
Document Structure with IRTools
Gregory B. Newby*

Arctic Region Supercomputing Center
University of Alaska Fairbanks

Abstract
The IRTools software toolkit was modified for 2003 to utilize a MySQL database for the
inverted index. Indexing was for each occurrence of each term in the collection, with HTML
structure, location offset, paragraph, and subdocument weight considered. This structure
enables some more sophisticated queries than a “bag of words” approach. Post hoc results
from the TREC 2002 Named Page Web task are presented, in which a staged fall through
approach to topic processing yielded good results, with exact precision of 0.49. The paper
also provides an overview of IRTools and its interactive interface, as well as an invitation for
IR researchers to get involved with the GridIR standards formation process.

Introduction
This year, the IRTools software toolkit was not quite ready in time for the TREC 2003 Web
submission. Instead, this paper describes a set of runs on the 2002 Named Page Web track
completed in October and November 2003. The paper should be interesting to TREC
participants because it describes a rather different, and considerably more flexible, approach
to information retrieval (IR) than described in the author’s prior TREC entries (Newby,
2002).

IRTools is a software toolkit intended for IR research. Development was partially funded by
the NSF, and the software is freely downloadable at http://sourceforge.net/projects/irtools.
The goal of IRTools, scheduled for official release in 2004, is to operate as a programmer’s
toolkit for IR experimentation. It encompasses several major IR models (the vector space
model or VSM, Boolean retrieval, and variations on latent semantic indexing or LSI). It
enables both interactive use via a Web-based front end, and batch-oriented retrieval for
TREC-like experiments.

IRTools is one of several systems being adopted as a reference system for Grid Information
Retrieval (GIR, see http://www.gridir.org), a working group under the Global Grid Forum
(http://www.gridforum.org), which the author co-chairs. GIR-WG has presented
requirements and architecture documents (Gamiel et al. 2003; Nassar et al. 2003), and
members of the working group are developing reference implementation systems as both
proof-of-concept and early models for operational systems. GridIR is similar to WAIS
(Kahle et al., 1992), in that multiple retrieval collections are federated in ad hoc ways to
provide merged results. GridIR operates in standards-based environment such as Web
services (http://www.w3c.org/2002/ws) and the Open Grid Services Architecture and other

* 910 Yukon Drive, Fairbanks AK 99775. newby@arsc.edu or http://www.arsc.edu/~newby .
The research described here was partially funded by National Science Foundation grant
#0352029.

Grid standards (Foster, 2003). These standards offer infrastructure for end-to-end security,
event notification, and other capabilities.

In this paper, some of the back-end of IRTools is described. Post hoc results from the 2002
Named Page Web track results are presented. Future research is described.

Data Structure and Back End

Background
Similarly to most long-time TREC participants, the author has gone through many different
variations in the code base for IRTools and predecessor systems. Fundamentally, though,
these IR systems have several main components and purposes in common:

1. Document metadata, in which documents are assigned document ID numbers
(docids). How many terms per document? What TREC document number (docnum),
URL or other label is associated with a document?

2. Term metadata, in which terms are assigned term ID numbers (termids). How
frequently does the term occur in a collection?

3. Inverted index, in which lists of docids for each termid are stored for quick lookup.
How frequently does term i occur in document j, and at what locations in the
document?

4. Sequential index, in which representations of documents are stored for relevance
feedback, query expansion, context extracts, etc. What terms occur near term i in
document j?

One of the largest fundamental technical challenges for nearly all IR systems is to quickly
determine a set of candidate docids, given a list of termids as query. Set building occurs
when the individual lists of docids from inverted index entries are merged (or sorted and
merged). Once the sets are built, ranking of results can occur. This general approach is
taken regardless of whether a Boolean AND or a Boolean OR is used, as well as for
relevance feedback or other forms of query expansion.

We can consider the problem of information retrieval in terms of matrices of term-document
relations. Table 1 shows a small set of documents and their term frequencies:

Table 1: Term by Document Matrix
Doc 1 Doc 2 Doc 3 Doc 4 Doc 5

Term 1 2 0 1 0 1
Term 2 0 1 0 0 2
Term 3 0 3 1 0 2
Term 4 0 0 0 3 0

In Table 1, most terms do not occur in most documents, and most documents do not have
most terms. This results in many cells with zero entries. Such a sparse matrix may be more
efficiently represented as a list of postings in an inverted file, as shown in Table 2.

