LCC Tools for Question Answering

Dan Moldovan, Sanda Harabagiu, Roxana Girju, Paul Morarescu, Finley Lacatusu,
Adrian Novischi, Adriana Badulescu and Orest Bolohan

Language Computer Corporation
Richardson, TX 75080
email: moldovan@languagecomputer.com

Abstract

The increased complexity of the TREC QA questions requires advanced text pro-
cessing tools that rely on natural language processing and knowledge reasoning. This
paper presents the suite of tools that account for the performance of the Power Answer
question answering system. It is shown how questions, answers and world knowledge
are transformed first in logic representation, followed by a systematic and rigorous
logic proof that validly answers questions posed to the QA system. At TREC QA
2002, Power Answer obtained a confidence-weighted score of 0.856, answering correctly
415 out of 500 questions.

1 Introduction

To cope with the continuously increasing difficulty of the TREC QA task, LCC has enhanced the
processing capability of the QA system by improving some modules and strengthening the set of
tools involved in answer extraction. This paper presents a general overview of the main tools and
focuses on some of them.

PowerAnswer, the QA system developed at LCC, searches for answers from large collections of
texts by combining syntactic, semantic, lexical and world knowledge information sources. PowerAn-
swer consists of three main parts: question processing, document retrieval and answer extraction.
In turn, each part consists of smaller modules that work collectively to produce question answers.
The relative performance of these modules was described in [Moldovan et al 2002].

Questions and relevant document paragraphs are parsed and transformed into logic forms that
together with world knowledge axioms extracted from the WordNet glosses are fed to a logic prover.
For each question, the result is a set of ranked answers accompanied by their measures of beliefs.

Advanced QA requires sophisticated text processing tools based on the state-of-the-art NLP
and reasoning methods. The LCC tool set includes: Name Entity Recognizer, Syntactic Parser,
Logic Form Transformer, Word Sense Desambiguator, Lexical Chainer, Logic Prover and others. In
addition, since Power Answer operates in comercial environments, it has a set of support tools such
as System Manager, PowerAnalytics, PowerIndex, Power Ontology, and Document Manager that
enhance its functionality. The main focus of this paper is on Lexical Chainer and Logic Prover.

2 Name Entity Recognizer

Name Entity Recognition systems identify named-entities such as people, organizations, dates,
places, quantities and others in text documents. LiteNE, the LCC Name Entity Recognizer is im-
plemented as a cascade of finite-state automata interleaved with other preprocessing and coreference
resolution.

The tokenizer is the first module of the LiteNE system. The task of the tokenizer is to break
the document into lexical entities (tokens). Generally, a token is a word or a punctuation sign,
but in some cases it may be a word fragment. For example, the word “U.S.A.” is broken into six
tokens: “U”, «.”, “S”, «” “A” and “.”. Tt is the task of the next module to identify the above
sequence as a complex word representing an abbreviation of “United States of America”.

The Lexicon module identifies words and complex words that have lexical and semantic mean-
ing. This is done by inspecting both dictionaries and gazetteers. Dictionaries contain open-domain
lexico-semantic information, e.g. “house” is an artifact, or to a lesser extent domain-specific infor-
mation, e.g. “mail bomb” is a kind of bomb. Gazetteers typically store well-known entity names,
such as locations, e.g. “Dallas” is a city in the state of “Texas” part of the country “United States
of America”.

The Preprocessor identifies simple lexical entries that are not stored in lexicon or gazetteers.
Some of the items identified by the preprocessor are: phone numbers “1-(800) 888-7777”, money
“§4.75”, dates “December 25", times “8:30am”, measures such as “10kg”, “one hundred degrees”,
and others.

The core Name Entity Recognizer assigns lexical features to words or groups of words such
as locations, organizations, persons, addresses, and others. Proper names are particularly useful
for extraction systems since they point to objects about which we need to identify properties,
relations, events. The technique is to use capitalization if available. Some of the most frequently
used methods are Hidden Markov Models and finite state automata patterns. With the help of
dictionaries these techniques are able to recognize that “John Smith” is a proper name, and “John
Hopkins” is a University; or that “Austin Ventures” is a company, “Austin, Texas” is a city and
“Austin Thomas” is a name. Machine learning methods were used to train the LiteNE system. NE-
recognition benefits by morphological analysis by looking up in a dictionary for all morphological
variations of words.

