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Abstract 
This paper reports on work done for the Genomics Track at TREC 2004 by 
ConverSpeech LLC in conjunction with scientists at the Saccharomyces Genome 
Database (SGD), the model organism database located at Stanford University, California. 
The rapidly increasing number of articles in the biomedical literature has created new 
urgency for software tools that find information relevant to specific information needs. 
We focused on two challenges in this work: the problems of synonymy (several terms 
having the same meaning) and polysemy (a term having more than one meaning), and the 
problem of constructing queries from information needs stated in natural language. We 
investigated the use of concept extraction for the second problem, relying on the limited 
statements of information need as the source of textual analysis. To minimize the 
problem of synonymy, we investigated the use of a language-oriented biomedical 
ontology and MeSH (Medical Subject Headings) for term expansion. Additionally, to 
minimize the problem of polysemy, we used extracted concepts to analyze and rank the 
documents returned by a search. We submitted two sets of results to TREC for 
evaluation, the first one produced automatically, the second derived from the first by 
making specific kinds of changes in the query and ranking methods. The mean average 
precision (MAP) for the automatic result was lower than the median of the 37 submitted 
runs overall; however, desirable results were obtained for mean average precision at 10 
and 100 documents for almost half the topics. The MAP for the derived result was higher 
than the median, a desirable result. 
 
Background 
NEED. The rapidly increasing number of articles in the biomedical literature has created 
new urgency for software tools that find information relevant to specific information 
needs. The Text Retrieval Conference (TREC), co-sponsored by the National Institute 
of Standards and Technology (NIST) and U.S. Department of Defense, supports large-
scale evaluation of text retrieval methodologies.  The TREC 2004 Genomics track 
contained a task, called the Ad hoc information retrieval task, that consisted of 50 
specific information needs collected from interviews with biomedical scientists. 
Documents relevant to these needs had to be located within a 10-year subset of the 
MEDLINE bibliographic database and the results sorted according to their estimated 
relevance. This paper reports on work done for the Ad hoc task by ConverSpeech LLC 
in conjunction with scientists at SGD, a scientific database of the molecular biology and 
genetics of the yeast Saccharomyces cerevisiae located at Stanford University, 
California [1]. 
 



PROBLEMS. The language of biomedical text.  The language of biomedical texts, like 
all natural language, is complex in structure and morphology (the basic units of 
meaning) and poses problems of synonymy (several terms having the same meaning), 
polysemy (a term having more than one meaning), hypernymy (one term being more 
general than another), and hyponymy (one term being more specific than another), 
among others. We investigated the use of our language-oriented biomedical ontology, 
called BioMedPlus, along with MeSH (Medical Subject Headings) terms to provide 
synonyms to produce an expanded query. In doing so, the problem of polysemy was 
exacerbated, which we then also addressed. 
Natural-language information needs. The second major challenge we addressed was 
how to transform the natural-language descriptions given by the interviewed biomedical 
scientists into queries that can be submitted to an information retrieval system. Concept 
extraction is the process of deriving terms from natural-language text that are 
considered representative of what the text is about. The terms are natural-language 
words and phrases, which may or may not themselves occur with the original text. We 
investigated the use of concept extraction to produce both a set of terms for the initial 
query and a set of terms for analyzing the documents returned by the initial query, 
ranking them according to their estimated relevance. This ranking helps minimize the 
problem of polysemy.   
Limited sources for textual analysis. Although inverse document frequency methods 
have long been used to assess the retrieval quality of a term [15], we wanted to evaluate 
a way of finding good terms when a document set may not be available, or may be 
changing too rapidly, for the tf*idf method, or when all that is available is a short piece 
of text. This interest led to our use of concept extraction for this information retrieval 
task. 
 
HYPOTHESIS.   The primary evaluation measure for the task was mean average 
precision (MAP) defined as the average precision at each point a relevant document is 
retrieved. Recall and precision are calculated as usual, with recall being the percentage 
of relevant documents returned by the system at the point of measurement, and 
precision being the percentage of the documents returned by the system at the point of 
measurement that are actually relevant. The hypothesis of our study was that our 
concept extraction methods and our approach to synonymy and polysemy would yield 
desirable MAP results.  
 

