

Combining Methods for the TREC 2003 Robust Track

James Mayfield and Paul McNamee
Research and Technology Development Center

The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road, Laurel, Maryland 20723-6099 USA

{mayfield, mcnamee}@jhuapl.edu

Overview
The Johns Hopkins University Applied Physics
Laboratory (JHU/APL) focused on the Robust
Retrieval Track at this year’s conference. In the past
we have investigated the use of alternate methods for
tokenization and applied character n-grams, with
success, to tasks in ad hoc, filtering, and cross-
language tracks.

For ranked retrieval, we have come to rely on a
statistical language model to compute
query/document similarity values. Hiemstra and de
Vries describe such a linguistically motivated
probabilistic model and explain how it relates to both
the Boolean and vector space models [4]. The model
has also been cast as a rudimentary Hidden Markov
Model [7]. Although the model does not explicitly
incorporate inverse document frequency, it does
favor documents that contain more of the rare query
terms. The similarity measure can be computed as

Sim(q,d) = α ⋅ f (t,d) + (1−α) ⋅ f (t,C)()
t ∈q
∏ f (t ,q)

Equation 1. Similarity calculation.

where α is the probability that a query word is
generated by a document-specific model, and (1- α)
is the probability that it is generated by a generic
language model. f(t,C) denotes the mean relative
document frequency of term t. We have observed
that aggregate performance using this model is fairly
insensitive to the precise value of α that is used;
however, higher values of alpha tend to result in
selecting documents that contain a greater number of
the query terms.

Earlier work on the Query Track, held during the
TREC-8 and TREC-9 evaluations, showed that
different query formulations could result in
substantially different retrieval performance on
individual queries (see Buckley [1]). For example,
deleting an important query term, adding an
important word that was not initially present, the use

of idioms in topic statements, and deleterious effects
caused by inappropriate stemming (over or under
aggressive) were each shown to demonstrably alter
precision on particular topics. Furthermore, multiple
reports have appeared in the literature suggesting that
a combination of evidence from multiple, disparate
approaches can be beneficial (e.g., Savoy [9]).

From this we conclude that a scheme based on
multiple document representations and multiple
similarity metrics might exhibit increased robustness
in query performance, and possibly higher aggregate
performance as well. How different methods can best
be combined is not clear. In this paper we report on
our efforts attempting to: (1) merge disparate run
files; and (2) devise an automated technique for
learning query-specific run weights that can be used
to create a single, robust run.

We built several indices to compare different
tokenization methods. We have begun investigating
the use of part-of-speech tagging and entity-tagging
to transform the term space, with the hope of
capturing semantic distinctions (e.g., bat, a noun,
versus bat, the verb, or, Washington, the place,
instead of Washington, a person); however, we did
not use these indices in this year’s Robust Track.
Summary information for the indices that we used is
shown in Table 1.

Table 1. Index statistics for the Robust Track
collection.

 # terms index size
words w 554751 373 MB
words preserving case c 698786 410 MB
stems (Snowball) s 455803 320 MB
4-grams 4 251694 1.39 GB
5-grams 5 1485406 2.22 GB
6-grams 6 6030289 3.22 GB
words + phrases p 19141479 1.97 GB

Disparate Retrieval Approaches
In the previous section we enumerated a number of
alternatives to tokenization that resulted in different
index data files being created for the collection. In
many cases different tokenizations lead to similar
overall performance. For example, on the query
“health food” the use of case-normalized and
unnormalized words should produce similar ranked
lists. On the other hand, the query “NRA” will likely
produce different results for case-sensitive words and
character 4-grams.

We considered several approaches to computing
document-query similarity:

o Retrieval without the use of blind relevance
feedback

o Retrieval with blind relevance feedback
using t expansion terms

o Massive collection enrichment
o Weighting query terms by setting qtf = 1
o RIDF weighting [2][6]
o Adjusting values for alpha, the parameter

which regulates the relative importance of
seeing query terms in documents in our
statistical language model

o Applying UC Berkeley’s logistic regression
retrieval model [3]

o Calculating similarity with a probabilistic
model and Okapi BM25 weighting [8]

o Requiring certain query terms and/or
prohibiting others

o Expanding queries using a human-
constructed thesaurus

o Query expansion using a statistical thesaurus

We were unable to consider each of these, primarily
due to a lack of time to implement each method or to
empirically evaluate each method with each index.
We ended up using seven different indexes and 11
different retrieval methods (listed below). We then
sought to combine or select from the 77 runs
produced. With some risk of overtraining, we
measured our performance on the 150 queries used in
the TREC-6, TREC-7, and TREC-8 evaluations. We
restricted ourselves to the use of only the
‘Description’ portion of topic statements; however,
we did submit one official run using ‘Title’,
‘Description’, and ‘Narrative’ sections expecting that
it would better contribute to the relevance pools.