Part of Speech Tagging is useful for subsequent text analysis stages. This involves specifying the
part of speech of each word. POS tagger combines rule-based and statistical methods and achieves
an accuracy around 96%.

3 Syntactic Parser

In advanced QA, like in many other NLP applications, syntactic parsing plays a major role in the
overall system accuracy, especially since subsequent steps rely on it. In the last few years, LCC
developed its own parser, and a version was trained for QA, meaning it has the capability of parsing
questions as well as free text. It is a probabilistic parser which has been improved over the years.

Parser identifies simple noun phrases (“the fast red car”), verb phrases (“is being obverved
daily”), and also particles that may be significant in subsequent text analysis. It recognizes phrases
and solves the attachment of prepositional phrases and close subordination. Full syntactic parsing
takes long time to process even a small number of text documents. Since we reduce documents
to relevant passages we can afford to fully parse these passages. The quality of parser affects the
accuracy of subsequent steps.

Coreference Resolution is the task of determining that a noun phrase refers to the same entity as
another noun phrase. This involves equating various forms of personal proper names, for example
“President Bush”, “George Bush”, “the 43rd President of US”, etc. There are other more complex
forms of coreference such as definite or indefinite noun phrase and pronoun coreference that have
been implemented. Also, a light form of temporal coreference resolution has been implemented.

4 Logic Form Representation

The logic form (LF) is an intermediary step between syntactic parse and the deep semantic form.
The LF codification acknowledges syntax-based relationships such as: (1) syntactic subjects, (2)
syntactic objects, (3) prepositional attachments, (4) complex nominals, and (5) adjectival/adverbial
adjuncts.

There are two criteria that guide our approach: (1) the notation be as close as possible to
English, and (2) the notation be syntactically simple. Our approach is to derive the LF directly
from the output of the syntactic parser. The parser resolves the structural and syntactic ambiguities.

The basis of integrating a Logic Form representation into the Power Answer system is that all
questions and relevant paragraphs are transformed into an unambiguous logic representation. The
term Answer Logic Form (ALF) refers to the candidate answers in logic form. Candidate answers
returned by the Answer Extraction module are classified as free text due to the unpredictable nature
of their grammatical structure. The term Question Logic Form (QLF) refers to the questions posed
the Question Answering system in logic form.

Essentially there is a one to one mapping of the words of the text into the predicates in the
logic form. The predicate names consist of the base form of the word concatenated with the part
of speech of the word. Each noun has an argument that is used to represent it in other predicates.
One of the most important features of the Logic Form representation is the fixed-slot allocation
mechanism of the verb predicates. This allows for the Logic Prover to see the difference between the
role of the subjects and objects in a sentence that is not answerable in a keyword based situation.

Logic Forms are derived from the grammar rules found in the parse tree of a sentence. There
are far too many grammar rules in the English language to efficiently and realistically implement
them all. We have observed that the top ten most frequently used grammar rules cover 90% of
the cases for WordNet glosses. This is referred to as the 10-90 rule. Below we provide a sample
sentence and its corresponding LF representation. More details regarding the transformation of
text into logic forms are presented in [Moldovan and Rus 2001].

Ezample:
Heavy selling of Standard & Poor’s 500-stock index futures in Chicago relentlessly beat stocks
downward.

