
AnswerFinder at TREC 2005

Diego MOLLA and Menno VAN ZAANEN
Centre for Language Technology, Macquarie University

Sydney,
Australia,

{diego,menno}@ics.mq.edu.au

Abstract

AnswerFinder has been completely redesigned
for TREC 2005. The new architecture allows a
fast development of question-answering systems
for their deployment in the TREC tasks and
other applications. The AnswerFinder modules
use XML to express the services they provide,
and they can be queried with XML for their ser-
vices. The QA method now incorporates graph-
based methods to compute the answerhood of a
sentence and pin-point the answer. The sys-
tem uses a set of graph-based rules that are
learnt automatically. Unfortunately the system
could not be completed and debugged before the
TREC deadline and the runs did not fare well.
Currently we are debugging and evaluating the
system.

1 Introduction

AnswerFinder is a research oriented question
answering system that focuses on incorporat-
ing symbolic information in the process. One
of the more interesting aspects we are currently
investigating is how far automatically induced
structural, symbolic information helps finding
actual answers.

This article describes several aspects of this
year’s TREC QA submission. Firstly, the ar-
chitecture of the system, which has been com-
pletely redesigned this year, will be introduced
in section 2. This includes a description of the
framework of the system and the different sub-
systems that can currently be used. Secondly,
in Sections 3, 4 and 5 we discuss a new method
of finding answers in sentences based on auto-
matically inferred Logical Graph rules. We will
describe the LG rules, how to learn them, and
how to apply them to sentences to find actual
answers. In Section 6 we give an overview of
the parameters we used in the two runs that
have been submitted to the TREC competi-
tion. Running the system indicated some ex-
isting problems of the current implementation

that will be solved for next year. In Section 7
the problems will be treated briefly and solu-
tions will be provided.

2 The Architecture of AnswerFinder

2.1 Overview

The AnswerFinder system can be divided into
several phases. The process is entirely question-
driven and forming a pipeline architecture. We
recognise the following phases:

Question Analysis The first phase of An-
swerFinder is the analysis of the question.
During this phase question type classifica-
tion is performed to determine what sort of
answer we are looking for, such as location,
person, etc. Also, shallow semantics of the
question are extracted.

Document Selection The next phase is the
selection of the documents that are likely
to contain the answer. This phase is per-
formed based on the information of the
question. Only the selected documents are
considered in the following phases.

Sentence Selection Using the information
extracted during the question analysis
phase, sentences that are likely to contain
the answer are extracted from the selected
documents. Only these sentences are pro-
cessed further.

Answer Selection The information taken
from the question is matched against the
selected sentences and based on this, the
exact answer is extracted and returned.

In this project we mainly focus on the rep-
resentation of questions and sentences in the
text documents. We have implemented differ-
ent question type classification methods (van
Zaanen et al., 2005) and are investigating dif-
ferent representations of the shallow semantics
of the question and the texts. Previously, we

have used Minimal Logical Forms (Mollá and
Gardiner, 2004b) and in this article we will de-
scribe Logical Graphs as a representation of the
semantics. In addition to computing overlap of
semantic units (which was done in the past),
the Logical Graphs are also used to find exact
answers in the sentences.

2.2 Requirements

When redesigning AnswerFinder, we first recog-
nised several requirements. In addition to per-
formance requirements (speed, memory usage,
accuracy of finding answers, etc.), we have iden-
tified two requirements that have a high impact
on the design. These requirements are most im-
portant from the view that AnswerFinder is a
research and development system.

Flexibility The system should be flexible in
several ways. Although it is being devel-
oped for the TREC competition, it should
also be possible to easily modify it to han-
dle different situations. For example, dif-
ferent input and output formats (of doc-
uments, questions, and answers), types of
questions and answers, and new algorithms
(in all the phases) should be easily inte-
grable in the system. This allows for easy
testing of new ideas in different environ-
ments.

Configurability Having a system with many
different algorithms that can be used in the
phases, it should be easy to configure the
system to run using specific parameters.
Parameters in this case mean, not only the
actual values needed in the algorithms, but
also selecting a particular algorithm in a
phase.

