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Question Answering with QACTIS at TREC-2004
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U.S. Department of Defense
Ft. George G. Meade, MD 20755-6000
ABSTRACT

We provide a description of the QACTIS question-answer-
ing system and its application to and performance in the
2004 TREC question-answering evaluation. Since this was
also QACTIS’s first year competing at TREC, we provide a
complete overview of its purpose, development, structure,
and its future directions.

1. INTRODUCTION

Automatic question answering (QA) has been an area of
technical interest at TREC for more than a half decade and
it has been the subject of major investment from the gov-
ernment-driven AQUAINT program for almost three years.
QACTIS (pronounced like "cactus"), which stands for
"Question-Answering for Cross-Lingual Text, Image, and
Speech," is a still-in-formulation protoype system that is
being developed by the U.S. Department of Defense as a
means of gaining greater understanding of QA as a whole
while focusing on cross-lingual and cross-media QA--areas
which have received less attention from AQUAINT. The
final goal for this effort is to develop a prototype which can
allow users to ask questions in more than one language
(e.g., English and Spanish), interpret those questions
regardless of the language, and return answers which have
been derived from multilingual and/or multimedia sources.
Particular interest for this project is the capability of even-
tually answering questions from speech which is a virtually
unresearched area of study. For the purposes of this TREC
competition, however, we, like others, concentrate on
English newswire text and the hope we have is that the
knowledge gained by this experience can be useful in other
languages and other media types.

In terms of its question-answering ability, QACTIS
consists of three major components. Two of these compo-
nents are competing mechanisms for interpreting questions
and postulating possible answers. The third component is a

method of validating proposed answers. The first mech
nism for answer generation is designed to be general a
handle any kind of factoid-style question that might b
posed. This technique, which we will here refer to as
"Knowledge-Graph Induction" strategy makes use
sophisticated natural language processing (NLP) tec
niques to automatically build attributed object-relationsh
graphs for documents which likely contain answers,. Th
technique then performs graphical searches to find relev
components to answers and to ensure such compon
have the interrelationships required by the question. Th
approach is fairly costly and there are many times wh
cheaper and more convenient solutions are available.
this reason, QACTIS has a second search mechanism wh
we call a "Filter Cascade" strategy. This strategy consi
of finding potential answers by initially hypothesizing
many possible answers and then successively apply
increasingly restrictive filters to narrow down potentia
answers to the one or few most appropriate selectio
These filters consist of template-matching, shallow gram
matical rule applications, and others. The fusion of resu
from these two systems represents the prototype’s first k
of answers. This fusion can stand on its own as a questi
answerer. However, depending on a user’s needs and c
puting environment, it might be feasible and even desirab
to take advantage of the largely unstructured knowled
which exists on the World Wide Web. To satisfy this poss
bility, the third major component of the prototype is on
which will receive answers from either of the individua
systems or the fusion thereof and will use the Web to elim
nate undesirable potential answers.

In the sections that follow, we provide a description o
these components as well as a description of the foun
tions which are required in order for these components
function. Additionally, we indicate the level of perfor-
mance we observed on the TREC 2004 evaluation as w
as the successes and the difficulties we experienced in
evaluation. Lastly, we outline the future directions that w
plan to undertake between this and the next TREC.* Dragon Development Corporation, Columbia, MD

✝Johns Hopkins Applies Physics Laboratory, Laurel MD
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2. SYSTEM DESCRIPTION

Figure 1: System Overview

2.1.  The Required Foundations
Figure 1 provides a depiction of QACTIS as a whole.
Since this TREC evaluation focuses on the processing of
English newswire text, those components that are related
to multilingual or multilmedia issues have not been
depicted in the diagram and we will not go into a discus-
sion of those. Several of the components which are
emphasized have been mentioned before and will be
described in greater detail later: namely, the induced
knowledge-graph search, the filter cascade strategy, and
the web validation. Before we describe those pieces, we
will first provide a description of the few remaining
groundwork components, namely question interpretation,
knowledge incorporation, and document search which
provide the foundations to the remaining components.