LF:

heavy_JJ(x1) & selling NN(x1) & of IN(x1,x6) & Standard NN(x2) & &_CC(x13,x2,x3) &
Poor_NN(x3) &’s_.POS(x6,x13) & 500-stock_JJ(x6) & index NN(x4) & future NN(x5) &

nn NNC(x6,x4,x5) & in IN(x1,x8) & Chicago NN(x8) & relentlessly RB(el2) & beat_VB(el2,x1,x9)
& stocks_.NN(x9) & downward RB(el2)

5 Lexical Chains

A major problem in QA is that often an answer is expressed with words different from the question
keywords. In such cases it is useful to find topically related words to the question keywords. By
exploiting the information in the WordNet glosses, the connectivity between the synsets is dra-
matically increased. When a word in a gloss is semantically disambiguated, it points to the synset
it belongs to. We call this extended WordNet (XWN) [Harabagiu, Miller and Moldovan 1999]. In
the context of XWN, or any other lexical database, topical relations can be expressed as lexical
chains. These are sequences of semantically related words that link two concepts. Lexical chains
have been used in computational linguistics to study: discourse, coherence, inference, implicatures

malapropisms and others [Morris and Hirst 1991], [Hirst and St-Onge 1998],

[Harabagiu and Moldovan 1998b]. Lexical chains improve the performance of question answering
systems in two ways: (1) increase the document retrieval recall and (2) improve the answer ex-
traction by providing the much needed world knowledge axioms that link question keywords with
answers concepts.

It is possible to establish some connections between synsets via topical relations. We developed
software that automatically provides connecting paths between any two WordNet synsets S; and
S; up to a certain distance. The meaning of these paths is that the concepts along a path are
topically related.

In Table 1 we show a few examples of morphologically related words that appear in synsets
and their glosses which are brought to bear by the topical relations.

Morphological
Synset Gloss relation
laughter:n#1 (the sound of laughing:v#1) noun - verb
immediately:r#3 | (bearing an immediate:a#2 relation) adverb - adjective
insure:v#4 (take out insurancem#3 for) verb - noun
parental:adj#2 (..characteristic of or befitting a parent:n#1) | adjective - noun

Table 1: Examples of new morphological relations revealed by the topical relations

Examples
Below we provide the most relevant lexical chains that link some selected TREC 2002 questions
with their answers.

Q1403: When was the internal combustion engine invented ?

Answer: The first internal - combustion engine was built in 1867

Lezical chains:

(1) invent:v#1 - HYPERNYM — create_by_mental act:v#1 - HYPERNYM — create:v#1 —
HYPONYM — build:v#1

Q1404: How many chromosomes does a human zygote have ¢

Answer: 46 chromosomes that lie in the nucleus of every normal human cell
Lexical chains:

(1) zygote:n#1 — HYPERNYM — cellin#1

(2) zygote:n#1 — HYPERNYM — cell:n#1 -HAS_PART — nucleus:n#1

Q1411: What Spanish explorer discovered the Mississippi River ¢
Answer: Spanish explorer Hernando de Soto reached the Mississippi River
Lezical chains:

(1) discover:v#7 — GLOSS — reach:v#1

Q1462: Where is the oldest synagogue in the United States ¢

Answer: Newport is marking the 350th anniversary of the founding of Trinity Church , and is also
home to the nation ’s oldest synagogue

Lezical chains:

(1) United_States:n#1 — HYPERNYM — North_American_country:n#1 — HYPERNYM —
country:n#1 — GLOSS — nation:n#1

Q: 1518 What year did Marco Polo travel to Asia ?

Answer: Marco Polo divulged the truth after returning in 1292 from his travels , which included
several months on Sumatra.

Lezical chains:

(1) travel_to:v#1 — GLOSS — travel:v#1 — RGLOSS — travel:n#1

(2) travel_to#£1 — GLOSS — travel:v#1 — HYPONYM — return:v#1

(3) Sumatra:n#1 — ISPART — Indonesia:n#1 — ISPART — Southeast_Asia:n#1 — ISPART
— Asiamn#1

Q: 1540 What is the deepest lake in America ?

