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1. Introduction 
In 2006, IBM participated for the first time in the Enterprise Track, submitting runs for both the discussion and 
expert tasks.  The Enterprise Track is intended to address information seeking tasks common in corporate settings 
using information that is readily available on corporate intranets.  Because of confidentiality issues, the corpus used 
for this task is a snapshot of w3c.org as of June 2004, considering the W3C as a “corporation” that conducts its day-
to-day business on the web.  This corpus consists of a heterogeneous set of data sources, including web pages, 
mailing lists, code, wiki, etc. [Craswell et al. 2006].  The discussion task seeks e-mail messages that discuss the pro 
or con of a given subject matter, while the expert task requires that experts for given topics be identified. 
 
The main foci of our Enterprise Track experiments this year were on 1) problem-solving through adoption of 
multiple discussion and expert finding strategies, 2) combination of structured, semi-structured, and unstructured 
information for discussion and expert finding, 3) investigation of impact of select NLP techniques, such as multi-
document summarization for expert pseudo-document generation and pro/con sentiment identification and retrieval, 
and 4) use of external resources for discussion and expert finding.  The rest of this paper discusses the systems we 
developed for Enterprise Track participation, focusing on the four aspects outlined above.  We will also discuss 
specific strategies we took to configure the systems for each of the four runs in both tasks, as well as their impact on 
system performance.  

2. Discussion Task 
The discussion task utilizes only the lists section of w3c.org, which contains the archives of W3C mailing lists.  
Given a topic, a ranked list of documents (e-mail messages) is returned in which an e-mail message contains at least 
one pro or con statement regarding the topic in the “new content” portion of the message (i.e., the relevant pro/con 
statements do not occur only in quoted text).  In the discussion task, we focused our investigation on using multiple 
problem-solving strategies, adopting NLP techniques for pro/con-based re-ranking of search results, and using 
external resources for query analysis and expansion. 

2.1. Corpus Processing 
The lists portion of the w3c corpus was processed to identify the author, subject, and new vs. quoted texts for each 
e-mail message.  A corresponding new document is constructed that contains the author, subject, and new text 
portion of each e-mail message.  These documents form the corpus from which three keyword indices are built for 
the three search engines we employ in our system.  In addition, each document is annotated with our pro/con 
sentiment analyzer and the annotated documents are stored for runtime use by the IBM pro/con assessor component.   

2.2. Runtime System Architecture and Components 
Figure 1 shows the architecture of our pro/con discussion retrieval system.  Given a topic, which consists of a title, a 
description, and a narrative, our query analysis component transforms the topic into one or more generic abstract 
search query representations.  The document retrieval module is implemented as a pluggable framework that accepts 



query generator and search engine pairs to return document hit lists given the abstract query representations. The hit 
lists returned by the retrieval engines are combined using a linear combination algorithm and additional potentially 
relevant documents are included by the e-mail-thread-based augmenter.  The resulting hit list contains topic-relevant 
documents.  The documents in the hit list are then evaluated for containment of pro/con statements again in a 
pluggable pro/con re-ranking framework which accepts assessors that rescore the original document list. The 
rescored lists are again combined to form the final ranked document list. The rest of this section describes select key 
system components in further detail. 
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Figure 1  Architecture for Pro/Con Discussion Retrieval System 

2.2.1. Query Analysis 
A discussion search topic contains a title, a description, and a narrative. Our system makes use of the title and 
description fields of the topic to generate one or more abstract query representations from which specific search 
engine queries can be generated.  Aside from standard stopword removal, we perform query expansion as well as 
identify important keywords and their respective salience in an iterative fashion through the use of an external 
domain-specific dictionary. 
 
Our domain-specific dictionary was developed based primarily on FOLDOC,1 an online dictionary of computing 
terms containing more than 14,000 entries. Entries in FOLDOC contain a natural language description of the terms 
being defined and may also include hyperlinks to other entries in the dictionary.  We automatically processed these 
definitions in FOLDOC and extracted, for each term, its acronym (or expansion if the term is an acronym), if any, 
and the system’s confidence that the acronym and expansion are co-referents of one another. In addition, we extract 
phrases highly associated with each entry term.  We further augment the dictionary with terms of interest that are not 
present in FOLDOC, in particular, topics addressed by W3C standards. 
 