2.1.1. Question Interpretation
Obviously, it is essential that before a QA system can
answer a question, it must be able to receive that question
from a user and provide an interpretation of that question.
QACTIS can interpret questions either via batch mode or
graphical user interface. Figure 2 provides a depiction of
QACTIS’s GUI and an example question-answer pair
(where the answer also includes the corresponding docu-
ment support).

Prior to the 2004 TREC QA Evaluation, QACTIS was
designed to handle questions in a stateless fashion as if
each question were independent of the others. Moreover,
the system was primarily designed to handle exclusively

factoid-style questions. Since the evaluation for 2004 w
to involve question sessions consisting of factoids, lis
and definitions, these pieces has to be incorporated i
the system.

The first issue needing to be addressed was expand
from only factoids to also allow lists and ‘other.’ Since
factoid-style answers are lists with only a single elemen
and since QACTIS actually produces a list and selects
best answers from that list as factoid answers, the proc
of deriving lists means that the system only had to be to
how many answers to respond with. Based on som
empirical calculations, we determined that a fixed numb
of list answers (between 5 and 7) seemed to provide op
mal list results. These are the parameters that we th
used in the evaluation.

Regarding ‘other’ questions, we recognized from th
TREC 2003 evaluation proceedings that the best-valu
definition responses were wordy and tended to rep
most sentences that contained words of interest [1]. W
decided that our primary system would therefore sele
out the best sentences and return those as answer
‘other’ questions. However, since older TREC evalu
tions had incorporated definition-like questions of th
form “Who is X” or “What is X” where a factoid answer
might satisfy, we thought to also try answering ‘othe
questions as if they were list questions of “What is X
questions. We submitted results using both methods.

The next issue that had to be tackled was to determ
how to handle a series of questions within a given ‘us
session’ (that is, under a given topic). We resolved th
the easiest strategy for handling such problems would
to cast them as a list of independent questions w
resolved anaphora. A source of difficulty here was
determine how complicated the TREC questions might
in terms of resolving anaphora. NIST only provided
few simple examples and it was unclear if this level o
simplicity would be comparable to what would be seen
evaluation. We assumed we would need the ability
handle more complex questions. Two members of o
team wrote and evaluated a large number of questions
the ‘user session’format. There were six main styles of
questions that we observed in this analysis. These we
(1) non-anaphoric questions; (2) questions where a sim
anaphor related directly to the topic; (3) questions requ
ing more complicated anaphor resolution; (4) questio
where neither the topic nor anaphora were indicated;
questions that referred to the answers to previous qu
tions; and (6) questions that referred to the verbage of p
vious questions. Though the first kind of such questio
is trivial to solve, the rest are more interesting. We he
provide examples of each kind:

Type 2: Simple Anaphor
“Kosovo”: Where isit located?

Knowledge
Graph

Induction &
Search

Filter
Cascade-
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“Roses”: Where were the firstones grown...?
“George W Bush”: When didBush take office?

Type 3: Complex Anaphor
“Synchronized Swimming”: What country gave origin
to this sport?
“Abraham & Mary Lincoln”: When didshe marryhim?

Type 4: No Anaphor nor topic in Question
“Philippines”:When was the Leyte Gulf invasion?
“Climate”: When was the last Decadal Oscillation?

Type 5: Reference to Previous Answer
“Spain”: Who did Spain want extradited? Where was
he prior to extradition?
“Guerrilla”: Who are the founders of ...? What istheir
nickname?

Type 6: Reference to Previous Verbage
“Venus”: When Venus crosses the sun is known as what
type of eclipse? Prior to 1999, when did thelast one
occur?

We developed software that we believed could handle
the first five kinds of these questions. We anticipated that
the sixth kind would be out of scope of this TREC evalua-
tion. At evaluation time, our code was able to handle

most of the questions reasonably well, but as will be ma
more clear in Section 3, there were some catastrophic fa
ures which damaged our performance.

