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Overview 
The Johns Hopkins University Applied Physics 
Laboratory (JHU/APL) focused on the Robust 
Retrieval Track at this year’s conference. In the past 
we have investigated the use of alternate methods for 
tokenization and applied character n-grams, with 
success, to tasks in ad hoc, filtering, and cross-
language tracks. 
 
For ranked retrieval, we have come to rely on a 
statistical language model to compute 
query/document similarity values. Hiemstra and de 
Vries describe such a linguistically motivated 
probabilistic model and explain how it relates to both 
the Boolean and vector space models [4]. The model 
has also been cast as a rudimentary Hidden Markov 
Model [7]. Although the model does not explicitly 
incorporate inverse document frequency, it does 
favor documents that contain more of the rare query 
terms. The similarity measure can be computed as 
 

Sim(q,d) = α ⋅ f (t,d) + (1−α) ⋅ f (t,C)( )
t ∈q
∏ f (t ,q ) 

 
Equation 1. Similarity calculation. 
 
where α is the probability that a query word is 
generated by a document-specific model, and (1- α) 
is the probability that it is generated by a generic 
language model. f(t,C) denotes the mean relative 
document frequency of term t.  We have observed 
that aggregate performance using this model is fairly 
insensitive to the precise value of α that is used; 
however, higher values of alpha tend to result in 
selecting documents that contain a greater number of 
the query terms. 
 
Earlier work on the Query Track, held during the 
TREC-8 and TREC-9 evaluations, showed that 
different query formulations could result in 
substantially different retrieval performance on 
individual queries (see Buckley [1]). For example, 
deleting an important query term, adding an 
important word that was not initially present, the use 

of idioms in topic statements, and deleterious effects 
caused by inappropriate stemming (over or under 
aggressive) were each shown to demonstrably alter 
precision on particular topics. Furthermore, multiple 
reports have appeared in the literature suggesting that 
a combination of evidence from multiple, disparate 
approaches can be beneficial (e.g., Savoy  [9]). 
 
From this we conclude that a scheme based on 
multiple document representations and multiple 
similarity metrics might exhibit increased robustness 
in query performance, and possibly  higher aggregate 
performance as well. How different methods can best 
be combined is not clear. In this paper we report on 
our efforts attempting to: (1) merge disparate run 
files; and (2) devise an automated technique for 
learning query-specific run weights that can be used 
to create a single, robust run. 
 
We built several indices to compare different 
tokenization methods. We have begun investigating 
the use of part-of-speech tagging and entity-tagging 
to transform the term space, with the hope of 
capturing semantic distinctions (e.g., bat, a noun, 
versus bat, the verb, or, Washington, the place, 
instead of Washington, a person); however, we did 
not use these indices in this year’s Robust Track. 
Summary information for the indices that we used is 
shown in Table 1. 
 
Table 1. Index statistics for the Robust Track 
collection. 
 

  # terms index size 
words w 554751 373 MB 
words preserving case c 698786 410 MB 
stems (Snowball) s 455803 320 MB 
4-grams 4 251694 1.39 GB 
5-grams 5 1485406 2.22 GB 
6-grams 6 6030289 3.22 GB 
words + phrases p 19141479 1.97 GB 

 



 

Disparate Retrieval Approaches 
In the previous section we enumerated a number of 
alternatives to tokenization that resulted in different 
index data files being created for the collection. In 
many cases different tokenizations lead to similar 
overall performance. For example, on the query 
“health food” the use of case-normalized and 
unnormalized words should produce similar ranked 
lists. On the other hand, the query “NRA” will likely 
produce different results for case-sensitive words and 
character 4-grams. 
 
We considered several approaches to computing 
document-query similarity: 

o Retrieval without the use of blind relevance 
feedback 

o Retrieval with blind relevance feedback 
using t expansion terms 

o Massive collection enrichment 
o Weighting query terms by setting qtf = 1 
o RIDF weighting  [2][6] 
o Adjusting values for alpha, the parameter 

which regulates the relative importance of 
seeing query terms in documents in our 
statistical language model 

o Applying UC Berkeley’s logistic regression 
retrieval model [3] 

o Calculating similarity with a probabilistic 
model and Okapi BM25 weighting [8] 

o Requiring certain query terms and/or 
prohibiting others 

o Expanding queries using a human-
constructed thesaurus 

o Query expansion using a statistical thesaurus 
 

We were unable to consider each of these, primarily 
due to a lack of time to implement each method or to 
empirically evaluate each method with each index. 
We ended up using seven different indexes and 11 
different retrieval methods (listed below). We then 
sought to combine or select from the 77 runs 
produced. With some risk of overtraining, we 
measured our performance on the 150 queries used in 
the TREC-6, TREC-7, and TREC-8 evaluations. We 
restricted ourselves to the use of only the 
‘Description’ portion of topic statements; however, 
we did submit one official run using ‘Title’, 
‘Description’, and ‘Narrative’ sections expecting that 
it would better contribute to the relevance pools. 
 