Results 
We submitted two sets of results to TREC for evaluation, one labeled ConversAuto and the other 
ConversManu. The first was produced automatically, with no human intervention. The second 
was derived from the first after consultation with our collaborators at SGD. We added an 
additional automatically constructed query term for all topics and made three additional kinds of 
changes in the query and analysis (ranking) terms that proved successful. The mean average 
precision (MAP) for ConversAuto was 0.2013 and for ConversManu 0.2931. The MAP for 
ConversManu was higher than the median 0.241 of all the 37 submitted runs, a desirable result. 
The MAP for ConversManu was lower, but for almost half the topics the mean average precision 
at 10 and 100 documents surpassed or equaled the corresponding medians. 
 



 

Materials and Methods 
MEDLINE.  A typical MEDLINE record consists of fields for author name(s), title, 
abstract, date of publication (DP field), MeSH terms (MH field with Medical Subject 
Heading terms selected by bibliographic and subject specialists), chemical terms (RN 
field with terms selected by bibliographic and subject specialists), date the MEDLINE 
record was completed (DCOM field), and so on. The 10-year window used to select 
MEDLINE records was from 1994 to 2003 inclusive, as identified by DCOM. Within 
this subset, therefore, there were some records for articles published before 1994; the 
DCOM field notes the date the article’s citation was completed for MEDLINE, not the 
article’s date of publication.  The subset, in fact, had 2,814 (0.06%) articles published 
prior to 1980, 8,388 (0.18%) articles published prior to 1990, and 138,384 (3.01%) 
articles published prior to 1994. The remaining 4,452,624 (96.99%) articles were 
published within the 10-year period of 1994-2003. Of the total 4,602,210 articles, 
approximately 75% had abstracts; the remaining 25% lacked abstracts.  
 
TOPICS.  The topics consisted of the following three fields (plus an identification field 
used for processing):  

• Title, an abbreviated statement of the information need  
• Information need, a full statement the information need 
• Context, background information to place the information need in context. 

In addition to the 50 topics used for the runs submitted to TREC, an additional five 
sample topics were made available for early experimentation. One is displayed in 
Figure 1.  
 

Title pBR322 used as a gene vector 
 

Need 
Find information about base sequences and 
restriction maps in plasmids that are used as 
gene vectors 

 
Context 

The researcher would like to manipulate the 
plasmid by removing a particular gene and 
needs the original base sequence or 
restriction map information of the plasmid 

Figure 1 - Sample topic  
 
BIOMEDPLUS ONTOLOGY.  The ConverSpeech ontology, BioMedPlus, is a federated, 
language-oriented ontology constructed from LocusLink [4], GO [5], KEGG [6, 7], and 
SGD [1], and modeled on WordNet [2,3], a widely used general ontology for the 
English language. It includes a vocabulary (which promotes a standard way of naming 
the concepts of the domain) and a system of hierarchical and other relations between 
and among the concepts and the vocabulary items. It also includes definitions of the 
vocabulary items. Concepts in BioMedPlus are represented as synonym sets, which are 
sets of words or phrases that express the same meaning or refer to the same biomedical 
entity in at least one context. The vocabulary in BioMedPlus is therefore divided into 
sets of synonyms, each representing a single underlying concept.  Information on 
synonyms is readily available in the biomedical sources from which the ontology is 
built.  Each synonym set may have one or more relationships to other synonym sets.  
For example, a hypernymy relationship indicates that one concept is a kind of (or 



subordinate to) the other concept.  Glucose metabolism, for example, is a kind of 
hexose metabolism, which in turn is a kind of monosaccharide metabolism. 
BioMedPlus can also store non-hierarchical relationships, such as GO associations.  The 
same word or phrase may occur in more than one source ontology; however each usage 
of the word or phrase may have a different meaning.  To differentiate between these 
meanings, separate uses of a word or phrase are assigned separate sense number, which 
are simple integers.  For example, the first use of “SFD” is assigned the sense number 1 
(written as “SFD#1”), the second usage assigned sense number 2 (“SFD#2”), and so on. 
 
CONCEPT EXTRACTION.  Concept extraction is the process of deriving terms from 
natural-language text that are considered representative of what the text is about. The 
terms are natural-language words and phrases, which may or may not themselves 
appear in the original text.  We began by counting as concepts those words and phrases 
in the Title, Need, and Context that were:  

• also entries in the ConverSpeech BioMedPlus ontology, 
• collocations found through statistical analysis of some combination of Title, 

Need, and Context, using the method of likelihood ratios [15], and 
• words and phrases that were neither part of general English (as determined by 

our adapted WordNet model) nor entries in the BioMedPlus ontology. This rule 
aimed to capture those biomedical terms that have not yet found their way into 
any of the sources for BioMedPlus but are not regular English words. 