2.1.2. Knowledge Incorporation
In addition to determining the kind of question an
resolving session issues, another component of ques
interpretation is determining the intent behind the wor
ing of the question. Taxonomic, ontologic, and dictio
nary-based information can be beneficial for judging th
meanings of the question words. To satisfy this need,
made appeal to versions of the English WordNet [2]. W
also made use of an electronic dictionary from one of o
earlier efforts [3]. In addition to accessing meaning, w
also needed to contend with issues regarding syntac
variation. We made some use of WordNet’s word stem
ming capability and we also created a stemmer of our ow
which would provide multiple possible stems or confla
tions of the words in question.

2.1.3. Document Search
A common QA practice is to initially interpret the incom-
ing question as if it were a request for relevant documen
rather than a request for an answer [1]. Using this str
egy allows the system to use typical information retriev
(IR) practices to identify documents that are likely to con

Figure 2: View of the QACTIS GUI, a
question, an answer, and support.



h
tain answers to the user’s questions. Although there is no
guarantee that this assumption will be valid, this strategy
has served useful in most experiements we have tried thus
far. In the event that it is unsuccessful, there is not reason
to believe that our QA system would have found the
answer if the IR could not return appropriate documents.

We experimented with several IR systems, including
one of our own making. We determined that the Lemur
system [4] provided the best out-of-the-box results to our
searches. We therefore incorporated Lemur into QAC-
TIS. Although it is possible to massage the question so as
to optimize IR results, we have not done this yet in QAC-
TIS. Our results therefore reflect the use of Lemur as a
black box where a query is supplied as input and a list of
documents is generated as output. We use no pseudo-rel-
evance feedback (PRF) in searching since preliminary
experiments suggested that although PRF improves mean
average precision, there seems to be a diluting amongst
the top answer-bearing documents.

One last comment is in order regarding the kind of IR
search QACTIS performs. In the QA community, some
believe that the optimal form of IR for improving the abil-
ity to answer is to do optimal passage retrieval. This
might be a good strategy for QA on factoid-style ques-
tions from newswire data where answers are often iso-
lated in a limited number of sentences. However, it is not
clear that restrictive passage retrieval is as beneficial when
questions are more general, when answers occur across
documents, and when the data consists of non-news or
non-textual material. We therefore apply IR to full docu-
ment retrieval which documents then get mined by the
specific answer-searcher which later gets applied.

2.2. Knowledge-Graph Induction Strategy
After the introductory steps described above, the next pro-
cess is to perform a search for the answer. As was men-
tioned before, QACTIS has a two-phase approach to
question answering, namely a knowledge-graph induction
strategy and a separate filter cascade strategy. The knowl-
edge graph induction and search is to be general and to
potentially handle any kind of questions whereas the filter
cascade was developed to handle specific kinds of ques-
tions with greater accuracy. We first describe the general
knowledge-graph strategy and later discuss the filter cas-
cade mechanism.

Figure 3 provides a detailed graphical view of the
methodology employed by the knowledge-graph induc-
tion strategy. The basic objective of this strategy is to
convert the topN potentially relevant documents (as
returned by Lemur) into a single, indexed, directed, attrib-
uted entity-relationship graph which can be mined to find
connected subgraphs containing the desired components
of the question. There is insufficient space to describe all
of this process in exhaustive detail, so we provide a gen-

eral overview of the major system components whic
allow us to induce and mine such a graph.

Figure 3.  Knowledge-Graph Induction/Search

< >  < >
< >

< >      < >
< >  < >

< >
< >      < >

Question
    (Q)

Identifinder ParseSelect

charniak
parser

Parsed
Docs

Documents

< >  < >
< >

< >      < >

< >  < >
< >

< >      < >
< >  < >

< >
< >      < >
(((  ))(  )( )

((  (  ) ) ( )

Reformat &
Parse

LEMUR

Q’

Graph BuilderSearch
Builder

Bag of
Searches Indexed Attributed

Entity-Relation Graph

Potential
Documents
List

Parsed subset
    of docs

Entity-tagged
docs

WordNet

Dicts

Answer-Component
Search

Indexed Candidate Objects

Obj75
Rel15
Adjp7

Reachability
Expansion

Distance
Augmentation

Obj75

B C

Obj75B C

Rel15

Ob
j75

B
C

wt1

wt2

wt3

Obj75

B C

Obj75B C

Rel15

Ob
j75

B
C

wt1’

wt2’

wt3’