Answer: Rangers at Crater Lake National Park in Oregon have closed the hiking trail to the shore
of the nation ’s deepest lake

Lezical chains:

(1) Americain#1 — HYPERNYM — North_American_country:n#1 — HYPERNYM — coun-
try:n#1 — GLOSS — nation:n#1

6 Logic Prover

Usefulness of a Logic Prover in Question Answering

The LCC Logic Prover renders a deep understanding of the relationship between the question text
and answer text. The Logic Prover captures the syntax-based relationships such as the syntactic
objects, syntactic subjects, prepositional attachments, complex nominals, and adverbial/adjectival
adjuncts provided by the LF representation. In addition to the LF representations of questions and
candidate answers, the Logic Prover needs world knowledge axioms to link questions to answers.
For this, the Logic Prover uses the Lexical Chains to bring to the forefront the most important
logic axions needed in a proof. In XWN, an axiom is the LF expression of a synset and its gloss.
With this deep and intelligent representation, the Logic Prover effectively and efficiently re-ranks
candidate answers by their correctness and ultimately eliminates incorrect answers. In this way,
the Logic Prover is a powerful tool in boosting the accuracy of the Power Answer system. Moreover,
the trace of a proof constitutes a justification for that answer.

LCC’s Logic Prover

The base of LCC’s Logic Prover is Otter, an automated reasoning system developed at Argonne
Labs. Extensions were made to customize Otter to the Question Answering task. The inference
rule sets are based on hyperresolution and paramodulation. Hyperresolution is an inference rule
that does multiple binary resolution steps in one, where binary resolution is an inference mechanism
that looks for a positive literal in one clause and negative form of that same literal in another clause
such that the two literals can be canceled, resulting in a newly inferred clause. Paramodulation
introduces the notion of equality substitution so that axioms representing equality in the proof
do not need to be explicitly included in the axiom lists. Additionally, similar to hyperresolution,
paramodulation combines multiple substitution steps into one.

The search strategy used is the Set of Support Strategy, which partitions the axioms used
during the course of a proof into those that have support and those that are considered auxiliary.
The axioms with support are placed in the Set of Support (SOS) list and are intended to guide
the proof. The auxiliary axioms are placed in the Usable list and are used to help the SOS infer
new clauses. This strategy restricts the search such that a new clause is inferred if and only if
one of its parent clauses come from the Set of Support. The axioms that are placed in the SOS
are the candidate answers, the question negated (to invoke the proof by contradiction), axioms

related to linking named entities to answer types, and axioms related to decomposing conjunctions,
possessives, and complex nominals. Axioms placed in the Usable list are the WordNet axioms and
other axiom based outside world knowledge.

The Logic Prover will continue trying to find a proof until one of two conditions is met; either
the Set of Support becomes empty or a refutation is found.

Examples of answer justification in action:
Example 1.

Question 1797: How did Adolf Hitler die ?
QLF: manner_AT(el) & adolf nn(x2) & hitler nn(x3) & nn nnc(x4,x2,x3) & die_vb(el,x4,x1)

Question Azxiom:
-(exists el x1 x2 x3 x4 (adolf nn(x2) & hitler nn(x3) & nn0_nnc(x4,x2,x3) & die_vb(el,x4,x1))).

Answer:
It was Zhukov ’s soldiers who planted a Soviet flag atop the Reichstag on May 1, 1945 , a day after
Adolf Hitler committed suicide.

We introduce a psuedo-verb for suicide since the WordNet gloss for the noun suicide lets us infer
that suicide is an act and therefore can be treated as a verb.

ALF:

It_PRP(x14) & be_VB(el,x14,x2) & Zhukov_NN(x1) & ’s_.POS(x2,x1) & soldier NN(x2) &
plant_VB(e2,x2,x3) & Soviet_JJ(x3) & flag NN(x3) & atop_IN(e2,x4) & Reichstag NN(x4) &

on IN(e2,x8) & May NN(x5) & 1 .NN(x6) & 1945_NN(x7) & nn NNC(x8,x5,x6,x7) & day NN(x9)
& Adolf NN(x10) & Hitler NN(x11) & nn NNC(x12,x10,x11) & commit_VB(e3,x12,x13) & sui-
cide NN(x13) & suicide_ VB(x13,x19,x12)

