
unex-
 inte-
cedural
bmit-
found
 content
ation
named
.

 and
ring.
atabase
, and the
g, we

Oracle
list of

fication.
 knowl-
ified into

REC
nd gen-
sers to
out any
prove
orithm,
s are nor-

Oracle at TREC 10: Filtering and Question-Answering

Shamim Alpha, Paul Dixon, Ciya Liao, Changwen Yang
Oracle Corporation

500 Oracle Parkway M/S 4op8
Redwood Shores, CA 94065 USA

trec@us.oracle.com

Abstract:
Oracle’s objective in TREC-10 was to study the behavior of Oracle information retrieval in previously
plored application areas. The software used was Oracle9i Text[1], Oracle’s full-text retrieval engine
grated with the Oracle relational database management system, and the Oracle PL/SQL pro
programming language. Runs were submitted in filtering and Q/A tracks. For the filtering track we su
ted three runs, in adaptive filtering, batch filtering and routing. By comparing the TREC results, we
that the concepts (themes) extracted by Oracle Text can be used to aggregate document information
to simplify statistical processing. Oracle's Q/A system integrated information retrieval (IR) and inform
extraction (IE). The Q/A system relied on a combination of document and sentence ranking in IR,
entity tagging in IE and shallow parsing based classification of questions into pre-defined categories

1. Filtering based on Theme Signature
As a first time filtering track participant, Oracle submitted runs for adaptive filtering, batch filtering
routing this year. Only linear-utility optimized runs were submitted for adaptive filtering and batch filte
The filtering system is built based on the Oracle 9i database with PL/SQL - an Oracle supported d
access language. Since the routing sub-task outputs the top 1000 ranked documents per category
training process and similarity score calculation algorithm are the same for batch filtering and routin
will focus our discussion on batch filtering and adaptive filtering.

The filtering system can be divided into three parts based on functionality:
a. Theme Vector Generation
b. Training
c. Classification

Theme Vector Generation
Theme vector generation generates a theme vector for each document. It is built-in functionality of
Text, the information retrieval component of the Oracle database[2]. A theme vector containing a
themes (concepts) and associated weights carries all information of a document used in classi
Themes are normalized words having meanings individually and extracted based on the Oracle Text
edge base. The knowledge base is built in-house and contains about 425 thousand concepts class
2000 major categories. These categories are organized hierarchically under six top terms: business and eco-
nomics, science and technology, geography, government and military, social environment, and abstract
ideas and concepts. This knowledge base is built to support concept search and retrieval. For this T
work, the ConText knowledge base was employed in our filtering system to preprocess documents a
erate concept terms. Although the Oracle Text user extensible knowledge base functionality allows u
modify the built-in knowledge base using user specified thesaurus, we used the knowledge base with
modification. We believe augmenting the knowledge base using domain specific information could im
filtering performance. In the theme generation, known phrases are recognized using a greedy alg
unknown words and proper name phrases are recognized and treated as themes. Words and phrase
malized to their canonical forms. Every normalized term is a potential theme for a document.

ssifica-

ments of
ocesses
 process
tokens in
ledge
 noun, a
orm of
 form
e. After
eadied”
differ-

ith or
ming

ment,
 fre-

t themes
e more
er hand,
 on the
the same
 in the
Theme weights are used to rank the semantic significance of themes to the aggregate document content.
Themes are assigned initial weights based on their lexical flags in the knowledge base. Next, several factors
derived from the structure of a document and the frequency of the theme in the document are employed to
modify the initial weights of the themes. For example, the first few terms inside a sentence have higher
weights than the terms at the end of sentences to account for “fronting” and sentence focus.

Generated theme vectors are normalized to have unity length before being sent to the training or cla
tion process. This normalization can be written as :

where wjn and wj are the j-th component (j-th theme term) weight of theme vector w after and before unity

normalization respectively.

Our prior experience demonstrates that themes are superior to text tokens in representing text docu
medium to large size for classification purposes. Oracle Text first tokenizes documents and then pr
these tokens using a greedy maximal match algorithm to generate themes. A brief description of the
to generate themes from tokens may shed some lights on the reason why themes are superior to
classification. After finding a token, Oracle Text gets the part of speech information from the know
base or finds phrases based on the greedy algorithm and lexical knowledge base. If the token is a
canonical form is used as a normalized form for this token, such as “tastefulness” with canonical f
“tasting” and “dull-headedness” with canonical form of “stupidity”. If the token is a non-noun, a base
is found based on the knowledge base or morphology if the token does not exist in knowledge bas
that, a normalized noun form is used as the theme form for the non-noun base form. For example, “st
has a base form of “steady” which corresponds to a normalized form of “steadiness”. The following
ences between themes and tokens may contribute to the different behaviors in classification:

1. Themes can handle phrases while tokens can not without a lexicon.
2. Themes are represented with normalized forms of concepts, while tokens are forms w

without stemming. Word normalization is mostly based on lexical knowledge, while stem
of a token is mostly based on morphology.

