. Our three
pseudo-document based agents employ different algorithms/components for ranking expertise. The Google Scholar
agent makes use of the eponymous external resource to identify experts based on publications. The Expert
MetaData agent identifies experts based on expertise information extracted from semi-structured W3C standards
documents. Finally, the EKDB agent leverages structured data extracted from texts using task-specific relations for
expert identification. Our expert search system leverages the same query analysis component as described in
Section 2.2.1, as well as the machine learning based hit list combination component described in Section 2.2.3 to
merge the results produced by the six agents. This hit list optionally goes through two heuristic-based post-
processors. The first post-processor affects the expert ranked list in which experts in the original hit list may be re-
ordered based on certain external criteria. The second post-processor affects the support document ranked list for
each expert in that a support document may be removed because it was deemed non-supportive, or that the support
documents may be re-ordered based on select heuristics.

Google
Scholar
Agent

EKDB
Agent

Pseudo Doc Agt

summ

5w 50w

full

20t 100t

Lucene
Pseudo Doc Agt

summ

5w 50w

20t 100t

Indri
Pseudo Doc Agt

5w 50w

20t 100t

Vector

Query

Hit List Combiner

Heuristic-Based Expert Post-Processor

Heuristic-Based Support Document Post-Processor

Expert
MetaData

Agent

Query Analyzer

Figure 2 Expert Search System Architecture

3.1. Corpus Processing and Pseudo-Document Generation
Our pseudo-document generation process begins with identifying instances of the candidate experts in documents.
To increase the recall of candidate identification, we performed accent normalization on the corpus and developed a
set of heuristics for name variation generation, including dropping of middle names and replacing first names with
first initials. We adopted four approaches to generate six sets of pseudo-documents in which each set contains one
document for each candidate identified in the corpus as follows:

• Windowing approach, in which the n sentences before and after each mention of a candidate is selected
and appended to the candidate’s pseudo-document. We used n=5 and n=50 in our system.

• Top sentence approach, in which the first n sentences of a document in which a candidate is mentioned is
selected and appended to the candidate’s pseudo-document. We used n=20 and n=100 in our system.

• Whole document approach, in which all documents in which a candidate is mentioned are concatenated
to form the pseudo-document.

• Summarization approach, in which MEAD 7 [Radev et al., 2003], a query-based multi-document
summarizer was used to generate the pseudo-document for each candidate.

To experiment with different search strategies, we built two search indices for each pseudo-document set, one for
Lucene and one for Indri. In addition, we also built a collection of Lucene document vectors for each pseudo-
document set.

We also performed additional corpus processing for use by the other agents. The lists and www portions of the
corpus were analyzed using a set of named entity and relation recognizers. The named entity recognizers identify
generic entity types such as Person, Date, Organization, and Country, as well as domain specific types such as
EnterpriseMember and ComputingTopic. The relation recognizers cover two relations of interest for this task,
ExpertIn and AuthorOf. The former identifies text fragments that are indicative of expertise, such as “James Larson,
W3C Voice Browser Working Group co-Chair”, and associates the person and topic with an ExpertIn relation, while
the latter pairs all e-mail authors and subjects. The entities and relations in this annotated corpus are stored in our
Extracted Knowledge DataBase (EKDB) [Ferrucci et al., 2006] for use by the EKDB agent, and all the keywords
and annotations are used to generate a JuruXML semantic search index which was used in our manual submission.

Finally, we automatically identified a set of W3C-specific standards documents which, for the most part, have a
semi-structured common format. We processed these documents to extract document title, document ID, editorship,

7 Available for download at http://www.summarization.com/mead/

and authorship information. We stored this information in as standards document metadata, to be used by our Expert
MetaData agent.