2.3 Usage

From the user’s point of view, AnswerFinder
works as follows. Firstly, AnswerFinder can be
queried for the functionality it provides. When
a functionality request is sent, AnswerFinder
replies with an XML document containing all
the functionality it provides. This document
shows for each of the phases which algorithm
can be used and it also indicates if multiple al-
gorithms can be used in a certain phase at the
same time. For example, sentence selection can
be done based on different kinds of information,
which is implemented by different algorithms.

Once the provided functionality is known, the
user can create an XML request by simply se-
lecting which functionality is needed. This re-

quest is then sent off to AnswerFinder. An-
swerFinder will combine the right modules and
apply it to the data. Finally, the answers found
by AnswerFinder are sent back to the user.

2.4 Implementation

AnswerFinder is implemented using C++,
where the object-oriented paradigm is exten-
sively used. Not only data is represented by
class instances, also all algorithms are contained
in class hierarchies.

Each of the phases in AnswerFinder uses a
separate class hierarchy, where each algorithm
that can be used in a particular phase is repre-
sented by a class. The different algorithms are
registered to a builder, which is a class that can
be requested to create objects it knows about.
The builder can also be asked to provide infor-
mation about the classes it knows of.

When a user request in the form of an
XML document is received by the general An-
swerFinder algorithm builder, this document is
analysed and the appropriate parts of the doc-
ument are sent to the different builders for each
phase in the system. These builders create in-
stances of the algorithms that are requested in
the XML document and all these instances are
put together by the AnswerFinder algorithm
builder. This system is then applied to the data
that is present in the request and the final an-
swer is sent back to the user.

Adding a new algorithm for a particular
phase in the system is easy. A new class needs
to be defined in the particular class hierarchy for
the phase and it should register itself with the
builder. Since a user can ask the builder what
algorithms are available, the new algorithm is
automatically incorporated in the system and
can be used directly.

2.5 Available Settings

To allow AnswerFinder to answer questions,
the user has to select which functionality is re-
quired. AnswerFinder currently implements the
following functionality (Figure 1).

First of all, the Question Analysis module
is currently implemented using a regular expres-
sion classifier as described by Mollá and Gar-
diner (2004a). Next, for the Document Selec-

tion phase, the pre-selected document ranking
provided by NIST is used. Following that, the
Sentence Preselection module is composed
of a cascade of filters. Each filter scores the
input sentences and returns a ranked list of the
top n sentences (where n is the parameter called

client

server

Question

patterns

NIST

documents

Word

overlap

GR overlap

LFpatterns

Graph

patterns

LingPipe

NER

QuestionAnalysis

Doc. Selection

Sentence Preselection

AnswerExtraction

QuestionAnalysis

Doc. Selection

Sentence Preselection

AnswerExtraction

1

2

3

algorithm1

algorithm2

limit=50

limit=100

limit=50

lim
it=

20

Figure 1: Functionality of AnswerFinder. The dashed arrows indicate a hypothetical configuration
and its parameters.

limit in Figure 1) with their score. In addition,
some of the filters may also return a list of can-
didates to exact answers (together with their
score) which are passed to the Answer Extrac-
tion module. Four filters are currently imple-
mented:

Word Overlap This filter includes a stop
word list to indicate that certain words
should not be used in the computation of
the word overlap.

Grammatical Relations Overlap This fil-
ter uses the grammatical relations devel-
oped by Carroll et al. (1998) and has been
described by Mollá and Gardiner (2004a).

Logical Form Overlap This filter uses the
output of the Connexor parser1 to produce
logical forms and has been described by
Mollá and Gardiner (2004a). The filter re-
turns candidates to exact answers.

Logical Graph Overlap This filter is new in
our participation in TREC 2005 and will be
described in this article. The filter returns
candidates to exact answers.

Finally, the Answer Extraction module
combines and ranks the answer candidates
found by the Sentence Preselection module.
Also, the system integrates the output of a
named entity recogniser by incorporating the
named entities that are compatible with the ex-
pected answer type. We are using LingPipe2,

1http://www.connexor.com
2http://www.alias-i.com/lingpipe/

although we have also tried using Annie, the
named entity recogniser from GATE3. The out-
put of this module is a ranked list of answers.