3. The weight of a theme expresses the lexical information of a term, locations in a docu
and term frequency. The weight of a token typically only includes the information of term
quency.

For the classification task no parent themes (broader terms) were used. Whether or not the paren
improve the learning quality is actually an open question. One side says a specific word should b
important for representing a document and a parent theme may act as a common word. On the oth
one of the parent themes may tell exactly what a document is about. However, that might depend
level of parent theme and depend on whether or not the hierarchy of the knowledge base represents
knowledge hierarchy in the classification application. We intend to investigate this issue thoroughly
future.

Training

wj
n

wj

wj
2∑

------------------=

 the top
k Jones
tatistical

t is the
sidered
The training process calculates the summation of all relevant theme vectors for each category. The summa-
tion result serves as the original theme vector for one category. Because of accumulation, the number of
themes in the category theme vector can be large. Experiments show that reducing some common themes
and less frequent themes for the category theme vector can improve classification accuracy. Theme reduc-
tion can also reduce the resource usage and improve classification performance. We adopt a two-step theme
reduction. The first step is to choose the top 400 themes with highest theme weights in the category theme
vector. As mentioned earlier, the theme weight obtained from Oracle Text combines information about the
lexical significance, word position inside one sentence, and occurrence frequency inside the document.
Those top 400 themes in the category theme vector are the most frequently occurring and significant words
to the category. Another rationale for choosing the theme by weights is that words with little meaning have
lower weights and therefore can be removed.

The first step of theme selection based on the theme weight may choose some themes which are common in
lot of categories. These common themes are not specific to one category and may produce extra noise to the
classification process. The second step of theme reduction is to choose themes which are more specific to
one category. We use a chi-square test for theme selection [3]. In specific, we choose a theme if the null
hypothesis that this theme is independent of the considered category can be proved not true. The themes
will be chosen if:

where N is the total number of training documents
 R is the number of training documents in this category
 nt is the number of training documents containing this word

 rt is the number of training documents in this category and containing this word.

 value 3.84 is chosen because the confidence of chi-square test is 0.95.

By chi-square test, the average theme vector size can be reduced to 280. In the original category theme vec-
tor, the weight is the summation of each document’s theme weights; those weights help us to choose
400 themes for the category. However, during the classification process, we use Robertson-Sparc
weights [4] as term weights in category theme vectors. The weights are calculated based on the s
characteristics of the training set and relevant category:

This formula is obtained from the Bayesian statistical model. The Robertson-Sparck Jones weigh
component weight for one term to estimate the log-odds of an given document belonging to the con
category in the assumption that terms are independent [5].

N Nrt ntR–()2

Rnt N R–() N nt–()
-- 3.84>

rt 0.5+() N R– nt– rt 0.5+ +()
nt rt– 0.5+() R rt– 0.5+()

--log

Classification
Before classification, category theme vectors are normalized to have unity length. In classification, the sim-
ilarity scores S between the incoming document and each category are calculated as a dot product between
the document theme vector vd and category theme vector vc, that is S = vd.vc. The document is classified to
the categories in which the similarity scores are larger than the corresponding category thresholds. The pre-
defined thresholds are determined from the relevance information either from the training set in batch filter-
ing or from feedback in adaptive filtering.

Threshold Determination

Batch filtering
Each category has its own threshold to determine if a document can be classified to it based on the similarity
score. In order to determine the threshold for one category, we use the classification module to calculate the
similarity score between all training documents and the considered category. For any given threshold x, we
can get the following contingency table as we know the actual categories of each training document.

 Relevant Not Relevant
Retrieved R+ N+

Not Retrieved R- N-

We can define a utility (goal) function of the about 4 numbers, say f(R+,N+,R-,N-,x). x appears explicitly in

the function because R+,R-,N+ and N- are all functions of the threshold x. The threshold is chosen to maxi-
mize the function f.

 Threshold = x: max f(R+,N+,R-,N-,x)

 x

In TREC-10, we submit the batch filtering run based on optimization function of linear-utility, which is
f(R+,N+)=T10U=2R+ - N+.