Indexed Reachable
Directed subgraphs Directed subgraphs

Reachable+Distance

Sort and FilterAnswer



-
h
. If
e

ni-
It
ing
ps,
en
e

ss
he
”

m
ces
e

le,
”

y
ue

s-
at
by
e

red
f

e.

e

as
ge
ht

h
s,
one
ers
to
ed

4

”
s
of
2.2.1. Graph Building
To begin the graph induction process, we first per-

form a deep syntactic parse of the Lemur documents
using the Charniak parser [5]. Although we would like
parsing to happen at question time, it is currently an
extremely slow process (taking about 1 second per sen-
tence on a 2.8 GHz Pentium IV). Therefore, we parse
all documents earlier at indexing time and then need only
to pull back the correct parses during the query phase. In
addition to parsing the documents, we run BBN’s Identi-

finderTM system [6] to provide entity information which
can support answering questions regarding people, places,
and times. Identifinder runs sufficiently fast that we apply
it at query time. Upon completion of both of these efforts,
the system is then ready to induce a graph from this infor-
mation.

We will consider an example of how this is done.
Suppose there were a document in our collection: “Johan
Vaaler invented the paper clip 90 years ago.” Charniak’s
parser would convert this into something of the form

(S1 (S (NP (NNP Johan) (NNP Vaaler))
(VP (VBD invented)
(NP (DT the) (NN paper) (NN clip))
(ADVP (NP (CD 90) (NNS years)) (RB ago))) (. .)))

Identifinder will also indicate that “Johan Vaaler” is a per-
son. The graph builder then reprocesses the string to con-
vert relative times like “90 years ago” into absolute times
by using the document’s metadata that indicates it was
written in 1989, subtract 90 years, and reporting

(S1 (S (NP (NNP Johan) (NNP Vaaler))
(VP (VBD invented)
(NP (DT the) (NN paper) (NN clip))
(ADVP (PP (IN in) (NN 1899)) )) (. .)))

The graphbuilder next converts nouns and noun phrases
into entities, verb phrases into relationships, and quantifi-
ers, prepositional phrases, and adjectives into attributes.
As it does this, it tries to some degree to resolve anaphora
and the meanings of definite articles. When complete, it
produces a graph akin to the  that in Figure 4:

Figure 4: Indexed, Attributed Entity-Rel Graph

2.2.2. Creating a Bag of Searches
In parallel with the graph-building effort, there is a sepa
rate process within the graph induction strategy whic
tries to interpret the user’s needs based on the question
the question were “Who invented the paper clip?,” th
system attempts first to convert the question into a defi
tive statement like “Person.Q invented the paper clip.”
then parses the statement and applies the graph build
process thereto. The major objects (entities, relationshi
quantifiers, and attributes) and some relations betwe
them (like quantifier and quantified) are mined from th
graph as entities to search for.

Next, the system builds a set of searches to proce
each kind of major object. In the sentence above, t
major objects would be the “person.q” and “paper clip
entities and the “invented” relationship. The syste
determines the kinds of objects that these are and indu
a collection of subroutines (one per object) that will b
used to test each word/phrase of the topN documents to
see if each provides evidence of the object. For examp
the subroutine that is induced for the word “paper clip
would test each word in the topN documents to see if they
are WordNet synonyms of the noun “paper clip” or if the
are some sort of stem or conflation of it. The same is tr
for the word “invented” except that it knows to be looking
for synonyms of a verb. For the word “person.Q,” the sy
tem knows that words or phrases that satisfy this must
least be entities, but entities that have been marked
Identifinder as people or possibly organizations provid
better solutions, as might entities that have been refer
to as “he,” “she,” and so forth. Each different kind o
question word, namely “who,” “when,” “where,” “what,”
“why,” and so forth generate a separate type of subroutin

2.2.3.  Growth Using Reachability and Distance
The collection of subroutines is applied to all of th
words/phrases within the topN documents and any word
that is found to match a subroutine’s needs is saved off
well as the location where the it appears. A langua
model-based score (see [7], [8]) is then used to weig
each candidate answer.