Table 2: Postings in an Inverted Index
Term 1 Doc 1=2 Doc3=1 Doc 5=1
Term 2 Doc 2=1 Doc 5=2
Term 3 Doc 2=3 Doc 5=20
Term 4 Doc 2=3 Doc 3=1 Doc 5=2

The advantage of the method shown in Table 2 over Table 1 is that significant space savings
results by not storing the zero cells (well over 99% of cells in large IR test collections).
Furthermore, multi-way sort and merge algorithms (see Knuth, 1998) enable stepping
through the list of postings for each query term without requiring that the entire inverted
index, or even a complete row of postings, be in main memory.

The benefit of the inverted index is not without a price, however: in Table 1, it is a simple
matter to see what terms occur in a particular document by reading down the columns, and
document statistics such as average term frequency are easily computed on the fly. With an
inverted index, the other structures mentioned earlier (or something similar) are required for
computing term and document weights and for query expansion.

In practice, of course, there is considerable variety in exactly what is needed by a particular
IR system for effective ranking. By post-processing the inverted index, for example, it might
be possible to rank entries by document weight, such that early entries are more likely to be
associated with highly ranked documents.

Postings in IRTools
In past years, IRTools and earlier systems have used a variety of file structures to store the
inverted index and other data about an IR test collection. The primary desire left unfulfilled
by these file structures is to consider document qualities beyond the “bag of words” level.
The bag of words, which is one of the fundamental (often implicit) approaches used in IR
literature, looks at term occurrences in documents but not at where those terms occur.
Furthermore, the bag of words model does not take document structure into account – for
example, HTML documents have title tags, meta tags, paragraph tags, and so forth which
might be important for computing the weight of a term in a document. Moreover, term
position within documents is the fundamental element for phrase matching, or
adjacency/nearness measures. Alternate structures, such as PAT arrays (Gonnet et al., 1992),
may be employed for this, but for current purposes we would like to see whether the inverted
index might be modified to add these capabilities.

By taking document structure and term position into account, new types of queries are
enabled. “Term 1, near term 2, both in a TITLE tag.” “Term 1 and Term 2 in the same
paragraph tag will be weighted twice as much as when they are not in the same paragraph.”
“Term 1 and Term 2 in the same document, but without Term 3 as a table heading.”

Two challenges were encountered in implementing this level of analysis. First, the model
needed to change from a bag of words, in which a posting in the inverted index is made for

each term in each document, to a model where information needs to be stored for each
occurrence of a term in each document. Secondly, in addition to fast search methods at the
term level (i.e., the rows in Table 2 above), fast search on other qualities are also required,
such as on the paragraph, subdocument, and offset location in a document. These goals
seemed to fit well with what database management systems are good for, so MySQL was
chosen for the TREC 2003 implementation of the inverted index.

MySQL, like PostgreSQL, is free and open source, and therefore suitable for use with
IRTools. Both have similar capabilities and characteristics, but the availability of a C++ API
for MySQL was a deciding factor for its choice. MySQL’s MyISAM or INNODB table
styles utilize either the Berkeley DB or similar approaches to storage on disk, in B-trees and
related file structures. (We note here that IRTools has utilized Berkeley DB tables directly
through their C++ API for several years.) Table 3 shows the table structure for the inverted
index. The term and document data remained in Berkeley DB tables managed by IRTools
directly, and will not be further elaborated on here.

Table 3: Inverted Index Table Structure in MySQL
Name DocID Offset TermID TagListID WhichPara WeightInSubdoc
Type uint usmall uint usmall utiny ufloat

The size and range of unsigned integers (uints) is 4 bytes, from 0 to 4GB, unsigned smalls
(usmall) is 2 bytes (0 to 64K), and tiny integers (utiny) from 0 to 255. This nets 17 bytes per
posting – that is, per term occurrence in a document, plus overhead and indexing. As shown
in Table 4, an index was built on each of these database columns as well as combinations of
columns, which more than doubled both insertion time and the database size on disk, but
allowed many queries to run without requiring linear searches through the postings.