In implementation, one can generate a sorted array of training documents ordered by similarity scores to the
given category with a decreasing sequence. The relevance information of documents in the sorted array
before any given document can determine R+, N+ at the threshold value equal to the similarity score of this

document. For each document in the sorted array, one then can calculate the T10U function value at the
threshold value equal to the similarity score of this document based on calculated R+, N+. Because the array

is sorted such that the similarity scores are decreasing, one therefore can draw a curve of T10U vs threshold.
As threshold decreases from the largest value, the T10U values first increase because more relevant docu-
ments are located at the positions having larger similarity scores, and decrease after reaching a peak. The
peak position corresponds to a similarity score , whose value is the optimized threshold value to maximize
T10U function. This calculation makes the assumption that the training set similarity score distribution and
T10U quantity is similar to that of the test set.

Adaptive training
In adaptive filtering, we first built initial category theme vectors from training process of an initial training
set, which contains two relevant documents per category. The training process is the same as we discussed
above. The initial category threshold is set to be 40% of the minimum similarity score of the two relevant
documents with the considered category. We then classify the test documents in a batch mode with each

batch containing 2000 documents coming from the test set stream. After classification of each batch, feed-
back information including the relevance judgments and the similarity scores is sent to adaptive training, see
Fig.1.

Adaptive training includes updating category theme vectors and category thresholds. In order to update the
category theme vector, we have to maintain the original category theme vectors which are the theme vectors
before any theme selections and has the theme weights from summation of Oracle Text theme weights. To
keep the number of themes in the category theme vector from becoming too large, we limit the size of each
original category theme vector to a maximum of 2000. The extra feedback training document theme vectors
are added to the original category theme vectors using Widrow-Hoff algorithm [6].

where wj, w
n

j are the weights for j-th component of the category theme vector before and after adaptive

training, respectively. xi is the theme vector of i-th feedback document, yi the relevance judgment of the i-th

feedback document with the considered category with yi =0 denoting not relevant, yi=1 denoting relevant.

w.xi denotes the dot product between the theme vector w and xi. z>0 is learning rate and is set to 0.2.

The Widrow-Hoff algorithm generates a list of updated themes and weights. We maintain only the top 2000
highest weight themes for each category. The weights here are calculated quantities from Oracle Text theme
weights. We apply theme selections and employ Robertson-Sparck Jones weights as category theme vector
weights for classification as discussed in the above training section.

Thresholds can be calculated based on the relevance information and similarity scores of all previous feed-

wj
n

wj 2z w xi• yi–()xi j,–=

Widrow-Hoff
Training

Original Category
Theme Vectors

Theme Selection

Robertson-Sparck
Jones Weight

Category
Theme Vectors

Category
Thresholds

Classification
Theme Vector
Generation

Suggested
Categories

Incoming
Documents

 Feedback Info.

 Theme
 Vectors

Figure 1. Adaptive filtering diagram

Threshold
Modification

back documents in the way we discussed in the threshold determination section. However, that calculation
may take unacceptably long time. Instead we adopt a simple method to adjust the existing thresholds only
based solely on current feedback information.

Thresholds can be adjusted by calculating the optimal threshold for the extra feedback training set as dis-
cussed in threshold determination section. We denote the optimal threshold as
optimal_threshold_extra_training, then the updated threshold is :

 updated_threshold = old_threshold + C (optimal_threshold_extra_training - old_threshold)

where C is a learning parameter and is set to 0.3. We note that the feedback batch size and the learning
parameter C are relevant parameters, if the feedback batch size is small, the optimal threshold for the extra
feedback documents may vary a lot, one then choose a smaller C. C has to be chosen such that the updated
thresholds change with the feedback process in a systematic and stable way.

Submission Result and Discussions
Oracle submitted three runs. They are listed in the Table 1, and Table 2, with adaptive, batch runs in table 1
and routing in table2, respectively. The numbers in the parenthesis are the median value of all participants.
The median values are the (N/2+1)-th value in sorted decreaseing list if the number of participants N is even.
Except the precision for batch filter, all numbers in our submitted runs are above median.

We note that the routing behaves better than batch filtering. The fact that batch filtering system has only one
more component: thresholding, than routing implies that our threshold determination is not quite good for
batch filtering. In batch filtering, the threshold can not be adjusted. Once a threshold is determined, it is used
to classify the whole test set without any adjustment. So the initial threshold determination is critical. How-
ever, it is interesting to note that the same simple method of determining threshold behaves quite well in
adaptive filtering when comparing our adaptive filtering result with others.