Words and phrases that were simple pluralizations of words and phrases already 
extracted were not considered separate concepts. Words and phrases on a Stop List, 
currently compiled heuristically, containing terms judged too general to be of interest 
(e.g., “gene”) were eliminated. No synonyms were used at this stage; the concepts 
extracted so far were always themselves words or phrases appearing in the Title, Need, 
or Context. Trial and error experimentation using the five sample topics led us to use 
the following concepts for the initial query. 

Let C1 be the set of concepts extracted from the Title, Need, and Context. 
Let C2 be the set of concepts extracted from the Title and Need. 

Then let Q1, Q2, and Q3 be sets that contain terms for the initial query, where  
Q1 contains every term from C2 that is from GO or KEGG; that is, the Title and 

the Need concepts that correspond to GO or KEGG terms, 
Q2 contains every remaining term from C2 that appears in the Title but is not 

part of general English (as determined by our adapted WordNet), and 
Q3 contains every remaining term in C2. 

For analyzing and ranking the returned documents according to their estimated 
relevance, we defined an additional set A1 as follows: 

A1 contains every term from C1 which did not appear in Q1, Q2 or Q3, that is, the 
concepts provided by the Context that were not already in the other concept 
sets.  

These sets were defined to give greater weight to the Title and Need and to words and 
phrases derived from GO and KEGG. The initial query was then constructed as follows: 

(Boolean OR of all terms in Q1) AND (Boolean OR of all terms in Q2) AND 
(Boolean OR of all terms in Q3) 

Figure 2 shows the concepts, initial query and ranking concepts for the sample topic in 
Figure 1. 



   
C1 C2 

base sequence 
gene vector 
pBR322 
plasmid 
restriction map 

gene vector 
pBR322 
plasmid 

   
Q1: <empty> 
Q2: pBR322  
Q3: plasmid, gene vector 
 
Initial query: (pBR322) AND (plasmid OR gene vector) 
Ranking concepts: base sequence, restriction map 
Figure 2 - Concepts, initial query, and ranking concepts for sample topic 
 
For the derived queries used to produce ConversManu, we constructed an additional 
query term, Q11, for each topic. It consisted of every remaining term from C2 that is a 
species name. The derived query was then built by adding the terms in Q11 as follows: 

(Boolean OR of all terms in Q1) AND (Boolean OR of all terms in Q2) AND 
(Boolean OR of all terms in Q3) 

AND (Boolean OR of all terms in Q11). 
 

There are many different ways of using the Title, Need, and Context concepts in 
constructing the query, and many different logical forms the query could take. Without 
further analysis to see what works best, and possibly why, we make no claim about the 
specific form of the queries. Our main interest was in seeing if the concepts extracted 
appeared to pick out significant terms for searching and ranking that gave reasonable 
results.  
 
SEARCH ENGINE.  The query was processed by a proprietary search engine that uses the 
PubMed e-utilities [8]. First, however, each term was run through the BioMedPlus 
ontology to find synonyms. An expanded search query was built with the synonyms 
added in using the Boolean OR where appropriate. When this query was passed to 
PubMed via the e-utilities, a further step of query transformation took place. MeSH 
translations were provided wherever one existed [9] and, again, using the Boolean OR, 
a final query was constructed for searching MEDLINE. The MeSH translations often 
appended the search delimiter [MH] to the MeSH term, ensuring that the term would be 
matched only against the same term in the MH field of the MEDLINE record. At this 
stage, the concepts extracted and constructed from the Title, Need, and Context are 
represented by many terms that do not appear in the original natural-language 
description. Additional terms have come from synonyms and MeSH terms. Figure 3 
shows one synonym that was added for topic 17 and two MeSH translations that were 
provided for topic 15. 
 
 
 
 



Term Synonym or MeSH translation 
Trp53 transformation related protein 53 
atpase adenosinetriphosphatase [MH] 
binding pharmacokinetics [MH] 
Figure 3 – Synonyms or MeSH translations 
 
Because PubMed does not allow searching by DCOM—the date field used to create the 
base document set—our queries were limited instead by the EDAT field, the date the 
citation was added to the PubMed database, and the results were pruned against the list 
of PubMed IDs known to be in the base document set.  

Typically, adding in biomedical synonyms introduces a great many terms, many 
of which in different contexts are not synonyms with the original term at all. For 
example, the following are all synonyms for “CGI-11”:  

ATP6V1H, ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H,  
SFD, SFDalpha, SFDbeta,VMA13. 