3 Logical Graphs

An innovation in the version of AnswerFinder
presented for TREC 2005 is the use of a
graph notation for the representation of the
logical contents of answer sentences. This
is what we call the Logical Graphs (LGs).
These Logical Graphs are inspired in Concep-
tual Graphs (Sowa, 1979), though in contrast
with Sowa’s approach, LGs do not attempt to
encode the full semantics of a sentence. Follow-
ing the principles of the logical forms of last
year’s AnswerFinder system (Mollá and Gar-
diner, 2004b), LGs aim at representing the ba-
sic logical content required for question answer-
ing and they avoid the representation of well-
known problematic concepts such as quantifica-
tion, plurality, tense, and aspect.

Like Sowa’s Conceptual Graphs, our Logical
Graphs are directed, bipartite graphs with two
types of vertices, namely concepts and relations:

Concepts Examples of concepts are objects
dog, table, events and states run, love, and
properties red, quick.

Relations Relations act as links between con-
cepts. Examples of relations would be
grammatical roles and prepositions. How-
ever, to facilitate the production of the
Logical Graphs we have decided to use re-
lation labels that are relatively close to the

3http://gate.ac.uk/

john 1 go to boston

by

bus

John is going to Boston by bus

person 1 be between

≤rock ≤ place

prop

hard

A person is between a rock and a hard place
tom 1 believe 2

want1mary 2

marry1 2

sailor

Tom believes that Mary wants to marry a sailor

Figure 2: Examples of Logical Graphs

syntactic level. For example, instead of us-
ing labels related to thematic roles such as
agent, patient, and so forth, we use syntac-
tic roles subject, object, etc. Furthermore,
to avoid resuming any debate about the
possible names of the syntactic roles, we
have decided to use numbers. Thus, the
relation 1 indicates the link to the first ar-
gument of a verb (that is, what is usually a
subject). The relation 2 indicates the link
to the second argument of a verb (usually
the direct object), and so forth.

Figure 2 shows various examples of LGs.
These examples are taken from the examples
used in Sowa’s Conceptual Graphs website4

and, while there is no space here to explain
the differences and similarities between our LGs
and Sowa’s Conceptual Graphs, the interested
reader may consult Sowa’s examples and com-
pare the graphs. Our first example shows the
use of a relation labelled 1 to express the sub-
ject of the go event, and two relations, labelled
to and by, that represent two prepositions. The
second example shows the use of lattice struc-
tures to represent complex entities (such as the
ones formed when a conjunction is used). This
use of lattices is inspired on the treatment of
plurals and complex events (Link, 1983; Mollá,

4http://www.jfsowa.com/cg/index.htm

1997). Finally, the third example shows the ex-
pression of clauses and control verbs. These ex-
amples only cover a few of the linguistic features
but we hope they will suffice to show the expres-
sive power of the LGs.

The Logical Graphs are constructed automat-
ically from the logical forms used in last year’s
AnswerFinder (Mollá and Gardiner, 2004b) and
they present a simplification of these logical
forms. The conversion from a logical form to
a LG is shown in Table 1.

4 Logical Graph Rules

To use the LGs to extract the answer, we have
devised a method to learn Logical Graph Rules
(LGRs) and apply the learnt rules to a ques-
tion/answer candidate sentence pair. These
LGRs are based on the concepts of graph over-
lap and path between two subgraphs in a graph
(Mollá and van Zaanen, 2005).

Each rule r contains three components:

ro An overlap between a question and its an-
swer sentence.

rp A path between the overlap and the actual
answer in the answer sentence.

ra A graph representing the exact answer.

For further detail about the definition and
properties of graph overlaps and paths, see

Table 1: Conversion from a Logical Form to a Logical Graph
1. Convert all object predicates (e.g “object(john,o1,[x1])”) into concepts labelled with the noun

(“john”) and indexed with the entity (“x1”). The index is required to allow the possibility of two
different concepts having the same label. For example, the sentence The big ball hit the small ball
would produce two different concepts labelled as “ball”. The reification of the object (“o1”) is
ignored in the LG.