Our training, classifying, and thresholding methods are all well-known methods, but our system behaves
better than medians, especially in adaptive filtering. One explanation for this might be the linguistic suite in
Oracle Text and knowledge base we used to process documents. The theme vector we get from Oracle Text
contains more information than just text token and occurrence frequency in the document. Theme vector
have a list of normalized terms. This term normalization could reduce the size of collection thesaurus, and
make it easier to match different terms with the same concept. The weight of the theme contains not only the
occurrence frequency information, but lexical information. In conclusion, the combination of these linguistic
functionalities and appropriately engineering some well-known learning methods are believed to make our
system successful.

Table 1: Adaptive and batch filtering result with T10U optimization. The numbers in the
parathesis are the median value for all participants.

Run label Run type
Optimi-
zation

Precision
(median)

Recall
(median)

T10SU
(median)

F-beta
(median)

oraAU082201 adaptive T10U 0.538
(0.462)

0.495
(0.213)

0.291
(0.137)

0.519
(0.273)

oraBU082701 batch T10U 0.556
(0.618)

0.353
(0.293)

0.249
(0.247)

0.450
(0.448)

2. Question Answering based on Information Retrieval and Information Extraction
Questions can be classified into pre-defined categories. Typical categories are: person names, organization
names, dates, locations (cities, countries, states, provinces, continents), numbers, times, meaning of
acronyms and abbreviations, weights, lengths, temperatures, speed, manner, duration, products, reasons
etc.[7][8]

Information extraction (IE) techniques allow us to extract lists of semantic categories from text
automatically[9], such as person names, organization names, dates, locations, duration, etc., which are
subsets of the whole pre-defined question categories. If a question category is covered by IE, finding the
locations of answer candidates becomes easier: the task remains is to rank the list of answer candidates
extracted by IE. Otherwise, a number of heuristics are employed to locate the answer candidates and rank
them.

Overview of Oracle Q/A system:
Our Q/A system consists of three major components shown in figure2: (1) question processor (2) sentence
ranking (3) answer extraction.

Question Processor:
Its role is to: (a) classify a question into a list of pre-defined semantic categories (b) extract content words
from a question and send them to Oracle to retrieve relevant documents.

To classify a question, the first step is to determine its question type. The following wh-words are used to
determine the question types: who, why, where, whom, what, when, how much money, how much, how
many, how (rich, long, big, tall, hot, far, fast, large, old, wide, etc.).

A list of heuristics will help to map the question types to the pre-defined semantic categories:
(1) who is (was) "person name" => occupation
(2) other "who" types => personal name
(3) how rich, how much money, how much + VBD(VBP, VBZ, MD) => money expression
(4) other "how much" types => number
(5) how hot (cold) => temperature
(6) how fast => speed
(7) how old => age
(8) how long => period of time or length
(9) how big => length or square-measure or cubic-measure
(10) how tall (wide, far) => length

Table 2: Routing result. The number in the parathesis is the
median value for all participants.

Run label Run type
Mean average precision

(median)

oraRO082801 Routing 0.104
(0.082)

 finds
 noun of
s used to
to do a
 of the
can tell

gnore
should
ents. At
-content
s. For
wer?"
estion.
e subject

 Figure 2: Architecture of the Oracle Q/A System

A complicated problem is to map the question type "what" to its semantic category. Here, a part-of-speech
(POS) tagger is used to assign the most appropriate part-of-speech for each word in a question based on the
contextual information [10]. The head noun of the first noun phrase in a question is used to decide its
semantic category. For example, "What costume designer decided that Michael Jackson should only wear
one glove?" The head noun of the first noun phrase is "designer". Using WordNet’s lexicon [11], one
that "designer" is a person, so, the semantic category of this question is "person name". If the head
the first noun phrase in a question is a stop word, then, the head noun of the second noun phrase i
decide the semantic category. For example, "What was the name of the first Russian astronaut
spacewalk?" The head noun of the first noun phrase is "name" (a stop word), so, the head noun
second noun phrase "astronaut" is used to decide the semantic category. Similarly, WordNet’s API
that its semantic category is "person name".
When extracting a list of keywords from a question, our principle is to extract all content words, but i
all non-content words. The distinction between these two types of words is that content words
appear in the relevant documents, but non-content words should not appear in the relevant docum
lease, stop words and stop phrase (such as: how much, what time, what country) belong to non
words. Furthermore, a list of heuristics is helpful to distinguish content words from non-content word
example, "What is the length of coastline of the state of Alaska?", and "What is the Illinois state flo
Word "state" is a non-content word in the first question, but a content word in the second qu
Removing non-content words as many as possible makes retrieved documents more focusing on th
topic of the question and is very helpful for extracting right answers from retrieved documents.