But the term “SFD,” an abbreviation for “sub fifty-eight-kDa doublet” or “sub-fifty-
eight-kDa dimer,” is also widely used as an acronym in biomedical texts and has several 
dozen other meanings as a result. Adding this term to the search will pull in many 
irrelevant articles. By matching the concepts extracted from the original natural-
language statements of need to those in the returned documents, we can score the 
documents based on their fit with the original concepts and so rank them by estimated 
relevance. Documents that have nothing to do with the original statement of need 
typically score so low that they essential fall out of contention. 
 
ANALYZING THE DOCUMENTS FOR RANKING. Each document found by PubMed was 
analyzed against both the query terms (Q1, Q2, Q3) and the analysis terms (A1) and 
given a score. This analysis was performed on a local version of the PubMed documents 
as supplied to TREC participants. The terms were matched using a NORM-like 
algorithm adapted from the UMLS NORM procedure [10]. The algorithm works as 
follows. Given a phrase that we are trying to match: 

• The words in that phrase are converted to lower-case.  
• Words from the Stop List are discarded.  
• The words are stored, for matching in any order.  
• The words are also passed through the Porter Stemmer, a widely available 

algorithm for stemming English words so that words with the same stem can be 
treated identically. E.g., "connector" and "connections" both stem to "connect.”  

Biomedical terms frequently appear in variant forms. We took lexical variants into 
account by using the following rules to conflate variants and have them count as the 
same term:   

• Hyphenated expressions such as “IL-12” are treated as two words ensuring that 
we can match such expressions when an author and the ontology disagree about 
the hyphenation.  E.g., “IL 12” in the text will match “IL-12” in the ontology 
and vice versa. 

• Any expression of the form {numbers}{letters} or {letters}{numbers} is treated 
as two separate words.  E.g., “TH1” is considered two words, “TH” and “1”, and 
“57kDa” is two words “57” and “kDa.” 



• All other internal punctuation is treated as a word break.  E.g., “DUR1,2” would 
be two words “DUR1” and “2”.  However, because these rules are cumulative, 
the previous rule also applies to “DUR1” which is treated as two words “DUR” 
and “1.” 

For scoring the documents returned by the search, we made the following matches using 
the title, abstract, RN (chemical terms) field and MH (MeSH terms) field of the 
MEDLINE record. We scored each match, giving the greatest weight to matches in the 
title and the last two sentences of the abstract. 
1. For each term in the query, including any synonyms, full matches in the title and in 

the last two sentences of the abstract scored 16 for the first occurrence and 8 for 
each subsequent occurrence. Full matches elsewhere (i.e., rest of abstract, MH, RN) 
scored 8 for the first occurrence and 4, 2, and 1 for the second, third and subsequent 
matches.  

2. For each analysis term extracted from the topic, full matches in the title and in the 
last two sentences of the abstract scored 20 for the first occurrence and 10, 5, 3, and 
1 for the second, third, fourth, fifth and subsequent matches. Full matches elsewhere 
(i.e., rest of abstract, MH, RN) scored 10 for the first occurrence and 5, 3, and 1 for 
the second, third and subsequent occurrences. 

The title and last two sentences of the abstract are scored first, then the rest of the 
abstract and the MH and RN fields.  So, for example, a term occurring in the title, last 
sentence of the abstract, and in the body of the abstract has its first and second 
occurrences in the highest scoring parts of the document. Occurrence is counted 
anywhere.  So if a query term "t bet" matches in the title and in the middle of the 
abstract it would score 16 (first occurrence in title) + 4 (second occurrence elsewhere). 
This scoring was determined through trial and error and we make no particular claim for 
its general applicability. It merely served as some reasonable way of assessing the value 
of the extracted concepts for analyzing and ranking the returned documents. 
 
RELEVANCE JUDGMENTS.  Relevance judgments for all runs submitted to TREC were 
done using the conventional “pooling method.” That is, the top-ranking documents from 
each official run were pooled and given to an individual (blinded to the query statement 
and participant from whom they came) who judged relevance. The pools were built by 
collecting one run from each of the 27 participating groups, taking the top 75 
documents for each topic and eliminating the duplicates to create a single pool for each 
topic. The average pool size (average number of documents judged per topic) was 976, 
with a range of 476-1450. Given that neither the pools nor the documents judged 
relevant are necessarily true subsets of the relevant documents, we produced Figure 4 to 
help us evaluate our results. The interpretation of the sets in Figure 4 is given in Table 
1.  
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Theoretical results possible for each topic 
 
The set labeled “Found by search” contains all the documents returned by our search for 
that topic. Up to 1000 documents could be submitted for each topic in a run. The set 
labeled “Top 1000” represents the subset of found documents that were submitted. If 
fewer than 1000 documents were found, then all those found were submitted, and the 
set “Top 1000” actually contained fewer than 1000 and was identical to the set “Found 
by search.” In such a case, sets C, D, and H will be empty. The set formed by the union 
of “Judged Relevant” and “Judged Not Relevant” is the pool that was submitted to the 
judge.  
 