2. Convert all event/state predicates (e.g. “evt(eat,e3,[x1,x2])”) into concepts labelled with the verb
(“eat”) and indexed with the reification (“e3”). For every argument position, add one relation
from the newly created concept to the concept indexed with the argument and labelled according
to the position of the argument.

3. Convert all property predicates introduced by adjectives and adverbs (e.g. “prop(hard,p1,[x2])”)
into concepts labelled with the adjective/adverb (“hard”) and indexed with the reification (“p1”).
Add one relation from the newly created concept to the concept indexed with the argument (“x2”).
The relation is labelled “prop”.

4. Convert all other property predicates (e.g. “prop(to,p2,[e2,x4])”) into relations labelled with the
property label (“to”), which connect from the first argument (“e2”) to the second argument (“x4”).
The reification (“p2”) is ignored.

5. Convert all predicates of compound nouns (e.g. “compound noun(x4,x5)”) into relations labelled
“compound noun” that connect the first argument to the second argument.

6. Convert all logical operators (e.g. “log op(and,e2,[e3,e4])”) into relations that connect the reifica-
tion (“e2”) to every argument, and labelled like the logical operator (“and”).

7. Convert all general dependencies (e.g. “dep(27000,d6,[x6])”) into concepts labelled with the de-
pendency label (“27000”) and indexed with the reification (“d6”). Add a relation labelled “dep”
that connects the newly created concept to the concept indexed with the argument (“x6”).

8. Convert all lattice relations (e.g. “x34<x35”) and any remaining two-place predicates into relations
labelled with the predicate name (“<”) and connecting the first entity (“x34”) to the second entity
(“x35”).

bear peter where
1 2 prop

Q:Where was Peter born?

peter birthplace be paris
genitive 1 2

A:Peter’s birthplace was Paris

peter birthplace be paris
genitive 1 2

The Rule (ro in regular lines, rp in dashed
lines, ra in thick lines)

Figure 3: A Logical Graph rule

(Mollá and van Zaanen, 2005). For the pur-
poses of this article it suffices to say that, given
the possible existence of repeated concept la-
bels and relation labels in a LG, there may be
several possible overlaps between two graphs.
When this happens, the graph with the largest
size is selected.

4.1 Learning of Logical Graph Rules

With the help of a training set of questions and
sentences containing the answers, a set of LGRs
can be learnt. Figure 3 shows an example of a
rule learnt between two sentences. The graph
notation has been simplified by replacing the
relation vertices with labelled edges.

FOR every question/answerSentence pair
Gq = the graph of the question
Gs = the graph of the answer sentence
Ga = the graph of the exact answer
FOR every overlap O between Gq and Gs

FOR every path P between O and Ga

Build a rule R of the form
Ro = O
Rp = P
Ra = Ga

Figure 4: Learning of graph rules

The algorithm for learning rules is fairly
straightforward and is shown in Figure 4.

Rules learnt with this algorithm are very spe-
cific to the question/answer pair. For example,
the rule in Figure 3 would only trigger for ques-
tions about Peter and it would not trigger, say,
for the question Where was Mary born?. To
generalise a rule we use a simple method:

• Concepts generalise to “ ” (that is, con-
cepts that would unify with anything).

• Relations do not generalise (relations ex-
press syntactic or semantic relations and it
is not advisable to over-generalise them).

The generalisation of concepts applies to ev-
ery concept except those that belong to a spe-
cific list of “stop concepts” (in analogy to the
idea of stop words in Information Retrieval).
The current list of stop concepts is:

and, or, not, nor, if, otherwise, have,
be, become, do, make

Rules are weighted according to the following
formula. The weight W of a rule r is computed
on the basis of its ability to detect the exact
answer in the training corpus:

W(r) =
correct answers found

answers found

5 Graph-based Question Answering

To find if a sentence s with graph S answers a
question q with graph Q, all learnt LGRs are
tested. A rule r triggers iff its rule pattern ro is
a subgraph of Q (that is, the overlap between
ro and Q is ro). When that happens, the graph
of the question is expanded with the concepts
and relations of the rule path rp, producing a
new graph Qrp

. The resulting graph is more
likely to produce a high overlap with an answer
sentence similar to the one that generated the
rule and, most importantly, the graph contains
an indication of where the answer is located.