In the postings, Offset is simply the word number in the document, with any term offset over
64K being skipped. WhichPara is simply the paragraph number (with some simple rules for
“what is a paragraph” in HTML, implemented in the LibWWW parser), with any paragraphs
over 255 being mapped to 255. WeightInSubdoc is simply a traditional document weight
that is incremented for additional occurrences. The ability to uniquely weigh a term
occurrence within a document is powerful, but further research is needed to determine what
sort of weighting scores to implement.

TagListID is the most interesting column. In the collection, a list of all HTML tag sequences
was kept. For example, well-formed HTML should start (after a DOCTYPE) with an HTML
tag, a HEAD tag, and perhaps a TITLE or META tag. So, the first title term might occur in a
tag sequence such as: HTML, HEAD, TITLE. In the inverted index, a unique TagListID was
assigned to each tag sequence. By normalizing the HTML data and forcing them to be
indexed as well formed, this enables searches for terms in title tags, as well as much more
specific searches (e.g., terms in italics, in table columns, in table rows, in the body section of
an HTML document). In practice, it was found that just under 64K unique TagListIDs were
needed for the Web02 collection.

Table 4: Inverted Index Table Creation
CREATE TABLE `inv0web02` (
 `docid` int(10) unsigned NOT NULL default '0',
 `offset` smallint(5) unsigned NOT NULL default '0',
 `termid` int(10) unsigned NOT NULL default '0',
 `taglistid` smallint(5) unsigned NOT NULL default '0',
 `whichpara` tinyint(3) unsigned NOT NULL default '0',
 `weight_in_subdoc` float unsigned NOT NULL default '0',
 PRIMARY KEY (`docid`,`offset`),
 KEY `termid_index` (`termid`),
 KEY `whichpara_index` (`whichpara`),
 KEY `taglistid_index` (`taglistid`),
 KEY `weight_index` (`weight_in_subdoc`),
 KEY `docid_index` (`docid`),
 KEY `offset_index` (`offset`),
 KEY `termid_docid_whichpara_offset` (`termid`,`docid`,`whichpara`,`offset`),
 KEY `termid_docid_whichpara_offset_weight`
(`termid`,`docid`,`whichpara`,`offset`,`weight_in_subdoc`),
 KEY `termid_docid_taglist_weight` (`termid`,`docid`,`taglistid`,`weight_in_subdoc`),
 KEY `termid_docid_taglistid_offset_weight`
(`termid`,`docid`,`taglistid`,`offset`,`weight_in_subdoc`),
 KEY `termid_docid` (`termid`,`docid`)
) TYPE=MyISAM

Indexing the Web02 Collection
IRTools was used to index the TREC Web02 test collection of 1.2M HTML documents
(about 20GB). Other than the MySQL database described above, the main innovation this
year was to add a complete HTML parser. LibWWW from the World Wide Web consortium
was chosen. LibWWW has proven to be fast and reasonably efficient, but poorly
documented and rife with memory leaks that occur in ongoing use (such as the multi-day
indexing process of Web02). Term and document information was stored in Berkeley DB
files, as in prior years, and the sequential index was dropped, because it can be efficiently
generated by selecting all postings for a DocID from the MySQL database.

Statistics for the Web02 collection are presented in Table 5. Terms with more than 20
occurrences in a document were arbitrarily capped at 20 (although term counts continued to
accrue, data concerning the 21st term occurrence and beyond were omitted). All terms were
considered, without use of a stoplist, truncation or stemming.

Table 5: Web02 Build Statistics
System Dell 4600

Dual Xeon processor 2.8Ghz
16GB RAM
960GB RAID-5 disk

Processing time 5 days
MySQL database size (inverted index) About 80GB
Number of inverted rows (postings) About 468,000,000
Size of other file structures About 500MB
Total index size About 81GB

We note that 468 million rows is, indeed, a large database table. At a ratio of 4:1, the size of
the database compared to input data is not nearly as favorable as for other IR systems.
Furthermore, the random access nature of inserts (combined with numerous indexes) resulted
in insertions which were very much disk bound. While indexing, CPU utilization was often
below 10%, while awaiting disk I/O. Generally this behavior is consistent with other indexes
for IR, and no slower than the Berkeley DB or other B-tree disk methods. The difference
was that keeping track of virtually every term occurrence resulted in a far larger database.