For each of the 7 indexes, we created runs that
computed document relevance by:

o [4 runs] Adjusting alpha values in our
statistical language model of retrieval. We

considered values of 0.2, 0.5, 0.8, and 0.9.
We thought that higher alpha values would
lead to better precision at low recall levels.
Pseudo relevance feedback was not applied.

o [3 runs] Adjusting alpha values as
mentioned above; however, relevance
feedback was applied, selecting 60 ‘terms’
(whatever those terms might be (e.g., n-
grams, words, stems), from 20 top-ranked
documents. Alpha values of 0.2, 0.5, and 0.8
were considered. We imagine that it might
also be useful to use other parameter settings
for automated feedback, such as, different
methods for isolating feedback terms,
different numbers of expansion terms, or
different numbers of presumed positive and
negative documents.

o [1 run] We used our statistical language
model with alpha = 0.5 without feedback,
and without stopword removal. Normally we
represent documents using all terms, but
omit query terms at run-time that have a
relative document frequency greater than
0.2.

o [1 run] Using the logistic regression retrieval
model described by UC Berkeley

o [2 runs] Using Okapi BM25 term weighting
in a binary independence model, both with
and without relevance feedback (as
described above). We used values of 1.2 for
k1, 500 for k3, 0.6 for b, and we assumed
that the top 8 documents for each query
were relevant and all others were not, for the
purpose of term weighting.

We considered several metrics for robust
performance, but chiefly examined the percentage of
topics with at least one relevant document in the top
10 ranks (TopTen) and the area under the curve when
topical average precision is averaged over a number
of the worst scoring topics and plotted as a function
of the number of worst topics examined (MAP-
Hardest). We focused on the hardest 25% of topics,
as suggested in the track guidelines. For whatever
number of topics is considered, MAP-Hardest is most
effected by the most difficult topics. If the worst 12
topics are examined, then about three-quarters of the
weight is given to the hardest 6 topics and only about
one-quarter of the weight is given to the next 6
hardest topics. This puts a premium on doing as well
as possible on the absolute hardest topics. We also
considered high mean average precision (averaged
over all topics) to be desirable, but were primarily
concerned with ‘robust’ measures of performance.

We were interested to know how well each
combination might do. In particular, we wondered
how much improvement could be obtained given an
oracle that could perfectly select the single-best
method to apply for each individual query. Using the
known relevance judgments for the TREC-6 through
TREC-8 topics we determined that a method that
selected the single best method (from our set of 77)
for each topic could improve each of the performance
measures appreciably. If this was not the case, for
example, if our different methods did not exhibit
large variations in retrieval performance, then any
machine-learning approach to select a query-specific
method would be doomed to failure.

Of our 77 runs, the one with the highest mean
average precision (over all topics) on the training set
used stems as indexing terms with the statistical
language model (with alpha=0.2) and with relevance
feedback. However, when alpha=0.5 mean average
precision was about the same, and the robust
measures were improved. We compare these runs and
an oracular ‘best’ run using the robust metrics in
Table 2.

Table 2. Comparing an oracle-based run and two
high-performing methods on the training set.

 TopTen MAP-Hardest MAP
stems-lm2-rf 0.7467 0.0052 0.2513
stems-lm5-rf 0.8067 0.0061 0.2489
oracular 0.9600 0.0364 0.3587

From Table 2 we observe that an oracle-based run
can improve mean average precision by
approximately 40% and MAP-Hardest by roughly
600%.

Selecting a Single Method
We would like to predict which tokenization and
scoring methods will prove most effective given a
particular query. As several years of training data are
available for this collection, we are inclined to adopt
a supervised learning approach. For this study we
applied Support Vector Machines (SVMs) [5]. For
any learning approach to succeed we need to identify
features that might discriminate high performing
retrieval configurations from low performing ones.

We envisioned using a large set of features,
including:

o Number of query terms
o Length of query in characters
o Length of query in words
o Capitalization pattern
o Digit pattern

o IDF of ith term
o Mean IDF
o Variance of IDF
o Whether ith term is a known closed-class

word and which kind
o Whether words are stop-structure

In practice we used only four types of features: those
based on the query alone; features based on various
statistics of an index; features based on scores of
documents in particular runs; and statistics computed
from an index and from a run file.

o Query-based: total number of terms; number
of unique terms; number of unknown terms

o Using index: maximum, minimum, mean,
and variance of both query term IDF and
RIDF; the number of documents containing:
(1) all of the query terms; (2) all the query
terms excluding stopwords; (3) the two
rarest query terms; (4) the 2 most common
query terms; and (5) the two query terms
with highest mutual information.

o Run-based: the ratio of the score between
the highest ranked and rank (5, 10, 20, 100,
500) documents using the ‘stems-lm5-rf’ run

o Run plus index: the percentage of unique
terms to the total number of terms observed
in documents from a specified range using
the ‘stems-lm5-rf’ run (ranges considered
included 0-10, 11-50, 51-100, and 201-300);
the percentage of query terms to total terms
observed in the ranked documents of a given
range – as described above; and, the mean
RIDF value of all terms occurring in the
documents of the ranges described above.