Once the graph of the question has been
expanded with the rule path, one only needs
to compute the overlap between this ex-
panded graph and that of the answer sentence
ovl(Qrp

, S). If the overlap retains part of the
exact answer that was marked up by the graph
rule ra, then we have found a possible answer.

The above method will cover simple cases,
but it needs to be extended to cover two spe-
cial cases that arise from the fact that the ques-
tion/sentence pairs that generated the rule are
likely to be different from the actual question
and sentence being tested. First of all, several
rules may trigger, and each rule may extract a
different answer. Consequently, there are sev-
eral answer candidates and the system needs to
choose one of them. Second, it is possible that
the overlap between the extended graph and the
sentence does not contain the complete answer
but part of it. We will proceed to explain these
two cases.

5.1 Answer Ranking

To identify the correct answer among a set of
possible answers it is necessary to establish a

measure of “answerhood” so that the correct
answer has a higher score than the other can-
didates. The rule weight gives an indication of
the quality of the answer extracted. But we also
need to keep in account the degree of similarity
between the sentence that created the rule and
the answer sentence being tested. For this we
use the size of the overlap between the extended
graph of the test question and the graph of the
test answer size(ovl(Qrp

, S)). Thus, the “an-
swerhood” A(s) or likelihood that a sentence s
with graph S contains the answer to a question
q with graph Q is the product of the weight of
the rule used W(r) and the size of the overlap:

A(s) = W(r) × size(ovl(Qrp
, S))

The size of a graph overlap is computed as the
weighted sum of all concepts and relations in the
overlap. The weight Wi of a concept or relation
i in the overlap is determined using a variant
of the Inverse Document Frequency (IDF) mea-
sure used in Document Retrieval. The actual
formula that we use is:

Wi =
1

log N
log

N

n

n = total number of sentences using the concept
(or relation) i

N = total number of sentences

The formula includes the constant factor
1/ log N to ensure that the value ranges between
0 and 1.

5.2 Answer Expansion

Sometimes the overlap between Qrp
and S does

not contain the complete answer but only the
head of the answer. For example, suppose that
the generalised rule of Figure 3 is used for the
sentence pair:

Q: Where was Andrew born?

A: Andrew’s birthplace was the city of Frank-
furt

The overlap between the expanded graph of
the question and the answer sentence (see Fig-
ure 5) would say that the answer is city, which
is not correct. We need to expand the answer
found. The process of answer expansion is very
simple:

1. Start with the part of the exact answer
marked up in the rule ra that appears in

be
genitive 1 2

r: Rule (ro in regular lines, rp in dashed lines,
ra in thick lines)

bear andrew where
1 2 prop

Q: Graph of Where was Andrew born?

peter birthplace be city

frankfurt

genitive 1 2

of

S: Graph of Andrew’s birthplace was the city
of Frankfurt

bear andrew where

be

1 2 prop

genitive
1 2

Qrp
: Q expanded with rp

andrew

birthplace be city

genitive
1 2

ovl(Qrp
, S): Resulting overlap with S

city

frankfurt

of

A: Expansion of the answer found

Figure 5: Graph-based Question Answering

ovl(Qrp
, S) and use it to form a new graph

A.

2. Choose a non-processed concept in A and
label it as processed. Take the correspond-
ing concept c in S and add to A all outgo-
ing relations from c and their destination
concepts.

3. Repeat step 2 until all the concepts of A
have been processed.

An example of answer expansion is shown in
Figure 5. From this example we can see that
the resulting answer may not be judged exact
according to the NIST guidelines for the evalu-
ation of answers. Still, we decided to keep the
answer expansion on the grounds that otherwise
no answer would have been found at all in cases
like that of the example. We have not measured
the impact of the answer expansion in the per-
formance of AnswerFinder yet.

6 Parameters Used for the TREC
2005 Competition

This year, we submitted two runs to the TREC
competition. The first run (af run1) was used
as a baseline, which used roughly the same pa-
rameters of the submission used in last year’s
competition. The second run (af run2) tested
the Logical Graphs as a replacement to the log-
ical forms.