Our query analysis process employs an iterative procedure that produces one or more abstract query representations 
based on dictionary lookup and a set of heuristics. An initial abstract query representation contains terms in the title 
and description fields in the topic, after stopword removal.  Based on an n-gram (in our current implementation n=3) 
dictionary lookup, the abstract query representation may be augmented/duplicated in the following ways. First, all 
phrases present in the dictionary are marked as “phrase”. Second, all dictionary terms/phrases in the query are 
marked as “required”.  Third, all high-confidence acronyms/expansions for terms/phrases in the query are returned 
and a duplicate abstract query representation is constructed in which the acronym/expansion substitutes the original 

                                                 
1 http://www.foldoc.org. Content downloadable from http://foldoc.org/source.html. 
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term in the query.  The resulting set of abstract query representations forms query representations of high salience.  
In the second iteration, a set of query representations of medium salience is generated by removing the “required” 
and “phrase” markers on all query terms from the high-salience set.  The third and fourth iterations are identical to 
the first and second, except that low-confidence acronyms/expansions are returned from the dictionary.   
 
This ranked set of abstract query representations is the output of our query analysis component, and is used by 
downstream document retrieval components to generate search engine specific queries. 

2.2.2. Document Retrieval 
As discussed previously, our document retrieval component is a pluggable framework that accepts one or more 
query generator and search engine pairs. In our TREC system, we employed three publicly available, off-the-shelf 
search engines: IBM’s own Juru search engine2 [Carmel et al., 2002], the Lucene search engine3 [Hatcher and 
Gospodnetic, 2004], and UMass/CMU’s Indri search engine 4  [Strohman et al, 2005].  We developed query 
generation components for each of these search engines in an attempt to generate search queries that best leverage 
the expressiveness of the query languages of the underlying search engine.  
 
We hypothesized that using multiple search engines and merging their hit lists will result in better performance 
because the search engines support different query capabilities and employ different ranking algorithms.  For 
instance, Indri supports a window operator (either ordered or unordered) for grouping select query terms as well as 
weights associated with terms, while Juru and its extension JuruXML support search over semantic types as well as 
keywords.5 Furthermore, Indri supports pseudo-relevance feedback, while the other two search engines do not,6 
leading to additional diversity in the documents in the hit lists.  Typically, each search engine will use abstract query 
representations starting from those in the highest salience set.  If insufficient documents are retrieved after executing 
queries at one salience level, then the query representations in the next salience level are used.  Once each search 
engine assembles its hit list, they are combined and augmented as described in the next section. 

2.2.3. Hit List Combination and Augmentation 
Our hit list combination component adopts a linear combination algorithm trained to optimally combine hit lists 
from multiple search engines.  The weights were trained on the TREC 2005 discussion task dataset using the topic 
relevance judgments.  In order to avoid overfitting, grid search was used to optimize for MAP score and the solution 
was checked for stability. 
 
Since the indexed portion of each e-mail message contains only the author, subject, and new text section of the 
message, we developed an e-mail-thread-based augmentation component to ensure that all documents in the same 
thread as a document in the hit list are also included for pro/con assessment.  We made use of the e-mail-threading 
information made available by William Webber  [Webber, 2005] and appended all additional documents found 
through this mechanism at the end of the hit list.  

2.2.4. Pro/Con Assessment 
Our pro/con assessment component is again designed as a pluggable framework for experimenting with and 
combining multiple assessment algorithms.  In our TREC system, two assessment components were used, a rule-
based pro/con sentiment recognizer developed at IBM, and a statistical topic independent pro/con recognizer 
developed at the University of Pittsburgh.  
 