Set Label Found Submitted Relevant Comment 

A Positive Yes Yes Yes What we are after! Contains relevant documents 
that we found. 

B False Positive Yes  Yes No Contains documents we would like to score 
lower or not be found. 

C False Negative A Yes  No Yes Contains documents we would like to score 
higher. 

D Negative A Yes No No Contains documents we found that were 
correctly eliminated by scoring. 

E False Negative B No No Yes Contains documents that we missed through an 
overly restrictive search. 

F Negative B No No No Contains documents we did not find that were 
irrelevant but some other run found them 
relevant.  

G False Positive Or 
Positive 

Yes Yes Unknown Contains documents we found that did not make 
it into the pool. They might be relevant 
documents missed or ranked too low by others, 
or (more likely) were not relevant but we found 
them and ranked them too high when they were 
ranked very low or passed over by others. 



Set Label Found Submitted Relevant Comment 

H False Negative Or 
Negative 

Yes No Unknown Contains documents we found that did not make 
it into the pool, and didn’t make it into our 
submission wither. They might be relevant 
documents missed or ranked too low by others, 
or (more likely) were not relevant and we found 
them but correctly ranked them low when they 
were ranked very low or passed over by others.  

I All documents in 
search set 

No No Unknown Everything. 

Table 1 - Explanation of theoretical results possible for each individual topic 
 
Discussion 

The results of greatest interest to us were for those topics that saw a significant 
improvement from the automatic run to the manual or derived run. Examining the 
changes made, we identified four that were particularly successful: (1) automatically 
adding to the query an additional conjunctive term for the species name, as discussed 
earlier; (2) adding query terms to the analysis terms, or visa versa; and (3) adding a 
query term that was needed because of the inadequacy of the stemming algorithm. For 
several topics, the terms “apoptosis” and “apoptotic,” for example, did not stem to the 
same form. Adding “apoptotic” gave better results and better rankings. We are now 
investigating adapting or building a stemmer that is specifically attuned to biomedical 
language.  

One other general change that was of interest was (4) that for some topics the 
automated method produced no query or analysis terms at all. This problem was 
responsible most often for poor results in the automated run. It resulted from an extra 
step in the concept extraction process that was not laid out in the earlier discussion. That 
is, in this process all the possible concepts are pooled along with their immediate 
hypernyms and definitions (if they exist) and formed into a network that relates 
individual words to phrases that they appear in. The network also tracks the frequency 
of occurrence of each word or phrase. Only those concepts that, through their degree of 
relatedness within the network, reach a predefined significance threshold are counted as 
final concepts. For example, for topic 18, before the final assessment of the terms’ place 
in its network of related concepts, the following emerged as likely concepts: cell, cell 
cycle, Gis4, metabolism, and yeast. Afterwards, no concepts were considered 
significant. The query term proposed by the biologist was “Gis4” and the analysis terms 
“cell cycle,” “metabolism,” and “yeast carbon pathways.” The terms that proved useful 
for analysis were, in fact, “Gis4” and “metabolism.” So it turns out the concept 
extraction method was producing good concepts; they were often dropped, however, on 
the incorrect judgment that they did not reach threshold significance.  
 
 
 
 
 
 



 
Title Gis4 

 
Need 

Properties of Gis4 with respect to cell cycle 
and/or metabolism. 

 
Context 

It is possible that Gis4 plays a role between 
cell cycle and yeast carbon pathways and 
that there is a link between cell cycle and 
metabolism. A relevant document is one that 
supports or refutes this hypothesis with 
regard to the properties of Gis4 in one or 
both processes. 

Figure 5 – Topic 18 
 
Although this final step in concept extraction has proved useful for other tasks, not in 
the biomedical domain [11], we would not use it again, but would revert to the more 
straightforward selection of concepts that has been used for other biomedical tasks [12, 
13]. 
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