The main task for this system is to determine whic
objects, from among those that satisfy question word
can best address the needs of the user. This means
needs to identify the objects that are candidate answ
and see if, through graph connectivity, it is possible
grow a subgraph which contains all or most of the desir
elements from the incoming question. Suppose Figure
represents one of the topN documents. Clearly, entity #6
(“paper clip”) and relationship #1 (“invented”) satisfy the
question’s requirement for “paper clip” and “invented.
Entity #3 (“Johan Vaaler”), according to the graph, wa
identified as a person ... so this also satisfies the need
“person.Q.”

invented

johan_vaaler paper_clip

johan vaaler paperclip

1899when

unique

ent1 entj2

ent3

ent4 ent5

ent6

rel1

PERSON
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However, these three objects by themselves do not
solve the user’s question. They need to be woven
together, if possible, so as to guarantee that the answer is
correctly found. Since Figure 4 represents a directed
graph, objects can be ‘woven together’ if an arrow exists
between them and if the arrows points in the appropriate
direction. From Figure 4, relationship #1 is reachable
from entity #3 and entity #6 is reachable from relationship
#1. Hence, we can link together each of the desired terms
using this strategy and report, as a final answer, the prod-
uct of the scores of each object.

For many graphs, however, it is impossible to obtain
reachability between all of the needed components. As a
final supplement to the answer search process, we make
use of the distance that a missing component is away from
a reachable subgraph. The score for incorporating such a
word is related to the reciprocal of the square of its dis-
tance from the subgraph.

The scores of the distance-augmented reachable sub-
graphs are sorted, and the subgraphs with largest scores
are reported as answers. For factoid answers, only the
best such answer is kept, and for lists, the topm answers
are reports.

2.3. Cascade of Filters Strategy
A separate module was developed to provide a more in-
depth analysis and corresponding answers to certain kinds
of questions such as the "How many" and “Other” type
questions. This was the initial starting point for QACTIS
development and the feeling was that certain types of
questions are likely to be amenable to straightforward
solutions. The Cascade of Filters approach (CFA) has
significantly better MRR scores for questions like the
“How many” over those of the Knowledge-Graph Induc-
tion algorithm, so QACTIS typically fuses both methods
with the idea that specifically-tailored question answering
through CFA should be used when available. The CFA
uses different filters to identify potential answers and also
eliminate others. Any values left at the end of all the fil-
ters was considered to be an appropriate answer.

2.3.1. Trigrams n Tags - (TnT)
The CFA relies on information retrieval using Lemur,
Wordnet as a lexical reference system, and TnT for part-
of-speech tagging. TnT (short for “Trigrams ’n Tags”) is
an efficient statistical part-of-speech tagger that is train-
able on different languages and virtually any tagset [9].

2.3.2. Filters
The CFA evaluates the topN (N usually set to 30) docu-
ments returned by Lemur. (The original question is
tokenized using TnT, and the main noun/noun phrase of
the question is extracted.)  WordNet is also used to gener-
ate synonyms for the noun/noun phrase.  The retrieved

Figure 5.Cascade of Filters

documents are then successively filtered to identify can
date answers. After all candidate answers are scored,
top score is considered the correct answer and ties go
the answer from the highest scoring Lemur docume
The CFA filters for “how many” questions are describe
below.
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2.3.2.1SentenceExtractorFilter (SEF): The SEF identi-
fies sentences of each top IR document that contain a
match to the question noun phrase or synset synonyms,
and also contain a numeric value. The distance in words
between the noun and value are then calculated; the short-
est distance is the best. A count of the important question
words and synset words is also recorded and added to the
minimum distance score. Sentences with the highest
scores for each of the topN documents are saved in a
hashtable with the candidate “how many” numerical value
as the key. Each of these sentences are then POS-tagged
using TnT and saved in another hashtable ... again using
the candidate value as the key. Both hashtables are evalu-
ated by the Template Matcher Filter.