3.2. Runtime Components

3.2.1. Pseudo-Document Agents
The key idea behind the pseudo-document agents is to construct, for each candidate expert, a document that
represents his/her expertise. Given a topic, the agent compares the topic to the pseudo-documents and returns
experts whose pseudo-document best matches the topic. We experimented with a number of heuristics for pseudo-
document generation as described in Section 3.1. The windowing approach hypothesizes that one’s expertise
commonly occurs in close proximity to mentions of his/her name. The top sentence approach hypothesizes that
one’s expertise is indicated by the topic of the document, which is typically established at the beginning of the
document. The whole document approach targets a recall-oriented strategy. Finally, the summarization approach
experiments with the utility of a multi-document summarization system for capturing the expertise of a given person.

Figure 2 shows the configuration of our three pseudo-document agents, each utilizing a different retrieval strategy,
namely Lucene, Indri, and vector similarity, on each of the pseudo-document sets generated.8 Given a query, a
pseudo-document agent sends the query to each pseudo-document index and combines their result to generate its
expert hit list. The supporting document list is generated by issuing the same topic to a regular document index and
selecting from the most relevant documents those in which the candidate expert occurs.

3.2.2. EKDB Agent
As discussed earlier, we store in our Extracted Knowledge DataBase (EKDB) entities and relations extracted from
our automatically annotated corpus. In addition, the EKDB records provenance information which includes
documents from which entities and relations were extracted. Of the two relations used for this task, ExpertIn, which
indicates direct assertions of expertise, is used as high-confidence evidence for expertise, while AuthorOf, which
indicates authorship of e-mail subjects, is used as low-confidence evidence for expertise.

The EKDB agent generates database queries based on the abstract query representations produced by the query
analysis component, and experts are scored based on the system’s confidence level as indicated by the ExpertIn or
AuthorOf relation, and the salience level of the abstract query representation used to generate the database queries.
Furthermore, documents from which the relation was extracted are used as supporting evidence. If the same expert is
found from multiple relations and/or multiple queries, the confidence score is boosted and the confidence values
assigned to the supporting documents are also scaled accordingly.

3.2.3. Expert MetaData Agent
The Expert MetaData agent targets high-precision performance by basing expert identification on highly reliable
cues for expertise indication. In our TREC system, it made use of the metadata extracted from W3C standards
documents in which editorship and authorship of a standards document are considered definite and highly reliable
indications of expertise, respectively.

Given a topic, all standards documents potentially relevant to the topic are retrieved. Linguistic heuristics are then
applied to determine topic subsumption and thus the degree of match between the query topic and the document
topic. The editors and authors of relevant documents are extracted and scored based on the degree of topic match,
while the standards document is used as support for the candidate’s expertise. Multiple pieces of evidence for the
same expert are combined to arrive at a final ranked expert list.

3.2.4. Google Scholar Agent
An external resource we exploited in our expert search system is Google Scholar,9 which supports search over
scholarly publications. For a given query topic (issued in quotes to Google Scholar), we extract the author list and

8 We were unable to generate some of the indices for larger pseudo-document sets because of memory constraints.
9 http://scholar.google.com

http://scholar.google.com/

the number of citations for each of the top 20 publications returned. An author’s expertise in the topic is computed
based on factors such as the number of publications retrieved, the number of citations as well as the author’s order in
the author list for each publication. The ranked list is then filtered using the candidate expert list provided to return
only eligible experts.

3.2.5. Expert Post-Processor
We developed an affinity-based expert re-ranker to perform post-hoc re-ordering of less confident candidates in the
expert list, using an affinity metric based on the hypothesis that experts of the same topic tend to co-occur in
documents. The algorithm initially populates a new hit list with the top 5 experts from the original list, and
iteratively adds experts to the hit list by selecting those experts whose scores representing their affinity with those
already on the hit list exceed a certain threshold.

3.2.6. Supporting Document Post-Processors
We developed two types of supporting document post-processors, one that removes supporting documents from the
list, and two that re-ranks the documents. The acknowledgments document filter removes those supporting
documents in which the candidate’s name appears only in the acknowledgments section of the document. The
duplicate document remover increases the diversity of supporting documents by eliminating all duplicates and near-
duplicates in the document list using a vector similarity based measure. Finally, the EKDB re-ranker considers
documents that support the ExpertIn and AuthorOf relations in the EKDB to be more reliable supporting documents
than others, and uses this information to re-rank supporting documents returned by other agents.