For each of the 7 indexes, we created runs that 
computed document relevance by: 

o [4 runs] Adjusting alpha values in our 
statistical language model of retrieval. We 

considered values of 0.2, 0.5, 0.8, and 0.9. 
We thought that higher alpha values would 
lead to better precision at low recall levels. 
Pseudo relevance feedback was not applied. 

o [3 runs] Adjusting alpha values as 
mentioned above; however, relevance 
feedback was applied, selecting 60 ‘terms’ 
(whatever those terms might be (e.g., n-
grams, words, stems), from 20 top-ranked 
documents. Alpha values of 0.2, 0.5, and 0.8 
were considered. We imagine that it might 
also be useful to use other parameter settings 
for automated feedback, such as, different 
methods for isolating feedback terms, 
different numbers of expansion terms, or 
different numbers of presumed positive and 
negative documents. 

o [1 run] We used our statistical language 
model with alpha = 0.5 without feedback, 
and without stopword removal. Normally we 
represent documents using all terms, but 
omit query terms at run-time that have a 
relative document frequency greater than 
0.2. 

o [1 run] Using the logistic regression retrieval 
model described by UC Berkeley 

o [2 runs] Using Okapi BM25 term weighting 
in a binary independence model, both with 
and without relevance feedback (as 
described above). We used values of 1.2 for 
k1, 500 for k3, 0.6 for b, and we assumed 
that the top 8 documents for each query 
were relevant and all others were not, for the 
purpose of term weighting. 

 
We considered several metrics for robust 
performance, but chiefly examined the percentage of 
topics with at least one relevant document in the top 
10 ranks (TopTen) and the area under the curve when 
topical average precision is averaged over a number 
of the worst scoring topics and plotted as a function 
of the number of worst topics examined (MAP-
Hardest).  We focused on the hardest 25% of topics, 
as suggested in the track guidelines. For whatever 
number of topics is considered, MAP-Hardest is most 
effected by the most difficult topics. If the worst 12 
topics are examined, then about three-quarters of the 
weight is given to the hardest 6 topics and only about 
one-quarter of the weight is given to the next 6 
hardest topics. This puts a premium on doing as well 
as possible on the absolute hardest topics. We also 
considered high mean average precision (averaged 
over all topics) to be desirable, but were primarily 
concerned with ‘robust’ measures of performance. 
 



 

We were interested to know how well each 
combination might do. In particular, we wondered 
how much improvement could be obtained given an 
oracle that could perfectly select the single-best 
method to apply for each individual query. Using the 
known relevance judgments for the TREC-6 through 
TREC-8 topics we determined that a method that 
selected the single best method (from our set of 77) 
for each topic could improve each of the performance 
measures appreciably.  If this was not the case, for 
example, if our different methods did not exhibit 
large variations in retrieval performance, then any 
machine-learning approach to select a query-specific 
method would be doomed to failure. 
 
Of our 77 runs, the one with the highest mean 
average precision (over all topics) on the training set 
used stems as indexing terms with the statistical 
language model (with alpha=0.2) and with relevance 
feedback. However, when alpha=0.5 mean average 
precision was about the same, and the robust 
measures were improved. We compare these runs and 
an oracular ‘best’ run using the robust metrics in 
Table 2. 
 
Table 2. Comparing an oracle-based run and two 
high-performing methods on the training set. 

 TopTen MAP-Hardest MAP 
stems-lm2-rf 0.7467 0.0052 0.2513 
stems-lm5-rf 0.8067 0.0061 0.2489 
oracular 0.9600 0.0364 0.3587 

 
From Table 2 we observe that an oracle-based run 
can improve mean average precision by 
approximately 40% and MAP-Hardest by roughly 
600%. 