2.3.2.2TemplateMatcherFilter (TMF): Shallow parsing
was performed on the question and template match filters
were formed. For example, “How many hexagons are on
a soccer ball” could generate templates
   a) “<#> hexagons are on a soccer ball”
   b) “soccer ball has <#> hexagons”
   c) “soccer ball contains <#> hexagons”

Exact matches indicated a high degree of certainty. All
potential answer sentences were tested against the tem-
plate filters. If any matches were found from the tem-
plates, the system progressed to the sentence score
recalculation module using these template matched
answers, otherwise the Semantic Rules Filter is applied to
the hashtable sentences.

2.3.2.3 SemanticRulesFilter (SRF): These filters attempt
to use semantic rules for validation. This set of filters
eliminates candidates from the hashtable of possibilities.
One such filter deals with the verb and its synonyms. For
example, given the following two sentences, the first
would be eliminated for the question “How many athe-
letes participated in the 2004 summer olympics games?”

Potential filtered sentence 1: 103 atheletes of the 2004
summer olympics won medals for the United States.

Potential filtered sentence 2: 11,099 atheletes com-
peted for medals in the summer olympics.

Both sentences were in the candidate answer hash
because they contained the main question word “athe-
lete,” had a numeric value with a distance of 1 from that
question word, and contained the same number of impor-
tant question words (summer olympics). In this case the
verb “won” did not match “participated” or a synonym of
participated (competed), so that sentence was eliminated
from the candidate hashtable. The system also accounted
for a conjugated form of the verb to appear in the answer
as well as a verb to be presented in a different tense than
the question verb. If the candidate hashtable still had
entries, the processing continued to the next set of filters.

2.3.2.4 Trigram, Shallow Parsing Filter (TSPF): All
word-trigrams of the question and candidate answer s
tences are computed. If any candidate sentences has
grams in common with the question, then all sentenc
that do not have commonality are purged. Next, the PO
tags of the question are used to help form a direct obje
verb/value triple from the question. Such triples are al
formed for each of the remaining candidate sentenc
Again, if there are any candidate answers whose trip
matches that of the question, then any candidates that
not have matches are discarded.

2.3.2.5 Answerreporting: If there are still more than one
candidate answer, the system rescores those that rem
The highest-scoring sentence is declared to be the answ
Ties go to the highest Lemur-scoring document.

2.4. Providing Web Validation
Several researchers have proposed using large exte
corpora for the purpose of validating candidate answers
factoid questions [10]. In particular, the size of the We
and the availability of online search tools make it conv
nient to use search engines as a data source to con
answers using the Web as a source for validation.

Magnini et al. compared two different approaches fo
Web-based answer validation: a statistical approach t
examined question and answer word co-occurences an
content based method that measures the proximity
question words to an answer in short text extracts. T
two methods performed similarly and conferred roughly
22% increase in performance over a baseline that did
apply answer validation. For our participation in th
TREC 2004 QA task we adopted the content-bas
method of Magnini et al. for both the factoid and list sub
tasks.

The algorithm we used is based on the notion that t
candidate answer pattern will appear in close proximity
the question terms. A query consisting of the exact answ
pattern conjoined with content words from the questio
was submitted to the Altavista search engine. Thus o
web request per candidate answer is required. Like ma
search engines, the Altavista engine returns a ranked l
of documents along with short textual extracts which co
tain query terms. It is these textual portions that are exa
ined - not full documents. We want to reward answers th
are very close to many question words and which a
found with question words in multiple documents. W
only considered the top ten responses from our basel
system which found a correct answer in 48% (TREC-
and 37% (TREC 2003) of cases.

An answer’s score is produced by aggregating sco
obtained from individual textual snippets returned by th
search engine. The candidate answer string can con
multiple words and may occur more than once in th
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extract. We search for the presence of each non-stopword
question word in the snippet. If found, we determine the
distance, in ‘non-question’ words, between question word
and answer. (A non-question word is any word not
appearing in the question). For each word, the closest
location is used. A product is computed over all query

terms using 21/(dist+1)as factors. This results in a factor of
1 when a term is absent and a factor of 2 when a question
word is adjacent to the answer (or separated only by other
question words). Values between 1 and 2 are obtained
when question words are more distant from the answer
location. Per-snippet scores are summed for each candi-
date answer and the highest score is deemed the most
likely response.