3.3. Evaluation Results
We submitted four runs to the expert task. Three of our runs are automatic, labeled IBM06QO, IBM06PR, and
IBM06EXP. All three runs used all of the four agents described above, with different query processing and support
document selection strategies. The run labeled IBM06MA was partially manual. The key characteristics of our
automatic runs are described below:

• IBM06QO: This run used only the title field of the topic. FOLDOC was used for query expansion.
• IBM06PR: This run used both the title and description fields of the topic in query analysis Select agent

parameters were tuned to target higher precision. It also included two additional components: the EKDB
document re-ranker and the acknowledgments filter.

• IBM06EXP: This run also used both the title and description fields of the topic. It included two additional
components on top of the IBM06QO configuration: the affinity-based expert re-ranker and the duplicate
document remover.

Table 2 Expert Task Results

MAP R-prec bpref P@5 P@10 Run Tag
exp sup exp sup exp sup exp sup exp sup

IBM06QO 0.4536 0.2863 0.4519 0.3303 0.4402 0.3711 0.6653 0.4857 0.5408 0.4041
IBM06PR 0.4455 0.2789 0.4442 0.3211 0.4306 0.3522 0.6531 0.4776 0.5265 0.3939
IBM06EXP 0.4357 0.2730 0.4434 0.3201 0.4338 0.3465 0.6531 0.4816 0.5469 0.4041
IBM06MA 0.5235 0.3346 0.5192 0.3829 0.5180 0.4135 0.7673 0.5878 0.6449 0.4878

Table 2 shows the results of our submitted runs. For each performance measure reported, the score under column
heading “exp” represents score when considering only expert correctness, while that under “sup” takes into account
whether or not a correct supporting document was found. For all measures, the manual run (IBM06MA) received the
highest score. The highest scoring of the three automatic runs for each measure is boldfaced. It is worth noting that
our two best scoring runs, IBM06MA and IBM06QO, were our priorities 3 and 4 runs, and therefore were not
included in the results pooled for judging.

Our results show that IBM06QO achieved the highest automatic score in almost all cases except for precision@10.
The IBM06PR run, which targeted higher precision, did not outperform either of the two systems, even using the
P@5 and P@10 measures. We are currently running finer grained experiments to determine the contribution (or

lack thereof) of the individual components included in this run. The contributions of components in the IBM06EXP
run are easier to determine. The affinity-based expert re-ranker increased precision@10 but fared worse in all other
measures. The result for the duplicate document remover is somewhat counter-intuitive. In theory, with the binary
supporting document metric adopted, the greater diversity in supporting documents produced by the duplicate
document remover should result in an increase performance. However, this does not appear to be the case when
comparing the scores for IBM06EXP and IBM06QO. In particular, while there is an increase in expert only score in
P@10, the scores with supporting documents are identical for P@10 for the two runs. This is probably due to
incomplete judgment for supporting documents.

The goals of our manual run were twofold. First, we wanted to evaluate the potential of incorporating semantic
search capabilities into an automatic expert finding system. Since automatic semantic search query construction
from descriptions and narratives is a difficult task, our manual run consists of having an expert manually construct
queries that leverage our semantic annotations to retrieve more relevant documents. Second, we were interested in
evaluating the effectiveness of SAW II, an interactive system that supports semantic query construction, refinement,
and results exploration, for this problem-solving task. Figure 3 shows a screenshot of SAW II, illustrating query
construction and refinement support (top left panel), result browsing support (top right panel), and detailed
document drill down support (bottom panel).

Figure 3 SAW II Screenshot

The query shown in Figure 3 demonstrates how we leveraged our semantic annotations to answer topic EX53 on
W3C translation policy. By including the Nation entity type, which matches both the nominal and adjectival forms
of country names, in the query, the returned documents, which must have included a country or language, were
much more on topic. In our submitted manual run, we targeted around 5 manually identified experts for each topic.
The rest of the hit list was augmented with results from the IBM06PR run.