Answer Aziom:

exists el €2 e3 e4 x1 x10 x11 x12 x13 x14 x17 x18 x19 x2 x3 x4 x5 x6 x7 x8 x9 (it_prp(x14)
& be_vb(el,x14,x2) & zhukov_nn(x1) & _s_pos(x2,x1) & soldiers_nn(x2) & planted_vb(e2,x2,x3) &
soviet_jj(x3) & flagnn(x3) & atop-in(e2,x4) & reichstag nn(x4) & on_in(e2,x8) & may nn(x5) &
1nn(x6) & 1945_nn(x7) & nn_nnc(x8,x5,x6,x7) & day_nn(x9) & adolf nn(x10) & hitler_nn(x11) &
nn_nnc(x12,x10,x11) & commit_vb(e3,x12,x13) & suicide nn(x13) & suicide_vb(x13,x19,x12)).

Wordnet Relations:

Suicide is a manner of killing.

Suicide NN(el) — kill NN(el) & manner_AT(el)
Aziom:

all el (suicide_nn(el) — kill nn(el) & manner_at(el)).

Pseudo-Verb Wordnet Gloss:

Suicide is the act of killing yourself

Gloss Logic Form:

suicide_VB(el,x1,x2) <> kill VB(e2,x1,x2) & yourself PRP(x2) Aziom: all el x1 x2 (suicide_vb(el,x1,x2)
— kill vb(el,x1,x2) & yourself nn(x2)).

Wordnet Gloss:

To kill is to cause to die

Gloss Logic Form:

kill VB(el,x1,x2) <> cause_VB(e2,x1,e3) & die_VB(e3,x2,x4)

Aziom:

all el e2 e3 x1 x2 x4 (kill.vb(el,x1,x2) <> cause_vb(e2,x1,e3) & die_vb(e3,x2,x4)).

Linguistic Azioms:
Link the noun kill to the verb kill
all el e2 x1 x2 (killnn(el) & kill vb(e2,x1,x2) — kill_vb(el,x1,x2)).

Make the yourself predicate relfexively used in the verb kill
all el x1 x2 (kill_vb(el,x1,x2) & yourself nn(x2) — yourself nn(x1)).

The relevent steps in the proof:

1 [] -manner_at(x15) | -adolf_nn(x2) | -hitler nn(x3) | -nn_nnc(x4,x2,x3) | -die_vb(x15,x4,x1).

(The question negated to invoke a proof by contradiction)

18 [] adolf_nn($c16).

19 [] hitler_nn($c15).

20 [] nn_nnc($c14,$c16,3c15).

22 [] suicide_nn($c13).

23 [] suicide_vb($c13,$c9,3c14).

(The Logic Prover selects the above clauses from the answer)

25 [] -suicide_nn(x16) | manner_at(x16).

(The Logic Prover selects the axiomatic knowledge extracted from Wordnet that suicide is a man-
ner of killing)

29 [] -kill_vb(x23,x1,x2) | die_vb(x23,x2,$c23).

(The Logic Prover selects the WordNet gloss for kill implies die)

30 [] -suicide_vb(x24,x1,x3) | kill_vb(x24,x1,x3).

(The Logic Prover selects the WordNet gloss for suicide implies kill) 32 [hyper,22,25] manner_at($c13).
35 [hyper,23,30] kill_vb($c13,$¢9,$c14).

36 [hyper,35,29] die_vb($c13,$c14,$c23).

39 [hyper,1,32,18,19,20,36] SF.

In the final step the terms for adolf nn($c16), hitler nn($c15), nn_nnc($c14,$¢16,3¢15), manner_at($c13),
and die_vb($c13,$c14,$c¢23) are hyperresolved with the negated question to yield a full proof by con-
tradiction.

Example 2.
Question 1512: What is the age of our solar system ?

QLF:
_quantity AT (x2) & age NN(x2) & of IN(x2,x3) & solar_JJ(x3) & system_NN(x3)

Question Aziom:
-(exists x1 x2 x3 (_quantity_at(x2) & age_nn(x2) & of_in(x2,x3) & solar_jj(x3) & system nn(x3))).