Selecting a Single Method  
We would like to predict which tokenization and 
scoring methods will prove most effective given a 
particular query. As several years of training data are 
available for this collection, we are inclined to adopt 
a supervised learning approach. For this study we 
applied Support Vector Machines (SVMs) [5]. For 
any learning approach to succeed we need to identify 
features that might discriminate high performing 
retrieval configurations from low performing ones. 
 
We envisioned using a large set of features, 
including: 

o Number of query terms 
o Length of query in characters 
o Length of query in words 
o Capitalization pattern 
o Digit pattern 

o IDF of ith term 
o Mean IDF 
o Variance of IDF 
o Whether ith term is a known closed-class 

word and which kind 
o Whether words are stop-structure 

 
In practice we used only four types of features: those 
based on the query alone; features based on various 
statistics of an index; features based on scores of 
documents in particular runs; and statistics computed 
from an index and from a run file. 

o Query-based: total number of terms; number 
of unique terms; number of unknown terms 

o Using index: maximum, minimum, mean, 
and variance of both query term IDF and 
RIDF; the number of documents containing: 
(1) all of the query terms; (2) all the query 
terms excluding stopwords; (3) the two 
rarest query terms; (4) the 2 most common 
query terms; and (5) the two query terms 
with highest mutual information. 

o Run-based: the ratio of the score between 
the highest ranked and rank (5, 10, 20, 100, 
500) documents using the ‘stems-lm5-rf’ run 

o Run plus index: the percentage of unique 
terms to the total number of terms observed 
in documents from a specified range using 
the ‘stems-lm5-rf’ run (ranges considered 
included 0-10, 11-50, 51-100, and 201-300); 
the percentage of query terms to total terms 
observed in the ranked documents of a given 
range – as described above; and, the mean 
RIDF value of all terms occurring in the 
documents of the ranges described above. 

Using these features we attempted to train a support 
vector machine with a cubic kernel for each of our 77 
runs. For each of the queries in a 100-query training 
set we used the top 10 scoring runs as positive 
examples and the bottom scoring runs as negative 
examples. We hoped the SVM could distinguish 
methods likely to achieve high mean average 
precision (i.e., good performance) and those unlikely 
to do so. 
 
Unfortunately the SVM was not generally able to 
learn this distinction. The training algorithm 
converged, but essentially memorized the data. It 
may be that our set of features was inadequate and 
that more semantically laden features are essential to 
such a task.  Or possibly, many more training 
exemplars are required for this approach to succeed. 
We next turned our attention to an approach based on 
combining results from multiple runs. 



 

Merging Multiple Methods 
As an alternative to selecting a single method based 
on features about the query, or weighting several 
methods predicted to perform well, we examined 
combination of multiple methods to produce a single 
ranked list for each topic. Combination of disparate 
techniques has occasionally led to improved 
performance in TREC-style evaluations; many 
consider that the constituent runs should be chosen to 
maximize orthogonality with respect to one another. 
That is, it is hoped that they make independent 
mistakes and that run combination will reinforce 
selection of good documents and lower the ranks of 
documents that only appear to be of high quality 
using a single method. In the past we have used 
combination to reasonable advantage; we found that 
combination of n-gram based runs with stem or word  
runs can confer a 10% relative advantage in mean 
average precision [6]. 
 
Our preferred method for merging multiple runs is to 
first normalize score values for each individual run 
and then create an ordering based on these 
normalized scores.  We view scores as masses, and 
divide individual scores by the sum of the masses of 
the top k documents (we use k=1000). Because our 
probabilistic calculations are typically performed in 
log space, and scores are therefore negative, we 
achieve the desired effect by using the reciprocal of a 
document's score as its mass. 

Other Approaches 
We thought up several other schemes that were not 
implemented for the evaluation. 
 
One was to build a tagger that processes query words 
and assigns them to different categories. For 
example, some words are clearly query-specific, such 
as “find documents that”; others are modifiers of a 
key concept, like ‘international’ in ‘international 
organized crime”; still others are keywords, like 
‘black bears’ in “black bear attacks”. This technique 
is unproven, but recent successes in tagging 
applications might be applied to the 1000+ available 
topics from past TREC, CLEF, and NTCIR 
conferences. Terms in different categories could be 
treated (e.g., weighted) differently. 