Using these features we attempted to train a support
vector machine with a cubic kernel for each of our 77
runs. For each of the queries in a 100-query training
set we used the top 10 scoring runs as positive
examples and the bottom scoring runs as negative
examples. We hoped the SVM could distinguish
methods likely to achieve high mean average
precision (i.e., good performance) and those unlikely
to do so.

Unfortunately the SVM was not generally able to
learn this distinction. The training algorithm
converged, but essentially memorized the data. It
may be that our set of features was inadequate and
that more semantically laden features are essential to
such a task. Or possibly, many more training
exemplars are required for this approach to succeed.
We next turned our attention to an approach based on
combining results from multiple runs.

Merging Multiple Methods
As an alternative to selecting a single method based
on features about the query, or weighting several
methods predicted to perform well, we examined
combination of multiple methods to produce a single
ranked list for each topic. Combination of disparate
techniques has occasionally led to improved
performance in TREC-style evaluations; many
consider that the constituent runs should be chosen to
maximize orthogonality with respect to one another.
That is, it is hoped that they make independent
mistakes and that run combination will reinforce
selection of good documents and lower the ranks of
documents that only appear to be of high quality
using a single method. In the past we have used
combination to reasonable advantage; we found that
combination of n-gram based runs with stem or word
runs can confer a 10% relative advantage in mean
average precision [6].

Our preferred method for merging multiple runs is to
first normalize score values for each individual run
and then create an ordering based on these
normalized scores. We view scores as masses, and
divide individual scores by the sum of the masses of
the top k documents (we use k=1000). Because our
probabilistic calculations are typically performed in
log space, and scores are therefore negative, we
achieve the desired effect by using the reciprocal of a
document's score as its mass.

Other Approaches
We thought up several other schemes that were not
implemented for the evaluation.

One was to build a tagger that processes query words
and assigns them to different categories. For
example, some words are clearly query-specific, such
as “find documents that”; others are modifiers of a
key concept, like ‘international’ in ‘international
organized crime”; still others are keywords, like
‘black bears’ in “black bear attacks”. This technique
is unproven, but recent successes in tagging
applications might be applied to the 1000+ available
topics from past TREC, CLEF, and NTCIR
conferences. Terms in different categories could be
treated (e.g., weighted) differently.

Official Submissions
We submitted five runs described below.

aplrob03a was a combination of two runs, one using
stems and one using character 5-grams. Title,
Description, and Narrative topic fields were used

here, but only the Description field was used for our
other official runs. Relevance feedback was applied
and alpha was 0.5. We thought that this method
would maximize mean average precision over all
topics. This run typifies our traditional processing.

aplrob03b was designed to maximize the number of
topics with a relevant document appearing in the top
ranks (say up to rank 20 or so). We filled ‘slots’ by
examining several run files and selecting what we
though to be good documents from different
methods. Some of the documents were selected based
on which run files worked well on the training set;
others were based by clustering the top 50 ranked
documents (for a given run) and selecting the highest
ranking document from each of 5 clusters.

We used a quadratic implementation of
agglomerative clustering that started with the 50
individual documents and repeatedly combined
clusters, one at a time. Our distance metric was
Sim(c1,c2) + Sim(c2,c1) – Max(cardinality(c1),
cardinality(c2)). Our language model similarity
metric is not symmetric, so we added the similarity
between ‘query’ and ‘document’ (both clusters of
documents) and the similarity between ‘document’
and ‘query’. We then subtracted the cardinality of the
larger of the two clusters; this was done in an attempt
to even the distribution of the number of documents
per cluster. We also ignored both very common and
very rare terms when clustering. This method found a
relevant document in the top 10 ranks for 134 of 150
topics in the training set.

To achieve reasonable performance in mean average
precision as well, we then extended this list of top-
ranked documents using run aplrob03d (described
below), taking care to remove duplicate documents
when building the ranked list.

aplrob03c was an attempt to maximize MAP-
Hardest. We combined results using all 77 runs as
input. On the training data this method performed the
best, achieving 0.0103 on the MAP-Hardest metric.
This is nearly double the performance obtained with
a single, well-performing run, but well below our
0.0364 theoretical maximum.

aplrob03d is analogous to aplrob03a, but different in
using only the ‘Description’ portion of the topic
statements. Like aplrob03a, we expected this run to
achieve good mean average precision over all topics
and to serve as a baseline for our other runs.