The IBM pro/con assessor makes use of a rule-based sentiment recognizer built on top of ESG, a slot-grammar 
parser [McCord, 1990].  These rules are developed through manual compilation of 700+ sentiment keywords such as 

                                                 
2 Available as part of the open source UIMA framework, http://sourceforge.net/projects/uima-framework
3 http://lucene.apache.org
4 http://www.lemurproject.org/indri/
5 We did not make use of this semantic search feature of Juru in our TREC system, but we plan to exploit this 
functionality for discussion search in the future. 
6 It is, of course, possible to implement some pseudo-relevance feedback mechanism for use with the other two 
engines. However, because of time constraints, we did not explore this option. 
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“deficient” and “compelling”, and development of a rule set that makes sentiment annotations based on these 
keywords in the context of a parse tree.  A sample sentiment annotation is shown in the following: 

<REL name="Sentiment"> 
   <RNG type="Obj">HTTP with simple XML</RNG> may be most  
   <DMN type="SentimentKeyword">appropriate</DMN> 
</REL> 

Given a document, our assessment component identifies text snippets relevant to the topic and determines the 
pro/con relevance of the document based on the proximity of the sentiment annotations and the relevant text snippets. 
Other features such as depth of e-mail message in a thread chain, presence of relevant pro/con statements in the 
quoted texts portion of a document, as well as the frequency that passages in the current document are quoted by 
others, are also taken into account in the determining the final ranking of the documents. 
 
The UPitt topic independent pro/con classifier takes as input a document and returns a confidence score on whether 
or not it contains a pro/con argument.  The classifier uses the BoosTexter AdaBoost.MH machine learning algorithm 
[Schapire and Singer, 2000] with two features. The first feature is a bag-of-words representation of words with the 
following parts of speech: adverb, verb, noun, pronoun, adjective, modal, existential there, and number. The other 
feature is a bag-of-words representation of pro/con and non-pro/con extraction patterns generated using AutoSlog-
TS from the Sundance/AutoSlog package [Riloff and Phillips, 2004].  AutoSlog-TS takes a set of positive examples 
(documents judged as pro/con in the TREC 2005 dataset) and negative examples (topic-relevant but not pro/con 
documents), and generates extraction patterns, ranked in the order of their association with the positive examples 
(most extraction pattern types used are listed in Figure 1 of [Riloff et al., 2006]). During development, the classifier 
was cross-validated with the TREC 2005 discussion task dataset.  For our TREC 2006 submission, all topic-relevant 
documents in the 2005 dataset were used to train the classifier. 
 
The ranked hit lists from the assessment components are again combined using a linear combination algorithm to 
generate the system’s final ranked list of documents. 

2.3. Evaluation Results 
We submitted four runs to the discussion task. For all runs, FOLDOC was used in the query analysis process for 
query expansion.  When the description field is used, only terms found in FOLDOC are included in the query.  The 
key characteristics of the four runs are as follows: 

• IBM06JAQ: This run used only the title field of the query.  For document retrieval, only the Juru search 
engine is used, and for pro/con assessment, only the IBM pro/con assessor was used.  

• IBM06JAQD: This run is identical to IBM06JAQ except that both the title and description of the query 
were used. 

• IBM06JILAQD: This run used both titles and descriptions.  For document retrieval, all three search engines 
were used, but only the IBM pro/con assessor was used for sentiment analysis. 

• IBM06JILAPQD: This run is identical to IBM06JILAQD, except that both pro/con assessors were used to 
re-rank the documents returned by the search engines. 

 
In order to better determine the contributions of individual components, we ran three additional configurations of the 
system which were not included in our submission, as follows: 

• JQ: This run used only the title field of the query.  For document retrieval, only the Juru search engine was 
used and no pro/con sentiment analysis was performed. 

• JILQ: This run is identical to JQ except that for document retrieval, all three search engines were used. 
• JILQD: This run is identical to JILQ except that both the title and description were used. 
 