We experimented with this approach using data from
the TREC-9 and TREC 2003 QA tracks and found that
substantial gains could be obtained. Answer validation
enhances overall performance on all factoid questions, but
the technique appears more effective with certain question
types. We left our baseline system’s answers unmodified
for amount-type questions (i.e., "how many ..." or "how
long is") which make up about 13% of the factoid ques-
tions. In Table 1 we show the improvement observed for
factoid questions from previous TREC QA tracks. We
produced ten candidate answers and computed both mean
reciprocal rank (MRR) and the number correct (#Corr) at
rank 1. Given the improvements that this technique pro-
vided at development time, we expected comparable gains
to occur at evaluation time as well.

3. SYSTEM EVALUATIONS
3.1. Description of Results
For TREC-2004, we opted to submit three separate sys-
tems. The first system (“nsaqactis1”) was our baseline
system which represented the output fusion of the Knowl-
edge-Graph and CFA strategies. CFA provided the
answers to definition and “how many” style questions,
and the knowledge graph produced the other types of
results. The second system, “nsaqactis2,” was the same as
the first except web validation was applied afterwards.
The third system, “nsaqactis3” used only the knowledge
graph and web validation to answer the questions. The
performance of the TREC 2004 evaluation is provided in

Table 2. To our surprise, our baseline (#1) system p
formed approximately as well as our Trec 9 baseline h
performed. We had hoped that a comparable web-valid
tion improvement would have been seen as well, but
our dismay, web validation actually resulted in a loss
performance on non-list questions, but there was a reas
able gain using web validation on lists. We were als
delighted to have “Other” style questions perform ver
well given that this was a last-minute and untested featu
of our system. In the sections that following, we provid
a brief analysis of these results to include an indication
where things went as well or better than expected a
where the system failed to respond as desired.

3.2. Times When Things Go Well
Perhaps the component of our system whose performa
we are most pleased with is that of “Other” answerin
Early in the paper, we mentioned that just prior to th
TREC evaluation, QACTIS had very little capacity to
handle “other” style questions. Through the Knowledg
Induction Search we did have limited capacity of decla
ing hypernyms of the entities needing definition to b
defining statements about those entities, but we did n
have the ability to handle definitions in the encycloped
style that TREC evaluates. For interest sake, we did su
mit our hypernym output as one version (#3) of defin
tions, but we had interest in creating definitions th
would be more aligned with the evaluation. In last year
TREC evaluations, definitions that consisted of well-ch
sen sentences seemed to outperform most other type
definitions, so our throught was to build some comparab
mechanism. The CFA strategy works primarily from
well-chosen sentences, so it seems well-suited to build
up our definer. Definitional questions were therefore ha
dled by modifying the Sentence Extractor Filter (2.3.2.1
used in CFA. In particular, sentences from the topN doc-
uments were scanned for matches to the target topic a
those sentences were saved off. No attempt was mad
avoid redundancy with prior questions from the same se
sion. A simple filter was then applied that accepted on
those sentences as answer components that had len
greater than 10 and less than 250 words. The numbe
sentences per topic was capped at 50.

Table 1: Effectiveness of Web Validation on Previous
QA Data

Trec 9 (492) Trec2003(380)

#Corr MRR #Corr MRR

Baseline 101 .277 49 .190

Web-Validated 119 .310 73 .231

(Improvement) (+18%) (+12%) (+49%) (+22%)

Table 2: TREC 2004 Performance

Strategy Factoid List Other All

Knowledge Graph+
Filter Cascade (#1)

0.204 0.071 0.367 0.211

System #1+
Web Validation (#2)

0.187 0.098 0.355 0.207

Knowledge Graph+
Web Validation (#3)

0.183 0.104 0.062 0.133
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Table 2 suggests that this strategy seemed to work
reasonably well. In our best-scoring run (the baseline,
#1), the answers were on average about 2336 characters
long and had an average precision of 0.179 and an average
recall of 0.485. Since recall played a significant role in
performance, and since long answers are well tolerated,
this led to the reasonable score of 0.367 which was better
than we had hoped to achieve.