Answer:
The solar system is 4.6 billion years old

ALF:
solar_JJ(x5) & system_NN(x5) & 4.6_NN(x2) & billion NN(x3) & year NN(x4) & nn NNC(x5,x2,x3,x4)
& old_JJ(x5)

Answer Aziom:
exists el x1 x2 x3 x4 x5 x7 (solar_jj(x5) & system nn(x5) & 4_6_nn(x2) & billion.nn(x3) &
years_nn(x4) & nn_nnc(x5,x2,x3,x4) & old_jj(x5)).

Wordnet Gloss:
O1d is having lived for a relatively long time or attained a specific age.

Gloss Logic Form:
old_JJ(x6) <> live_VB(e2,x6,x2) & for IN(e2,x1) & relatively_JJ(x1) & long JJ(x1) & time NN(x1)
& or_CC(eb,e2,e3) & attain_VB(e3,x6,x2) & specific_JJ(x2) & age NN(x2)

Aziom:
all 2 e3 e5 x1 x2 x6 (0ld_jj(x6) <> live_vb(e2,x6,x2) &for_in(e2,x1) & relatively_jj(x1) & long_jj(x1)
& time nn(x1) & or_cc(eb,e2,e3) & attain_vb(e3,x6,x2) & specific_jj(x2) & age_nn(x2)).

Named entity azioms:
all x2 x3 x4 x5 (4_6_nn(x2) & billion nn(x3) & years_nn(x4) & nn_nnc(x5,x2,x3,x4) — _quantity_at(x5)).

Linguistic azioms:
all x1 (_quantity_at(x1) & solar_jj(x1) & system nn(x1) — of_in(x1,x1)).

The relevent steps in the proof:

1 [] -_quantity_at(x2) | -age_nn(x2) | -of_in(x2,x3) | -solar_jj(x3) | -system_nn(x3).

(The question negated to invoke a proof by contradiction)

2 [] solar_jj($c2).

3 [] system_nn($c2).

4[] 4-6_nn($ch).

5 [] billion nn($c4).

6 [| years_nn($c3).

7 [| nn_nnc($c2,$c5,3c4,3c3).

8 [] old_jj($c2).

(The Logic Prover selects the above clauses from the answer)

17 [] -old_jj(x6) | age_nn(x2).

(The Logic Prover selects the WordNet gloss for old implies age)

19 [] -4.6_nn(x2) | -billion.nn(x3) | -years_nn(x4) | -nn_nnc(x5,x2,x3,x4) | _quantity_at(x5).
(The Logic Prover selects the named entity axiom linking 4.6 billion years to a quantity)
20 [] -_quantity_at(x1) | -solar_jj(x1) | -system nn(x1) | of_in(x1,x1).

(The Logic Prover selects the Linguistic axiom implying that if a noun or noun phrase is a quantity
then the quantity is an attribute of that noun or noun phrase)

21 [hyper,8,17] age_nn(x).

30 [hyper,7,19,4,5,6] _quantity_at($c2).

31 [hyper,30,20,2,3] of_in($c2,$c2).

32 [hyper,1,30,21,31,2,3] $F.

In the final step the terms for _quantity_at($c2), of_in($c2,8c2), age_nn(x), solar_jj($c2), and
system nn($c2) are hyperresolved with the negated question to yield a full proof by contradiction.

When the proof fails, we devised a way to incrementally relax some of the conditions that hinder
the completion of the proof. This relaxation process puts weights on the proof such that proofs
weaker than a predefined threshold are not accepted.

7 Other Support Tools

System Manager provides immediate access to all key parameters and indicators for managing
and administering the Question Answering system, e.g. answer rate, number of simultaneous
questions, static or dynamic content collection, number of documents retrieved, memory size for
Natural Language parsing, and many others. With its web-based, easy to use interface, the System
Manager allows for all these parameters to be adjusted in real time. The result is an Answer service
that follows the needs of the Customer Service department, scaling up and down for the optimal
performance and resource allocation.