Query Flexibility
With the use of the MySQL database and indices on all columns, IRTools is suitable for both
batch-oriented TREC topics, as well as a variety of on-demand queries. Context-sensitive
document extracts are simply a matter of retrieving a range of database rows for a particular
DocID. So is a title for display. Figures 1 and 2 illustrate some of the query flexibility and
output options provided by IRTools through a Web-based front-end.

Figure 1: Advanced IRTools Query Form

Tasks and Outcomes
The revisions to IRTools discussed here were not quite ready in time for the TREC 2003
Web track deadline (results from running TREC 2003 tasks on last year’s system were
submitted instead). Here, we present results using relevance judgments (qrels) from the
TREC 2002 Named Page finding task of the Web track. In that task, the goal was to identify
particular pages or Web sites based on a description of their name.

Figure 2: Basic IRTools Query with Output

By its nature, this is a task that desires relatively small response sets for high precision. Only
a few relevant pages were identified for most topics. Four runs, plus a combined run, were
evaluated in two different scenarios.

• Run 1 searched only the HTML title tag for query terms. Weighting for this and all
other runs favored the exact query phrase, but was otherwise Lnu.Ltc using the VSM.

• Run 2 looked for the exact query phrase within the same paragraph (where paragraph
is defined as any block-level set of text, including tags such as p, table, and ul).

• Run 3 ranked documents containing all query terms with offsets plus or minus 10
from one another. (The actual implementation was that each query term had to be
within 10 terms from the first query term.)

• Run 4 was a “bag of words” approach, in which any document with all query terms
was considered for ranking.

• The fifth set was the combination of all prior sets. These results are summarized in
Tables 6 and 7.

It was speculated that the four runs could operate in a “fall through” manner: if run 1 yielded
no results for a particular topic, run 2 would ensue. Similarly, run 3 would only occur for a
topic if run 2 yielded no results. The bag of words approach in run 4 was, essentially, a move
of desperation. Thus, the “Combined” column of Table 6 is the result of all 150 topics in
which one or more of the runs were completed, only the last of which produced results. This
is the fall through scenario.

The other scenario is to simply use each method alone on all 150 topics. At the outset, we
presumed that Run 1 would provide the highest precision, while Run 4 would find additional
relevant documents but at the expense of far lower recall.

Table 6: Web02 Named Page Task Results Summary for Fall Through Queries
Recall Precision

Run 1 Run 2 Run 3 Run 4 Combined
(If Run 1 fails)(If Run 2 fails)(If Run 3 fails)(Complete set)

0 0.5392 0.2461 0.1447 0.4048 0.2839
0.1 0.5392 0.2461 0.1447 0.4048 0.2839
0.2 0.5392 0.2461 0.1447 0.4048 0.2839
0.3 0.5392 0.2461 0.1447 0.4048 0.2839
0.4 0.5392 0.2461 0.1447 0.4048 0.2839
0.5 0.5392 0.2461 0.1447 0.4048 0.2839
0.6 0.451 0.2333 0.1447 0.3095 0.2483
0.7 0.451 0.2333 0.1447 0.3095 0.2483
0.8 0.451 0.2333 0.1447 0.3095 0.2483
0.9 0.451 0.2333 0.1447 0.3095 0.2483

1 0.451 0.2333 0.1447 0.3095 0.2483

of Queries 34 13 77 21 145
Retrieved 142 104 541 75 862
Relevant 39 17 82 27 165
Relevant retrieved 20 6 22 11 59
Exact precision 0.49 0.23 0.1 0.33 0.24

Table 6 shows that relatively high precision was achieved in Run 1 (title only), but at the
expense of many queries for which no results were submitted. 34 topics resulted in 142
documents identified as potentially relevant, 20 of which actually were. Most topics only
produced a few documents, with only 64 (“work/life center map”), 88 (“export import bank”)
and 137 (“endangered species picture book”) in the double digits with 31, 31, and 14
documents each, but none was relevant. Those topics are in contrast to topics that hit
exactly, with one to three documents found, all of which were relevant.