(As a matter of comment, the third system, which
scored poorly was based purely on lists of potential
hypernyms. In this case, the average answer length was
reduced to 226 characters and the precision dropped
somewhat to 0.118. Yet the average recall -- the most
important component of the evaluation -- was very
low...only 0.066.)

3.3. Difficulties: The Unexpected
3.3.1. Series-style Question Problems
We had expected that our module to convert series-style
questions into independent questions would work satis-
factorily. There were a number of questions where the
system had significant difficulties, however.

In the 11th squestion-session, the target was “the
band Nirvana” and the second and third questions of that
session asked about the band members and the band’s for-
mation. The resolver recognized that “band” and “band
Nirvana” were the same but did not make the correspond-
ing substitutions into the independent questions. Thus,
the question did not indicate what kind of band was being
looked for and all corresponding answers were missed.

In this same series, the next questions that were posed
used the terms “their” and “they.” The resolver assumed
that since the former question mentioned band members
whereas the topical ‘band’ is a singular entity, “their” and
“they” must refer to the answer of the second question in
the series. Thus, instead of using “Nirvana” as a substitu-
tion for the anaphora, it used what it thought mught be an
answer to the group members question, and it thus substi-
tuted “Desmond Chase” for “they” and “their.”

These two phenomena, namely, failing to make the
substitution when part of the topic was found in the ques-
tion and using answers to previous series questions to
resolve the anaphors, was a condition which occurred a
total of 16 times throughout the question collection.

3.3.2. Inexact answers
Another difficulty for our system was that by and large,
until the evaluation, we paid little heed to the actual docu-
ments where answers appeared and we did not concern
ourselves heavily on whether the cleanest answer (i.e., an
exact answer) was presented -- but only if the right kind of
answer was identified. The evaluation, however, was con-
cerned with providing document support and answer
exactness.

The first of these issues is rather complicated
resolve in a system which tries to identify answers acro
documents -- which document did the answer actua
appear in? To prepare for the evaluation, we had to eq
the system to know, to the best of its ability, where th
original answer came from. These modifications we
reasonably successful in that only one of the otherwi
correct answers we returned was declared to be uns
ported.

On the other hand, the requirement for answer exa
ness resulted in a high penalty for us. Our best syste
only produced 47 correct answers. Yet the system p
duced 12 answers which were deemed to be inexact, t
resulting in significant damage to our overall perfo
mance.

3.3.3. Experiments and Test in Web Validation
As mentioned, we applied answer validation on two o
three TREC 2004 submissions. Although the method w
untested, we also attempted to validate responses to
questions as with factoids.

Location questions fared worse with Web-validation an
’what’ and ’who’ questions were less popular in thi
year’s set of questions. These differences in the distrib
tion of question types might account for the observed d
ferences.

For list questions we returned as many as 7 respon
after considering up to 15 possibilities from the baselin
system (more or less possibilities may have been p
vided). Here Web-validation had a significant positiv
effect, improving the F-score from 0.071 (without valida
tion) to 0.098.

4  FUTURE DIRECTIONS

The results we have presented represent our first atte
to participate in the TREC QA Evaluation. Across th
course of the next year, we expect that our system w

Table 3: Comparing performance by question type

Total w/o Validation w/ Validation

Abbrev 1 0 0

Amount 31 7 7

Location 28 8 4

Miscellany 15 1 1

Process 2 0 0

Time 48 19 19

What 66 6 7

Who 39 6 5

230 47 43



improve as we add functionality for better resolving ana-
phora, so this will be one of early expansions. Moreover,
as we have analyzed documents, we have noted that a sig-
nificant number of potential answers are not observed
since inference is required in order to find them. This,
then, will be our next area of concern. Lastly, since multi-
media and multilingual QA is of interest to us, we expect
to enable the capabilities we have shown here in Spanish
and began to try them on non-text media.
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