4. Conclusions
This paper described our efforts in this year’s Enterprise Track discussion and expert tasks. Our discussion task
results show that our conservative query expansion strategy focusing on FOLDOC-identified domain-specific terms
improves performance slightly, while combining the results from multiple search engines substantially outperforms
single search engine results. Finally, our NLP based pro/con assessment components again results in substantial
performance improvement. On the expert task, our current run results are somewhat less conclusive. We are
currently in the process of running further experiments and ablation studies to determine the contributions of
individual agents and components.

5. Acknowledgments
We would like to thank Brad Andrews, Eric Brown, David Ferrucci, Sarah Luger, Rajen Subba, and Mikalai
Yatskavich for helpful discussions and/or for their help in the development of a heldout test set for the expert task.
This work was supposed in part by the Disruptive Technology Office (DTO)’s Advanced Question Answering for
Intelligence (AQUAINT) program under contract number H98230-04-C-1577.

6. References
David Carmel, Einat Amitay, Miki Herscovici, Yoelle Maarek, Yael Petruschka, and Aya Soffer. Juru at TREC-10 –
Experiments with index pruning. Proceedings of the 10th Text REtrieval Conference, 2002.

Nick Craswell, Arjen de Vries, and Ian Soboroff. Overview of the TREC-2005 Enterprise Track. Proceedings of the
14th Text REtrieval Conference, 2006.

David Ferrucci, J. William Murdock, and Christopher Welty. Overview of Component Services for Knowledge
Integration in UIMA. IBM Research Report RC24074, 2006.

Yupeng Fu, Wei Yu, Yize Li, Yiqun Liu, Min Zhang, and Shaoping Ma. THUIR at TREC 2005: Enterprise Track.
Proceedings of the 14th Text REtrieval Conference, 2006.

Erik Hatcher and Otis Gospodnetic. Lucene in Action. Manning Publications. 2004.

Michael C. McCord. Slot Grammar: A System for Simpler Construction of Practical Natural Language Grammars.
In Natural Language and Logic: International Scientific Symposium, Springer Verlag LNCS, 1990.

Dragomir R. Radev, Simone Teufel, Joracio Saggion, Wai Lam, John Blitzer, Jong Qi, Arda Celebi, Danyu Liu, and
Elliott Drabek. Evaluation challenges in large-scale multi-document summarization: the MEAD project.
Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), 2003.

Ellen Riloff and William Phillips. An Introduction to the Sundance and AutoSlog Systems. Technical Report
UUCS-04-015, School of Computing, University of Utah. 2004.

Ellen Riloff, Siddharth Patwardhan, and Janyce Wiebe. Feature subsumption for opinion analysis. Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2006.

Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for text categorization. Machine
Learning, 39(2/3), 2000.

T. Strohman, D. Metzler, H. Turtle, and W.B. Croft. Indri: A language-model based search engine for complex
queries. UMass Amherst CIIR Technical Report IR-407, 2005.

William Webber. Thread structure of w3c lists. http://www.cs.mu.oz.au/~wew/w3c-lists-threads-w3w.tar.gz. 2005.

http://www.cs.mu.oz.au/~wew/w3c-lists-threads-w3w.tar.gz

	Introduction
	Discussion Task
	Corpus Processing
	Runtime System Architecture and Components
	Query Analysis
	Document Retrieval
	Hit List Combination and Augmentation
	Pro/Con Assessment

	Evaluation Results

	Expert Task
	Corpus Processing and Pseudo-Document Generation
	Runtime Components
	Pseudo-Document Agents
	EKDB Agent
	Expert MetaData Agent
	Google Scholar Agent
	Expert Post-Processor
	Supporting Document Post-Processors

	Evaluation Results

	Conclusions
	Acknowledgments
	References