Both submissions used the same basic set-
tings. This included document selection based
on the documents pre-selected by the PRISE
search engine and provided by NIST. For each
of the questions, only the top 50 documents
were used. Question type classification was
done using a regular expression based classi-
fier and LingPipe was used as the named entity
recogniser.

The only differences between runs are, first,
the number of sentences selected by the Word
Overlap module, and second, the nature of the
module following the Word Overlap module
(Table 2).

The first run, which tested the use of min-
imal logical forms similarly to last year’s sub-
mission, started off with selecting the 100 best
matching sentences according to word overlap
between the question and the sentences. These
100 sentences were converted into minimal log-
ical forms, which finds some possible answers.
The set of possible answers was then extended
with the named entities present in the sentences.

The second run worked on the best 5 sen-
tences selected based on word overlap. Logical
Graphs were computed on these sentences and
matched with the Logical Graph of the ques-
tion. This introduced some possible answers as
described above. Again, named entities were
used to expand the set of possible answers.

Finally, the set of possible answers found by
the systems were ranked based on the score that
was computed during the process of finding of
possible answers. Answers found by the named
entity recogniser increased the score by 1, simi-
lar to answers extracted by logical forms. Log-
ical Graphs increased the score by the product
of the confidence of the rule and the graph mea-
sure, as described in Section 5.1.

Answers to factoid questions are then the sin-
gle best answer according to the ranked possible
answers. List type questions are answered by
returning all the answers found and other type
questions are simply considered to be a list type
question where the question is What is 〈topic〉?

Table 2: Parameters of the runs submitted to TREC 2005
Run Document Word LF Graph

Name Selection Overlap Patterns Patterns
af run1 limit = 50 limit = 100 yes no
af run2 limit = 50 limit = 5 no yes

Only answers that have a type that matches the
question type are returned, but if none of them
matches, this requirement is dropped.

7 Results

Due to time pressures it became impossible
to debug and fine-tune the system before the
TREC deadline. Consequently the results of
the two runs submitted were very disappoint-
ing. The run af run1 on the factoid questions
had an accuracy of 0.028 (10 correct answers
out of 362), the precision of recognising no an-
swer was 0.077 and the recall of recognising no
answer was 0.176. The answers to the list ques-
tions were not better: an average F score of
0.008. None of the “other” questions were cor-
rectly answered.

The run af run2 performed even worse than
af run1. The accuracy on the factoid questions
was 0.014 (5 correct answers), the precision of
recognising no answer was 0.075 and the recall
of recognising no answer was 0.235. The average
F score on the list questions was 0 and again,
none of the “other” questions had correct an-
swers.

Generating the answers of both runs already
indicated several problems with the current im-
plementation. We rely on some external sys-
tems to compute intermediate results. For ex-
ample, named entities are found by LingPipe,
which is run as an external process. The way
this is done now, is simply too time consuming.
This restricted us to use only an extremely lim-
ited number of sentences to find answers in. If
the answer is not present in the 100 (af run1) or
5 (af run2) sentences, the system will obviously
not find a correct answer no matter how well
these systems work. A count of the sentences
that matched Ken Litkowski’s patterns indi-
cated that, when 100 sentences were selected
by the Word Overlap module, only 20.98% of
the questions retrieved a sentence matching the
corresponding pattern (this is what is called se-
lection accuracy in the table). This figure is re-
duced to 11.53% of the questions if 5 sentences
were preselected. Note that there may be sen-
tences that contain the correct answer but who

do not match any of the corresponding patterns,
and there may be sentences that do not contain
the answer but who match some of the patterns.
Therefore, we also ran Litkowski’s patterns on
the final output of our system, giving the re-
sults of Table 3. The table shows that the use
of patterns is an acceptable approximation of
the selection accuracy.

A simplified system that uses only the Logi-
cal Graphs to find the answers and ignores any
information about the question type and the
named entities gives better results in our cur-
rent evaluations. There may be several reasons
for this. Firstly, the number of sentences se-
lected by word overlap simply may not contain
the answers, but we also suspect that the cause
of the poor results is a bug in the system.