content words
extraction

question
categorization

question
processor

Trec index

Oracle search engine

sentence
segmentation

IE
categories

sentence
filtering

sentence
ranking

IE-based answer

non-IE based
answer extractor

sentence
ranking

answer
extractor

question

no

yes

extractor

er uses
ments

mulate)
 sum of

 higher
nts, but
sed to
 the two
nted into
ranked
ted into

content
 (4) the

answer
he IE is
sentence
s which
e filtered
as also
wed by
 many
ses, and

cription,
s to the
, which
, which
 (1) the
dow.
t in (1)
ions, we
rm the

 limited
ronyms
ns of
au of

ervative,
 was
Sentence Ranking:
After the query processor extracts a number of content words from a question, two queries are formulated:
one uses proximity operator “near" with maximum span size 25 to connect these words, the oth
“accum" operator to connect them. Near opearator find all query terms within specified span. Docu
are ranked based on the frequencies and proximity of query terms in the document. Accum (accu
operator finds documents matching one or more query terms. Documents are ranked based on the
weights of the terms matched and frequency of the terms in the document. The first query has
priority than the second one, because “near” operator always retrieves more relevant docume
usually, the number of documents retrieved by “near” is not big enough, so, “accum” query is u
supplement it. Oracle Text retrieves a list of relevant documents (60 documents in trec10) based on
queries. Then, the relevant documents are broken into paragraphs, the paragraphs are segme
sentences. According to our experiments, it is suitable to extract long answers (250 bytes) from
paragraphs, but to extract short answers (50 bytes), the paragraphs must be further segmen
sentences.

Ranking the segmented sentences is based on the following information: (1) the number of unique
words in a sentence (2) tf and idf of each content word (3) total number of content words in a query
smallest window size which contains all the unique content words in the sentence.

Our information extractor (IE) has two modules: one used for sentence filtering, the other used for
extraction (IE-based answer extractor). If the semantic category of a question is covered by the IE, t
used for sentence filtering. Only selected sentences which satisfy the IE, are the candidates of the
ranking. For example, if the semantic category of a question is "person name", only the sentence
include at least one person name will participate the sentence ranking, all the rest of sentences ar
out from answer extraction, because they do not include answers of the question. The IE w
integrated with sentence segmentation algorithm. The standard sentence delimiters are "?!.", follo
one or more spaces, then followed by a word whose first letter is a capital letter. There are
exceptional cases, such as Mr. Steve, St. Louis. The IE could recognize these exceptional ca
guarantee the success of the sentence segmentation.

Answer Extraction:
After the sentences are ranked, top five of them are used to extract the answers. From previous des
our IE only covers a subset of the whole semantic categories. If the answer type of a question belong
subset, it is easy to extract answers using the IE. Otherwise, we concluded a number of heuristics
help to extract answers. The sentence ranking algorithm can find the smallest window in a sentence
contains all the content words in the sentence. This window divides the sentence into three parts:
words in front of the window, (2) the words after the window and (3) the words inside of the win
According to our observation, the priorities of the three parts are (1) (3) (2). We further observed tha
and (3), the words closer to the windows have higher priority than others. Based on these observat
picked up certain percent of words from each part of the sentence according to their priorities to fo
final answers.

Other Linguistic Processing:
(1) acronyms and abbreviations: like other advanced search engines, our system also does
automatic query expansion, mainly for queries with acronyms, abbreviations, etc. It expanded (a) ac
of geographical terms, such as "U.S. = United States", "N.C. = North Carolina" (b) abbreviatio
organization names, such as "YMCA = young mens christian association", "NBS = national bure
standards"

(2) stemming: Oracle's search engine does not use Porter's stemmer. Our stemmer is more cons
which obtains good precision, may hurt recall a little bit. To remedy this problem, extra stemming

added in rare situations. For example, "When did Hawaii become a state?", the main verb was stemmed as
"$become".

(3) Information Extractor (IE): an information extractor was created over the last few months to recognize
(a) person names (b) organization names (c) dates (d) number (e) locations (f) money expression (g) time
(h) temperature (I) speed (j) weight (k) length (l) square measure (m) cubic measure (n) age, etc.