PowerAnalytics offers continuous customer feedback with up-to-date insight on customer needs,
communication patterns and expectations. The advanced management module with friendly and
easy-to-use web interfaces makes real-time service monitoring and content adjustment fast and
powerful. Companies benefit from low maintenance costs and deep knowledge of business and
customer service metrics in both standard and highly customized analytic reports.

PowerIndex makes content integration fast and easy. The system deploys advanced harvesting
tools that access, collect and index large amounts of structured or unstructured information au-
tomatically, or on request. New and old knowledge is merged seamlessly and re-indexed most
efficiently, so that fresh information is disseminated as soon as it is created.

PowerOntology creates deep concept ontologies starting from only a small number of concept
seeds. For example, the WordNet ontology is enhanced with domain specific concepts through
syntactic transformations, such as extending the seed concept with modified nouns, and through
semantic chains, such as ISA-relations.

Document Manager allows for clear management of all structured and unstructured data. It
keeps track of multiple document revisions, add-ons or deletions, data changes and document loca-
tions. Document Manager also integrates seamlessly with PowerIndex and offers a clear overview
on the content resources and their immediate availability for fresh knowledge dissemination through
our Question Answering and Information Extraction products.

8 Results at TREC 2002

The performance obtained by PowerAnswer at TREC QA 2002 in the main task is summarized in
Table 2.

9 Conclusions

This paper introduced some of the tools that support the operation of LCC’s QA system. In par-
ticular, it was demonstrated how questions, document paragraphs and world knowledge axioms are
formally represented and how a logic prover methodically and efficiently generates correct answers.

Number wrong (W) 63
Number unsupported (U) 14
Number inexact (X) 8
Number right (R) 415
Precision of recognized no answer | 0.578
Recall of recognizing no answer 0.804
Confidence-weighted score 0.856

Table 2: Performance over 500 questions

Essential in this framework is the extended WordNet which supplies the prover with world knowl-
edge axioms. To cope with future questions that entail implicatures and other complex analyses,
nonmonotonic reasoning methods need to be incorporated into the logic prover. It becomes more
and more clear that QA is intimately linked with natural language processing, text mining, and
reasoning on knowledge bases.

Acknowledgement
This work was supported in part by the ARDA AQUAINT program. We wish to thank Christine
Clark, Mihai Surdeanu and Marius Pasca from LCC for their contribution to this work.

References

[Fellbaum 1998] Christiane Fellbaum. WordNet - An Electronic Lexzical Database, MIT Press, Cambridge,
MA, 1998.

[Harabagiu and Moldovan 1998b] S.M. Harabagiu and D.I. Moldovan. Knowledge Processing on an Ex-
tended WordNet. WordNet-An Electronic Lexical Database. The MIT Press, C. Fellbaum editor,
pp 379-406, 1998.

[Harabagiu, Miller and Moldovan 1999] S. Harabagiu, G.A. Miller, and D.I. Moldovan. WordNet 2 - A Mor-
phologically and Semantically Enhanced Resource. Proceedings of ACL-SIGLEX99: Standardizing
Lexical Resources, Maryland, June 1999, pp.1-8.

[Hirst and St-Onge 1998] G. Hirst and D. St-Onge. Lexical Chains as Representations of Context for the
Detection and Correction of Malapropisms. WordNet-An Electronic Lexical Database. The MIT
Press, C. Fellbaum editor, pp 305-332, 1998.

[Moldovan and Rus 2001] D. Moldovan and V. Rus. Logic Form Transformation and its Applicability to
Question Answering. In Proceedings of ACL 2001.

[Moldovan et al 2002] D. Moldovan, M. Pasca, S. Harabagiu and M. Surdeanu. Performance Issues and
error Analysis in an Open-Domain Question Answering System. In Proceedings of ACL 2002.

[Moldovan and Novischi 2002] D. Moldovan and A. Novischi. Lexical Chains for Question Answering. In
Proceedings of COLING 2002, pp.674-680.

[Morris and Hirst 1991] J. Morris and G. Hirst. Lexical Cohesion Computed by Thesaural Relations as an
Indicator of the Structure of Text. In Computational Linguistics, Vol. 17 , no 1, pp. 21-48, 1991.

10