Error! Not a valid bookmark self-reference. shows the results of our runs. The top four rows are the results of our 
official submitted runs while the last three are additional runs performed post TREC. The columns labeled “topic” 
measure topic relevance of the hit list, while those labeled “p/c” additionally take into account the presence of 
pro/con statements in the document.  As expected, the run IBM06JILAPQD in which both titles and descriptions 
were used in query analysis, and where all available search engines and pro/con assessors were employed and their 
results merged, outperformed other configurations of the system in almost all cases.  Our results show that 1) 
leveraging information provided in the description field of the topic for query analysis results in more effective 
search queries than using the title alone (JILQD vs. JILQ; rows 7 and 6), 2) effective combining hit lists from 



multiple search engines can substantially outperform using a one search engine alone (JQ vs. JILQ; rows 5 and 6; as 
well as IBM06JAQD vs. IBM06JILAQD; rows 2 and 3), 3) leveraging NLP technologies to perform pro/con 
analysis on the resulting hit list results in further substantial improvement in performance (JILQD vs. 
IBM06JILAQD; rows 7 and 3), and 4) adopting multiple pro/con assessment components can further improve 
system performance compared with single strategy pro/con analysis (IBM06JILAPQD vs. IBM06JILAQD; rows 4 
and 3).  Interestingly, when including the pro/con assessment components in the pipeline, the scores for both topic 
relevance and pro/con relevance are improved.  We hypothesize that this is partially due to the fact that the IBM 
pro/con assessor performs finer-grained topic relevance analysis at the text snippet level, thus affecting the relative 
ranked order of topic relevant documents as a side effect of pro/con re-ranking. 

 
Table 1  Discussion Task Results 

MAP R-prec bpref P@10 P@100 Run Tag 
topic p/c topic p/c topic p/c topic p/c topic p/c 

IBM06JAQ 0.3146 0.2030 0.3527 0.2481 0.3572 0.2337 0.5440 0.3391 0.3998 0.2487 
IBM06JAQD 0.3069 0.1967 0.3493 0.2485 0.3499 0.2336 0.5400 0.3283 0.4054 0.2467 
IBM06JILAQD 0.3305 0.2004 0.3709 0.2509 0.3700 0.2294 0.5600 0.3326 0.4184 0.2493 
IBM06JILAPQD 0.3310 0.2021 0.3717 0.2558 0.3709 0.2323 0.5640 0.3391 0.4186 0.2515 
JQ 0.2745 0.1654 0.3257 0.2209 0.3218 0.2082 0.4950 0.2800 0.3590 0.2038 
JILQ 0.3017 0.1762 0.3524 0.2288 0.3472 0.2083 0.5360 0.2978 0.3844 0.2250 
JILQD 0.3095 0.1835 0.3621 0.2422 0.3559 0.2174 0.5360 0.3065 0.3998 0.2359 
 

3. Expert Task 
For the expert task, a system is expected to return a ranked list of up to 100 people from a list of 1092 candidates 
who it considers experts for a given topic.  The system may make use of the entire W3C corpus as well as any 
external resources in determining the ranked list of experts.  The expertise of each expert, however, should be 
justified by up to 20 documents from the W3C corpus.  In the expert task, we focused our investigation on using 
multiple problem-solving strategies, adopting NLP techniques for expertise-driven information extraction and 
pseudo-document generation, exploiting use of structured, semi-structured, and unstructured information on expert 
finding, and augmenting strategies that make use of the W3C corpus with those that consult external resources. 
 
Figure 2 shows the architecture of our multi-agent expert search system.  At the heart of the system there are six 
agents each adopting different problem-solving strategies to identify zero or more experts for a given topic.  Three 
of the agents adopt the pseudo-document approach, which is inspired by the top-performing system from TREC 
2005 in which a pseudo-document is generated for each candidate expert to represent their expertise [Fu et al., 2006]; 
although the strategies we adopted for pseudo-document generation differ from theirs substantially.  Our three 
pseudo-document based agents employ different algorithms/components for ranking expertise.   The Google Scholar 
agent makes use of the eponymous external resource to identify experts based on publications.  The Expert 
MetaData agent identifies experts based on expertise information extracted from semi-structured W3C standards 
documents.  Finally, the EKDB agent leverages structured data extracted from texts using task-specific relations for 
expert identification.  Our expert search system leverages the same query analysis component as described in 
Section 2.2.1, as well as the machine learning based hit list combination component described in Section 2.2.3 to 
merge the results produced by the six agents.  This hit list optionally goes through two heuristic-based post-
processors.  The first post-processor affects the expert ranked list in which experts in the original hit list may be re-
ordered based on certain external criteria.  The second post-processor affects the support document ranked list for 
each expert in that a support document may be removed because it was deemed non-supportive, or that the support 
documents may be re-ordered based on select heuristics. 
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Figure 2  Expert Search System Architecture 

