Kasetsart University TREC-10 Experiments

P. Norasetsathaporn and A. Rungsawang
{g4365020,fenganr }@ku.ac.th
Moassive Information € Knowledge Engineering
Department of Computer Engineering
Faculty of Engineering
Kasetsart University, Bangkok, Thailand.

Abstract

We use WORMS, our experimental text retrieval en-
gine, in our TREC-10 experiments this year. The Okapi
weighting scheme is used to index and test in both web
ad hoc and homepage finding tasks. In web ad hoc task,
we propose a novel approach to improve the retrieval
performance using text categorization. Our approach
is based on an assumption that ”Most relevant docu-
ments are in the same categories as their query”. This
retrieval approach has a great effectiveness in reducing
the number of searching documents and the searching
time. In addition, it can be used to improve precision of
retrieval. In homepage finding task, we use a query ex-
pansion based method and the Google search engine to
find more useful words to be added to the topics. Before
using with homepage finding task, we test the query ex-
pansion method with the homepage finding training set
to get the best type of expanded query.

1 Introduction

In our TREC-9 experiments last year [11], we modified
the Cornell’s SMART version 11.0, in addition with the
notable pivoted unique normalization weighting scheme
[3], to run smoothly on our Linux machine. However, we
confronted with intrinsic operating system problem. We
could not index the whole web track collection in one-
shot. We therefore decided to split the web track col-
lection into sub-collections. We indexed and tested all
sub-collections separately and merged all subsequence
results to get the final top-1000 scores to send to NIST.

In the TREC-10 experiments this year, we use
WORMS [15], our own text retrieval engine, to index
and experiment instead of using the Cornell’s SMART
version 11.0. WORMS can eliminate the intrinsic Linux
operating system problem because it does not create
inverted file image that is larger than 2 GB, as it can
split the inverted file image into several smaller ones.
We also implement the notable Okapi weighting scheme
[13, 14] in WORMS and use it to index and test both

web ad hoc and homepage finding tasks. In the web
ad hoc task, we propose a novel approach to improve
the retrieval performance using text categorization. We
formulate an assumption and set the experiments to
test that assumption. We study the relation between
the relevant documents for a query and its categories
using TREC10 as the test collection and Google Web
Directory as the knowledge base for the SVM classifier
[5, 8, 12]. This retrieval approach provides a great effec-
tiveness in reducing the number of searching documents
and the searching time. In addition, it can be used to
improve precision of retrieval by re-ranking method. In
homepage finding task, we use a query expansion tech-
nique to add more useful words to topics. Before we use
it with homepage finding task, we tested the method
with homepage finding training set to get the best type
of expanded query.

This paper is organized in following way. Section 2 in-
troduces shortly our information retrieval engine. Sec-
tion 3 gives more detail what we do in web ad hoc task
and about the experimental results. Section 4 describes
the query expansion method we use in homepage finding
task and the experimental results we obtain. Section 5
concludes this paper.

2 Information Retrieval Engine

An experimental information retrieval engine, WORMS
[15] is a high-performance text retrieval system imple-
mented using the PVM message-passing library, and
running on the cluster of low-cost PC based machines.
WORMS is based on the vector space indexing model
and the inverted file structure for effective and fast re-
trieval. There are actually 3 prototypes of WORMS.
The first one is the sequential WORM prototype that
we use in this TREC10 experiments. The two oth-
ers are the parallel WORMS and the high performance
WORMS that will not be mentioned here. The 4 main
components of the sequential WORM are Stop&Stem,
Indexer, Invfile, and Retriever, respectively. WORM’s

indexer can read user’s input parameter and create sev-
eral chunks of document vector images and its corre-
sponding inverted files, of which each file’s size is less
than 2 GB barriers of the Linux x86 operating system.