Of the 116 (150 – 34) topics submitted to Run 2 (exact phrase), only 13 resulted in
documents being presented, and with lower scores overall than Run 1. As would be
expected, exact phrase is not necessarily indicative of a named page – and in this case, the
named pages with exact phrase were more likely to be title pages.

Another 77 of the remaining 103 topics resulted in “hits” for Run 3, the adjacency search.
Numerically, this was the richest set, with 22 new relevant documents found out of 82
possible for those topics. But the 519 non-relevant documents resulted in low overall scores,
and a very low exact precision. The low variety in precision scores across all runs are
because most topics had very small response sets, due to the specificity of the IRTools query.

Only 26 topics remained for Run 4, and 21 of these resulted in some documents being found.
Failure to produce any hits on the other 5 is mostly attributable to parsing issues (i.e., “e-
coli” versus “ecoli”, and the infamous “u.s.” versus “us” versus “u.s”). The bottom line here
is that a fall through approach seems reasonable: start with more specific topics, and then try
less specific queries before giving up. Adjusting the adjacency search to a smaller window,
or requiring term ordering as in the topic, could help.

For comparison, runs of all 150 topics were made with each of Run 1 through Run 4. Results
for Run 1, of course, matched those for the fall through method. For Runs 2, 3, and 4, results
dropped off rapidly due to increasing numbers of non-relevant documents being added to the
response set. Table 7 summarizes these results.

Table 7: Web02 Named Page Task Results Summary for Independent Runs
Run 2 Run 3 Run 4

of Queries 150 150 150
Queries with results 33 123 145
Retrieved 403 1548 1593
Relevant 38 137 165
Relevant retrieved 17 50 47
Exact precision 0.21 0.1 0.1

We see in Table 7 that the high specificity of Run 2, with an exact phrase search, did not fare
much worse than in the fall through case, where Run 2 only occurred if Run 1 failed. But for
Runs 3 and 4, a disproportionately large number of candidates were submitted for a relatively
small number of relevant documents. These boosted the Relevant Retrieved scores, but were
not especially successful methods otherwise.

Future Directions
IRTools has many facets. It is hoped that other information scientists will consider utilizing
parts of it for their own research, perhaps even contributing new components. For the
immediate future, the main research topic of interest is how to allocate term weights in
subdocuments. Must these be computed after the initial indexing, when term characteristics
for the whole collection are known? What about incorporating collection-level statistics such
as page rank? What adjustments to traditional tf, idf and pivot scores are needed?

From a development perspective, the biggest effort will go to a reference implementation for
GridIR. TREC participants are urged to get involved with GridIR. Apart from being of
inherent interest to many of us, GridIR is a ripe platform for experimentation on query results
merging, information filtering, and different document types. More information, including
standards documents, is online at www.gridir.org.

References
Foster, Ian. 2003. “The Grid: Computing without bounds.” Scientific American April.
Online: www.sciam.com

Gamiel, Kevin; Karimi, Sousan; Newby, Gregory; Nassar, Nassib. 2003. “Grid information
retrieval requirements.” Online: www.gridir.org/wg_docs.html

Gonnet, Gaston H.; Baeza-Yates, Ricardo; Snider, Tim. 1992. “New indices for text: PAT
trees and PAT arrays.” In: Information Retrieval: Data Structures and Algorithms. Upper
Saddle River, New Jersey: Prentice-Hall.

Kahle, B.; Morris, H.; Davis, F.; Tiene, K.; Hart, C.; Palmer, R. 1992. “Wide Area
Information Servers: An executive information system for unstructured files.” Electronic
Networking: Research, Applications and Policy 1(2): 59-68.

Knuth, Donald. 1998. The Art of Computer Programming Vol. 3: Sorting and Searching.
New York: Addison-Wesley.

Nassar, Nassib; Newby, Gregory; Gamiel, Kevin; Dovey, Matthew; Morris, Jeremiah. 2003.
“Grid information retrieval architecture.” Online: www.gridir.org/wg_docs.html

Newby, Gregory B. 2002. “Progress in General-Purpose IR Software.” In Voorhees, Ellen
(Ed.). TREC 2002 Proceedings. Gaithersburg, Maryland: NIST.