Finally, aplrob03e was an overtraining run that
sought to optimize TopTen. On the training data, we

were able to use the qrels to build a run by selecting
the ith rank of the jth run for all topics. This method
found a relevant document (in the top 10 ranks) for
143 out of the 150 training topics. Its use on novel
data is questionable, but it is possible that the
different runs selected represent a method for finding
orthogonal methods. The following runs/ranks were
employed:

stems-okapi 1
stems-logreg 3
stems-slm8 5
words-logreg 4
case-words-slm5 3
4-grams-okapi-rf 2
phrases-logreg 3
5-grams-slm8 5
stems-slm5 5
5-grams-okapi 2
4-grams-slm8-rf 5
words-nostop 5
4-grams-slm9 4

Examining Table 3 (below), we observe that run
aplrob03c achieved a 0.0040 improvement in MAP-
Hardest over our description-only baseline,
aplrob03d; this is a 50% increase over the baseline.
We interpret this as mild support for the hypothesis
that combination of a very large number of methods
can improve robustness. For the TopTen measure,
run aplrob03e achieved a 90% success rate vs. 78%
using our baseline method, a 15.4% relative
improvement.

Table 3. Performance of officially submitted
methods on all 100 topics. Run aplrob03d is a
baseline for comparison against other methods.

 Fields TopTen MAP-Hardest MAP
aplrob03a TDN 0.8900 0.0238 0.2998
aplrob03b D 0.8500 0.0113 0.2522
aplrob03c D 0.8200 0.0120 0.2521
aplrob03d D 0.7800 0.0080 0.2726
aplrob03e D 0.9000 0.0096 0.2535

Conclusions
We attempted to determine whether selection or
combination of diverse methods can improve the
robustness of query processing. Our attempts to
select preferred methods dynamically (i.e., on a
query-by-query basis) failed; however, we have not
fully investigated this line of work. We did discover
that combination of 77 runs (7 tokenizations and 11
similarity metrics) led to our best results for the
MAP-Hardest measure. A priori selection of several
diverse methods seemed to optimize the TopTen

measure, though the small number of topics leaves it
difficult to determine whether this result is valid.
These results are based only on an examination of
‘description-only’ runs.

References
[1] C. Buckley, ‘The TREC-9 Query Track’. Proceedings
of the Ninth Text REtrieval Conference (TREC-9).

[2] Church, K. W., ‘One term or two?’ In Fox, E. A., et
al., eds., Proceedings of the 18th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR-95), pp. 310-318. 1995.

[3] W. Cooper, A. Chen, and F. Gey, ‘Full Text Retrieval
based on Probabilistic Equations with Coefficients fitted by
Logistic Regression’, Proceedings of the Second Text
REtrieval Conference (TREC-2), pp. 57-66.

[4] D. Hiemstra and A. de Vries, ‘Relating the new
language models of information retrieval to the traditional
retrieval models.’ CTIT Technical Report TR-CTIT-00-09,
May 2000.

[5] T. Joachims, Making large-Scale SVM Learning
Practical Advances in Kernel Methods - Support Vector
Learning, B. Schölkopf and C. Burges and A. Smola (ed.),
MIT Press, 1999.

[6] P. McNamee and J. Mayfield, ‘JHU/APL Experiments
at CLEF-2001: Translation Resources and Score
Normalization.’ In: C Peters et al. eds., Evaluation of
Cross-Language Information Retrieval Systems: Second
Workshop of the Cross-Language Evaluation Forum
(CLEF-2001), Darmstadt, Germany, pp. 193-208.

[7] D. R. H. Miller, T. Leek, and R. M. Schwartz, ‘A
Hidden Markov Model Information Retrieval System.’ In
the Proceedings of the 22nd International Conference on
Research and Development in Information Retrieval
(SIGIR-99), pp. 214-221, August 1999.

[8] S. E. Robertson, S. Walker, and M. Beaulieu, ‘Okapi
at TREC-7: automatic ad hoc, filtering, VLC and
interactive track’. In E. M. Voorhees and D. K. Harman
(eds) Proceedings of the Seventh Text REtrieval
Conference (TREC-7).

[9] J. Savoy, ‘Cross-language information retrieval:
experiments based on CLEF 2000 corpora.’ In Information
Processing and Management, Vol. 39(1), pp. 75-115, 2003.

http://trec.nist.gov/pubs/trec10/papers/jhuapl01.pdf