Okapi Weighting Scheme

We found during our TREC10 experiments that the piv-
oted normalized weighting scheme [3] we used in TREC-
9 experiments last year are not as good as we expect. In
case of the TREC-9 data, weighting it with Okapi’s byte
length normalization gives better retrieval effectiveness.
Therefore, we use the Okapi’s byte length normaliza-
tion which is base on the 2-Possion distribution model
[13, 14] in TREC-10 this year. The following weighting
scheme is implemented in WORMS.
The o weight implemented in WORMS:

L(n,i) = (1)
2% (0.25+0.75 x 4) + fui
The p weight implemented in WORMS:
N — df;
1 2
8 —or (2)

where dl is the document length, avg_dl is the average
document length, f,,; is the raw tf-factor, NV is the total
number of documents in the collection and df; is the
number of documents which a term 7 appears.

3 Web Ad Hoc Task

We perform 2 experiments for this task. First, we index
and test the small web track collection (WT10g) using
WORM and Okapi weighting scheme. Second, we use
text categorization technique to increase the retrieval
effectiveness. The rest of this section gives more detail
of our propose text categorization technique.

3.1 Using Text Categorization

Owing to the incessant growth of the Internet and the
abundant availability of text data in the World Wide
Web, text classification is acquiring more popularity
with the growing interest. Many search engines, such as
Google[1], Yahoo[6] and AltaVista[7], provide data that
has been grouped into categories or directories. In ad-
dition to managing data, text categorization is a great
benefit in our research. We use text categorization to
improve retrieval performance of web ad hoc task. Our
method bases on the assumption that ”"Most relevant
documents are in the same categories as their query”.
To evaluating our assumption, we have to study the re-
lation between the relevant documents for a query and
its categories.

The problem of this experiment is how we classify
WT10g documents and queries into hierarchical struc-
ture. To solve this problem, the machine learning tech-
nique called ”Support Vector Machine” (SVM) [5, 12] is
used to automatically construct classifier by using the
existing web directory of the Google, designed for hu-
man Web browsing, as the source of knowledge base for
training and testing process. After training step, we
obtain the top and the second level classifiers, one clas-
sifier for one category, trained by the Google Web doc-
uments. Following that classifiers, we classify WT10g
collection and the topics number 501-550 into categories
by following the Google Web Directory structure. Then
we study the relation between the relevant documents
for a topic and its corresponding category to test our
assumption and use it to improve retrieval effectiveness.

Support Vector Machine

Support Vector Machines (SVM) [5, 12] is a relatively
new learning approach, introduced by Vapnik in 1995,
for solving the two-class pattern recognition problems.
It is based on the Structural Risk Minimization prin-
ciple for which error-bound analysis has been theo-
retically motivated. The method is defined over the
vector space. The decision surface separates the data
points into two classes. In this research, we employ the
Joachim’s implementation, SVM!#9"* [8 9], owing to its
accuracy and effectiveness.

Google Web Directory

Google Web directory integrates search technology
with Open Directory pages to create the most use-
ful tool for finding information on the Internet. The
Open Directory Project[2] is claimed to be the largest,
most comprehensive human-edited directory of the Web
database. It is constructed and maintained by a vast,
global community of volunteer editors. The Google di-
rectory contains over 1.5 millions URLs. These URLs
are organized in Google Web documents which con-
nected together. The more general the category, the
closer to the root of the tree it is. The connection of
Google documents are quite complex. There are some
category names linked to other Google categories, clas-
sified under a different path of the Google hierarchy.

Pre-processing Phase

For TREC10, we parse all html tags, images, all messy
data and the others, out of the WT10g collection. We
also remove stop-word and stem the rest [4] from the
WT10g collection. In case of web ad hoc topics, we also
remove stop-word and stem the rest to build queries.
After that, WT10g documents are weighted with nno

weighting scheme and queries are weighted with npn
weighting scheme.