3.1. Corpus Processing and Pseudo-Document Generation 
Our pseudo-document generation process begins with identifying instances of the candidate experts in documents.  
To increase the recall of candidate identification, we performed accent normalization on the corpus and developed a 
set of heuristics for name variation generation, including dropping of middle names and replacing first names with 
first initials.  We adopted four approaches to generate six sets of pseudo-documents in which each set contains one 
document for each candidate identified in the corpus as follows: 

• Windowing approach, in which the n sentences before and after each mention of a candidate is selected 
and appended to the candidate’s pseudo-document. We used n=5 and n=50 in our system. 

• Top sentence approach, in which the first n sentences of a document in which a candidate is mentioned is 
selected and appended to the candidate’s pseudo-document. We used n=20 and n=100 in our system. 

• Whole document approach, in which all documents in which a candidate is mentioned are concatenated 
to form the pseudo-document. 

• Summarization approach, in which MEAD 7  [Radev et al., 2003], a query-based multi-document 
summarizer was used to generate the pseudo-document for each candidate. 

 
To experiment with different search strategies, we built two search indices for each pseudo-document set, one for 
Lucene and one for Indri. In addition, we also built a collection of Lucene document vectors for each pseudo-
document set.  
 
We also performed additional corpus processing for use by the other agents. The lists and www portions of the 
corpus were analyzed using a set of named entity and relation recognizers.  The named entity recognizers identify 
generic entity types such as Person, Date, Organization, and Country, as well as domain specific types such as 
EnterpriseMember and ComputingTopic.  The relation recognizers cover two relations of interest for this task, 
ExpertIn and AuthorOf.  The former identifies text fragments that are indicative of expertise, such as “James Larson, 
W3C Voice Browser Working Group co-Chair”, and associates the person and topic with an ExpertIn relation, while 
the latter pairs all e-mail authors and subjects.  The entities and relations in this annotated corpus are stored in our 
Extracted Knowledge DataBase (EKDB) [Ferrucci et al., 2006] for use by the EKDB agent, and all the keywords 
and annotations are used to generate a JuruXML semantic search index which was used in our manual submission.  
 
Finally, we automatically identified a set of W3C-specific standards documents which, for the most part, have a 
semi-structured common format.  We processed these documents to extract document title, document ID, editorship, 

                                                 
7 Available for download at http://www.summarization.com/mead/ 



and authorship information. We stored this information in as standards document metadata, to be used by our Expert 
MetaData agent. 

3.2. Runtime Components 

3.2.1. Pseudo-Document Agents 
The key idea behind the pseudo-document agents is to construct, for each candidate expert, a document that 
represents his/her expertise.  Given a topic, the agent compares the topic to the pseudo-documents and returns 
experts whose pseudo-document best matches the topic.  We experimented with a number of heuristics for pseudo-
document generation as described in Section 3.1.  The windowing approach hypothesizes that one’s expertise 
commonly occurs in close proximity to mentions of his/her name.  The top sentence approach hypothesizes that 
one’s expertise is indicated by the topic of the document, which is typically established at the beginning of the 
document.  The whole document approach targets a recall-oriented strategy.  Finally, the summarization approach 
experiments with the utility of a multi-document summarization system for capturing the expertise of a given person.   
 
Figure 2 shows the configuration of our three pseudo-document agents, each utilizing a different retrieval strategy, 
namely Lucene, Indri, and vector similarity, on each of the pseudo-document sets generated.8  Given a query, a 
pseudo-document agent sends the query to each pseudo-document index and combines their result to generate its 
expert hit list.  The supporting document list is generated by issuing the same topic to a regular document index and 
selecting from the most relevant documents those in which the candidate expert occurs. 