There are some more issues that create prob-
lems. Firstly, AnswerFinder currently tokenises
all text it processes (questions and documents).
The idea behind this is that it is easy to keep
track of the possible answers in a standard-
ised way. However, the external tools that are
used (Connexor, LingPipe, Annie, etc.) per-
form their own tokenisation. This introduces
problems since a mapping between the different
tokenisation methods needs to be defined.

Another, related, problem is that the differ-
ent methods that find possible answers may in
fact return substrings of another possible an-
swer. For example, one possible answer may be
the large house around the corner, whereas an-
other possible answer may be the substring the

large house. The system currently treats these
as completely different answers. The fact that
substrings of another possible answer are also
found as possible answers may count as extra
evidence.

8 Conclusions and Future Work

In this article, we first presented the new
AnswerFinder implementation. Because An-
swerFinder is a research project, the system
should be highly flexible. Systems are built dy-
namically and new methods can easily be inte-
grated.

Next, a new representation of shallow seman-

Table 3: Results of the factoid questions. The Selection Accuracy column indicates the percentage
of questions that have a selected sentence matching Ken Litkowski’s answer patterns (see text).

Run TREC Litkowski N Preselected Selection
Name Evaluation Patterns Sentences Accuracy
af run1 2.8% 3.6% 100 20.98%
af run2 1.8% 1.1% 5 11.53%

tics was discussed. Logical Graphs allow a com-
pact description of the semantics of questions
and sentences. Not only are they visually clear
(in contrast to logical forms), they can be used
in the shape of logical graph rules to find possi-
ble answers in the text.

In the near future, we wish to understand
why the results of this TREC competition are
so much below our expectations. Although here
we described some reasons why this is the case,
more extensive testing is still under way. We
also want to further investigate the learning of
symbolic representations in the context of ques-
tion answering. Minimal Logical Forms and
Logical Graphs are first steps in that direction.
Of course, this also means that different scoring
metrics need to be tested. Finally, the bugs and
design issues of the current system will need to
be fixed. This again requires more testing, but
it also requires more significant modifications,
such as offset annotation instead of tokenisation
of text.

Acknowledgements

This research is funded by the Australian
Research Council, ARC Discovery Grant no.
DP0450750.

References

John Carroll, Ted Briscoe, and Antonio Sanfil-
ippo. 1998. Parser evaluation: a survey and
a new proposal. In Proc. LREC98.

Godehard Link. 1983. The logical analysis of
plurals and mass terms: a lattice-theoretical
approach. In Rainer Bauerle, Christoph
Schwarze, and Arnim von Stechov, editors,
Meaning, Use and Interpretation of Lan-
guage, pages 250–209. de Gruyter, Berlin.

Diego Mollá and Mary Gardiner. 2004a. An-
swerfinder - question answering by combining
lexical, syntactic and semantic information.
In Ash Asudeh, Cécile Paris, and Stephen
Wan, editors, Proc. ALTW 2004, pages 9–16,
Sydney, Australia. Macquarie University.

Diego Mollá and Mary Gardiner. 2004b. An-

swerfinder at TREC 2004. In Voorhees and
Buckland (Voorhees and Buckland, 2004).

Diego Mollá and Menno van Zaanen. 2005.
Learning of graph rules for question answer-
ing. In Proc. ALTW 2005, Sydney.

Diego Mollá. 1997. Aspectual Composition and
Sentence Interpretation: a formal approach.
Ph.D. thesis, University of Edinburgh.

John F. Sowa. 1979. Semantics of conceptual
graphs. In Proc. ACL 1979, pages 39–44.

Menno van Zaanen, Luiz Augusto Pizzato, and
Diego Mollá. 2005. Classifying sentences us-
ing induced structure. In Mariano Consens
and Gonzalo Navarro, editors, String Process-
ing and Information Retrieval: 12th Interna-
tional Conference, SPIRE 2005., pages 139–
150. Springer-Verlag, Heidelberg, Germany.

Ellen M. Voorhees and Lori P. Buckland, ed-
itors. 2004. The Thirteenth Text REtrieval
Conference (TREC 2004), number 500-261 in
NIST Special Publication. NIST.