Performance Evaluation:
A question answering system was created based on information retrieval and information extraction. Our
study shows that traditional IR technique are not only useful to rank documents, but also to rank paragraphs
and sentences. Finding the smallest window from a sentence which contains all the content words in it, is
very helpful to extract answers when its semantic category is not covered by the IE, the window size is also
an important factor to decide the sentence rank.

The following table shows the evaluation result provided by NIST for our system

 strict lenient
 NIST score 0.477 0.491
 % of correct answers 60.77% 62.60%
 % of correct first answers 40.04% 40.85%

The current (Oracle 9i) knowledge base is designed for information retrieval; for Q/A track, we found it nec-
essary to expand the lexicon to cover wh-focus ontological facets.

3. Web Track
As preparation, we investigated the TREC-10 web task using TREC-9 web track documents and queries. We
also attempted to productize lessons learnt from our participation in Trec8 adhoc manual task. A set of dif-
ferent collections including TREC Web and Adhoc collections helped us in our effort to formulate generic
techniques applicable across domain. Due to resource constraints, we were unable to work on Trec10 web
track. Here we summarize our findings based on older collections.
Our experiments in link analysis using Oracle intranet data indicate that link analysis adds little value to
intranet search. Link analysis is a technique that helps bring order to an unorganized collection lacking cen-
tral authority (such as web) by using popularity measure. A organized intranet will have clearly defined
authorities for different subject matters.

IDF weighting used in tf-idf scoring is not very effective when the collection is pretty large (a couple of mil-
lion documents) and number of terms in the queries is pretty high. If the queries are free-text queries, IDF
weighting fails to distinguish between important and unimportant terms. Weighting techniques which weight
terms inversely proportional to a factor of the frequency ratios (x times as rare terms get y times as much
weight) seem to perform better in this situation. We saw significant improvement in R-precision by adopting
this technique.

As the number of documents increases, the number of distinct score values supported by a system becomes
important. Until recently Oracle Text used 100 distinct integers in the range of 1 to 100 for scoring. We
found that allowing a million distinct values improves system IR quality computed in average precision by
improving tie splitting. Even though number of relevant documents retrieved did not increase very signifi-
cantly (about 3-4%), average precision increased by 10-15% (for example, Trec9 web track average preci-
sion improved from 0.11 to 0.125).

 the
Using Trec8 and Trec9 collections, we identified a few simple flaws in our system which have been
removed. On average, recall has increased by about 25% and precision at 10 has improved by more than
50%. We ran this out-of-box automatic system against TREC-8 adhoc task. Oracle TREC-8 manual task
submission received an average precision score of 0.42. Out of 50 benchmark queries, performance (number
of relevant retrieved) is tied for 10 queries, 20 won by manual and 20 won by automatic.

References
[1] Oracle Technet Text Homepage (http://technet.oracle.com/products/text)

[2] K.Mahesh, J. Kud, and P. Dixon, Oracle at Trec8: A Lexical Approach, in Proceedings of the Eighth
Text Retrieval Conference (TREC-8), 1999.

[3] C.D. Manning and H. Schutze, Foundations of Statistical Natural Language Processing, the MIT press,
2000.

[4] S. E. Robertson and K. Sparch Jones, Relevance weighting of search terms, Journal of the American
Society for Information Science, 27, 129-146, 1976.

[5] K. Sparck Jones, S. Walker and S.E.Robertson, A probabilistic model of information retrieval: develop-
ment and status, Technical Report TR446 Cambridge University Computer Laboratory, 1998.

[6] D. D. Lewis, R. E. Schapire, J.P. Callan and R. Papka, Training algorithms for linear text classifications,
in SIGIR’96.

[7] Dan Moldovan, Sanda Harabagiu. Lasso: A tool for surfing the Answer Net. In the Proceedings of the
Text Retrieval Conference (TREC-8), 1999.

[8] Sanda Harabagiu, Dan Moldovan. Falcon: Boosting Knowledge for Answer Engines. In
Proceedings of the Text Retrieval Conference (TREC-9), 2000.

[9] Rohini Srihari and Wei Li. Information Extraction Supported Question Answering. In the Proceedings
of the Text Retrieval Conference (TREC-8), 1999

[10] Eric Brill, Some Advances in Transformation-Based Part of Speech Tagger. In the Proceedings of
AAAI, 1994

[11] G.A. Miller, WordNet: A Lexical Database. Communication of the ACM, 38, 39-41, November 1995