3.2.2. EKDB Agent 
As discussed earlier, we store in our Extracted Knowledge DataBase (EKDB) entities and relations extracted from 
our automatically annotated corpus. In addition, the EKDB records provenance information which includes 
documents from which entities and relations were extracted.  Of the two relations used for this task, ExpertIn, which 
indicates direct assertions of expertise, is used as high-confidence evidence for expertise, while AuthorOf, which 
indicates authorship of e-mail subjects, is used as low-confidence evidence for expertise.  
 
The EKDB agent generates database queries based on the abstract query representations produced by the query 
analysis component, and experts are scored based on the system’s confidence level as indicated by the ExpertIn or 
AuthorOf relation, and the salience level of the abstract query representation used to generate the database queries.  
Furthermore, documents from which the relation was extracted are used as supporting evidence. If the same expert is 
found from multiple relations and/or multiple queries, the confidence score is boosted and the confidence values 
assigned to the supporting documents are also scaled accordingly. 

3.2.3. Expert MetaData Agent 
The Expert MetaData agent targets high-precision performance by basing expert identification on highly reliable 
cues for expertise indication.  In our TREC system, it made use of the metadata extracted from W3C standards 
documents in which editorship and authorship of a standards document are considered definite and highly reliable 
indications of expertise, respectively.   
 
Given a topic, all standards documents potentially relevant to the topic are retrieved.  Linguistic heuristics are then 
applied to determine topic subsumption and thus the degree of match between the query topic and the document 
topic.  The editors and authors of relevant documents are extracted and scored based on the degree of topic match, 
while the standards document is used as support for the candidate’s expertise. Multiple pieces of evidence for the 
same expert are combined to arrive at a final ranked expert list.   

3.2.4. Google Scholar Agent 
An external resource we exploited in our expert search system is Google Scholar,9 which supports search over 
scholarly publications. For a given query topic (issued in quotes to Google Scholar), we extract the author list and 

                                                 
8 We were unable to generate some of the indices for larger pseudo-document sets because of memory constraints. 
9 http://scholar.google.com

http://scholar.google.com/


the number of citations for each of the top 20 publications returned. An author’s expertise in the topic is computed 
based on factors such as the number of publications retrieved, the number of citations as well as the author’s order in 
the author list for each publication. The ranked list is then filtered using the candidate expert list provided to return 
only eligible experts.  

3.2.5. Expert Post-Processor 
We developed an affinity-based expert re-ranker to perform post-hoc re-ordering of less confident candidates in the 
expert list, using an affinity metric based on the hypothesis that experts of the same topic tend to co-occur in 
documents.  The algorithm initially populates a new hit list with the top 5 experts from the original list, and 
iteratively adds experts to the hit list by selecting those experts whose scores representing their affinity with those 
already on the hit list exceed a certain threshold. 

3.2.6. Supporting Document Post-Processors 
We developed two types of supporting document post-processors, one that removes supporting documents from the 
list, and two that re-ranks the documents.  The acknowledgments document filter removes those supporting 
documents in which the candidate’s name appears only in the acknowledgments section of the document.  The 
duplicate document remover increases the diversity of supporting documents by eliminating all duplicates and near-
duplicates in the document list using a vector similarity based measure.  Finally, the EKDB re-ranker considers 
documents that support the ExpertIn and AuthorOf relations in the EKDB to be more reliable supporting documents 
than others, and uses this information to re-rank supporting documents returned by other agents. 

3.3. Evaluation Results 
We submitted four runs to the expert task. Three of our runs are automatic, labeled IBM06QO, IBM06PR, and 
IBM06EXP. All three runs used all of the four agents described above, with different query processing and support 
document selection strategies. The run labeled IBM06MA was partially manual. The key characteristics of our 
automatic runs are described below: 

• IBM06QO: This run used only the title field of the topic. FOLDOC was used for query expansion. 
• IBM06PR: This run used both the title and description fields of the topic in query analysis  Select agent 

parameters were tuned to target higher precision. It also included two additional components: the EKDB 
document re-ranker and the acknowledgments filter. 