Official Submissions 
We submitted five runs described below. 
 
aplrob03a was a combination of two runs, one using 
stems and one using character 5-grams. Title, 
Description, and Narrative topic fields were used 

here, but only the Description field was used for our 
other official runs. Relevance feedback was applied 
and alpha was 0.5. We thought that this method 
would maximize mean average precision over all 
topics. This run typifies our traditional processing. 
 
aplrob03b was designed to maximize the number of 
topics with a relevant document appearing in the top 
ranks (say up to rank 20 or so). We filled ‘slots’ by 
examining several run files and selecting what we 
though to be good documents from different 
methods. Some of the documents were selected based 
on which run files worked well on the training set; 
others were based by clustering the top 50 ranked 
documents (for a given run) and selecting the highest 
ranking document from each of 5 clusters.  
 
We used a quadratic implementation of 
agglomerative clustering that started with the 50 
individual documents and repeatedly combined 
clusters, one at a time. Our distance metric was 
Sim(c1,c2) + Sim(c2,c1) – Max(cardinality(c1), 
cardinality(c2)). Our language model similarity 
metric is not symmetric, so we added the similarity 
between ‘query’ and ‘document’ (both clusters of 
documents) and the similarity between ‘document’ 
and ‘query’. We then subtracted the cardinality of the 
larger of the two clusters; this was done in an attempt 
to even the distribution of the number of documents 
per cluster. We also ignored both very common and 
very rare terms when clustering. This method found a 
relevant document in the top 10 ranks for 134 of 150 
topics in the training set. 
 
To achieve reasonable performance in mean average 
precision as well, we then extended this list of top-
ranked documents using run aplrob03d (described 
below), taking care to remove duplicate documents 
when building the ranked list. 
 
aplrob03c was an attempt to maximize MAP-
Hardest. We combined results using all 77 runs as 
input. On the training data this method performed the 
best, achieving 0.0103 on the MAP-Hardest metric. 
This is nearly double the performance obtained with 
a single, well-performing run, but well below our 
0.0364 theoretical maximum. 
 
aplrob03d is analogous to aplrob03a, but different in 
using only the ‘Description’ portion of the topic 
statements. Like aplrob03a, we expected this run to 
achieve good mean average precision over all topics 
and to serve as a baseline for our other runs. 
 
Finally, aplrob03e was an overtraining run that 
sought to optimize TopTen. On the training data, we 



 

were able to use the qrels to build a run by selecting 
the ith rank of the jth run for all topics. This method 
found a relevant document (in the top 10 ranks) for 
143 out of the 150 training topics. Its use on novel 
data is questionable, but it is possible that the 
different runs selected represent a method for finding 
orthogonal methods. The following runs/ranks were 
employed: 

stems-okapi  1 
stems-logreg  3 
stems-slm8  5 
words-logreg  4 
case-words-slm5  3 
4-grams-okapi-rf  2 
phrases-logreg  3 
5-grams-slm8  5 
stems-slm5  5 
5-grams-okapi  2 
4-grams-slm8-rf  5 
words-nostop  5 
4-grams-slm9  4 

 
Examining Table 3 (below), we observe that run 
aplrob03c achieved a 0.0040 improvement in MAP-
Hardest over our description-only baseline, 
aplrob03d; this is a 50% increase over the baseline. 
We interpret this as mild support for the hypothesis 
that combination of a very large number of methods 
can improve robustness. For the TopTen measure, 
run aplrob03e achieved a 90% success rate vs. 78% 
using our baseline method, a 15.4% relative 
improvement. 
 
Table 3. Performance of officially submitted 
methods on all 100 topics. Run aplrob03d is a 
baseline for comparison against other methods. 

 Fields TopTen MAP-Hardest MAP 
aplrob03a TDN 0.8900 0.0238 0.2998 
aplrob03b D 0.8500 0.0113 0.2522 
aplrob03c D 0.8200 0.0120 0.2521 
aplrob03d D 0.7800 0.0080 0.2726 
aplrob03e D 0.9000 0.0096 0.2535 

Conclusions 
We attempted to determine whether selection or 
combination of diverse methods can improve the 
robustness of query processing. Our attempts to 
select preferred methods dynamically (i.e., on a 
query-by-query basis) failed; however, we have not 
fully investigated this line of work. We did discover 
that combination of 77 runs (7 tokenizations and 11 
similarity metrics) led to our best results for the 
MAP-Hardest measure. A priori selection of several 
diverse methods seemed to optimize the TopTen 

measure, though the small number of topics leaves it 
difficult to determine whether this result is valid. 
These results are based only on an examination of 
‘description-only’ runs. 
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