• IBM06EXP: This run also used both the title and description fields of the topic.  It included two additional 
components on top of the IBM06QO configuration: the affinity-based expert re-ranker and the duplicate 
document remover. 

Table 2  Expert Task Results 

MAP R-prec bpref P@5 P@10 Run Tag 
exp sup exp sup exp sup exp sup exp sup 

IBM06QO 0.4536 0.2863 0.4519 0.3303 0.4402 0.3711 0.6653 0.4857 0.5408 0.4041 
IBM06PR 0.4455 0.2789 0.4442 0.3211 0.4306 0.3522 0.6531 0.4776 0.5265 0.3939 
IBM06EXP 0.4357 0.2730 0.4434 0.3201 0.4338 0.3465 0.6531 0.4816 0.5469 0.4041 
IBM06MA 0.5235 0.3346 0.5192 0.3829 0.5180 0.4135 0.7673 0.5878 0.6449 0.4878 
 
Table 2 shows the results of our submitted runs. For each performance measure reported, the score under column 
heading “exp” represents score when considering only expert correctness, while that under “sup” takes into account 
whether or not a correct supporting document was found. For all measures, the manual run (IBM06MA) received the 
highest score. The highest scoring of the three automatic runs for each measure is boldfaced. It is worth noting that 
our two best scoring runs, IBM06MA and IBM06QO, were our priorities 3 and 4 runs, and therefore were not 
included in the results pooled for judging. 
 
Our results show that IBM06QO achieved the highest automatic score in almost all cases except for precision@10.  
The IBM06PR run, which targeted higher precision, did not outperform either of the two systems, even using the 
P@5 and P@10 measures.  We are currently running finer grained experiments to determine the contribution (or 



lack thereof) of the individual components included in this run.  The contributions of components in the IBM06EXP 
run are easier to determine. The affinity-based expert re-ranker increased precision@10 but fared worse in all other 
measures. The result for the duplicate document remover is somewhat counter-intuitive. In theory, with the binary 
supporting document metric adopted, the greater diversity in supporting documents produced by the duplicate 
document remover should result in an increase performance.  However, this does not appear to be the case when 
comparing the scores for IBM06EXP and IBM06QO.  In particular, while there is an increase in expert only score in 
P@10, the scores with supporting documents are identical for P@10 for the two runs. This is probably due to 
incomplete judgment for supporting documents. 
 
The goals of our manual run were twofold. First, we wanted to evaluate the potential of incorporating semantic 
search capabilities into an automatic expert finding system.  Since automatic semantic search query construction 
from descriptions and narratives is a difficult task, our manual run consists of having an expert manually construct 
queries that leverage our semantic annotations to retrieve more relevant documents.  Second, we were interested in 
evaluating the effectiveness of SAW II, an interactive system that supports semantic query construction, refinement, 
and results exploration, for this problem-solving task. Figure 3 shows a screenshot of SAW II, illustrating query 
construction and refinement support (top left panel), result browsing support (top right panel), and detailed 
document drill down support (bottom panel).  
 

 
Figure 3  SAW II Screenshot 

 
The query shown in Figure 3 demonstrates how we leveraged our semantic annotations to answer topic EX53 on 
W3C translation policy.  By including the Nation entity type, which matches both the nominal and adjectival forms 
of country names, in the query, the returned documents, which must have included a country or language, were 
much more on topic.  In our submitted manual run, we targeted around 5 manually identified experts for each topic.  
The rest of the hit list was augmented with results from the IBM06PR run. 



4. Conclusions 
This paper described our efforts in this year’s Enterprise Track discussion and expert tasks.  Our discussion task 
results show that our conservative query expansion strategy focusing on FOLDOC-identified domain-specific terms 
improves performance slightly, while combining the results from multiple search engines substantially outperforms 
single search engine results.  Finally, our NLP based pro/con assessment components again results in substantial 
performance improvement.  On the expert task, our current run results are somewhat less conclusive.  We are 
currently in the process of running further experiments and ablation studies to determine the contributions of 
individual agents and components.  
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