For Google collection, we create the local copy of
Google Web directory by using Wget 1, a GNU network
utility for retrieving files from the WWW. The docu-
ment is stored in a hierarchy structure by Wget itself.
From documents which contains hyperlink information
between them, we build the same hierarchical structure
as the Google Web directory. We have 2 methods for
managing documents into categories. First, we choose
only documents that are not cross-linked to other cat-
egories. Second, we choose all documents under the
category, including those in their cross-links. In this
paper, we choose the first method because most of the
documents in Google hierarchy belong to many cross-
linked categories. For this reason, each category content
has not been obviously separated. When we classify
queries into categories, most of the queries belong to
many categories as well. There are 15 top-level and 431
second-level categories we choose to experiment. We
do not include World top-level categories because most
web pages in this category is not written in English.
Then we remove all HTML tags from documents and
extracted ”entry title”, the title of a categorized entry
indexed in a category, and ”entry summary”, the brief
textual description of an entry [10]. We also reduce the
number of features by removing words contained in the
stop word list and stemming the rest [4].

The feature selection methods we used to reduce a
high dimensional feature space in Google Web Directory
is Document frequency thresholding (DF) [17]. Because
of its simplicity, effectiveness, and low cost in compu-
tation, DF was choosen. Document frequency is the
number of documents in which a term occurs. We com-
pute the document frequency for each unique term in
the Google documents and remove the term with DF
below a threshold (DF = 5) from the feature space.

Building Classifier

We build a classifier for each category in both levels. In
each category, a training set and a testing set are chosen
by applying the systematic random selection to the doc-
uments. For the top-level category, we select the same
number of documents in each of the top sub-categories
by choosing every n documents, where n calculated
from dividing the number of documents in each sub-
category by the number of documents we want. With
this method, we obtain sample documents throughout
sub-categories in the hierarchy. In the second-level, we
use the same method but the training and testing ex-
amples only come from documents in the same top-level
category. These sets are positive examples of the cate-
gory. The negative examples are selected from the other

Thttp://www.Ins.cornell.edu/public/ COMP /info/wget

Category Name | Total Training Testing
P N P+N

Arts 244232 | 39932 | 77436 98912
Business 194269 | 57052 | 66765 89351
Computers 104371 | 33454 | 76155 91117
Games 42984 | 13989 | 79255 86600
Health 51164 | 28161 | 76716 87311
Home 33578 | 24163 | 77822 87221
Kids and Teens 12790 | 12790 | 78790 79091
News 48311 | 48337 | 76116 76182
Recreation 99150 | 45136 | 75715 96773
Reference 80513 | 48967 | 73782 73532
Regional 654467 | 9121 | 80904 90284
Science 75738 | 15132 | 79656 92201
Shopping 102067 | 73385 | 72101 94066
Society 183309 | 77882 | 45146 104355
Sports 74341 | 17092 | 79314 89360

Table 1: The number of Training and Testing Web doc-
uments in the top-level. (P=Positive, N=Negative)

Category Name | Total Training Testing

P N P+N

Arts.Animation 16068 | 717 | 5962 138

Business.Accounting | 1243 | 767 | 13854 105

Computers.Graphics 1568 | 1523 | 5621 138

Games.Gambling 3048 | 1797 | 1905 109

Health.Fitness 1118 | 963 | 4630 108

Home.Gardens 3178 | 2124 | 2927 120

News.Media 685 | 633 | 5945 83
Table 2: Training and Testing Samples in the second-

level. (P=Positive, N=Negative)

categories. After the selection process, we obtain train-
ing and testing document sets for every category. The
number of training and testing Google Web documents
in the top-level and the second-level are shown in Table
1 and Table 2, respectively.

Then, Google training data were weighted by nno
weighting schemes and Google testing data were
weighted by npn weighting schemes. Finally, we cre-
ate top-level classifiers and second-level classifiers from
training sets we provided.

Level | miR | miP | miF; | maF] | error
top 0.731 | 0.739 | 0.735 | 0.710 | 0.078
second | 0.752 | 0.730 | 0.741 | 0.672 | 0.117

Table 3: Performance of classifiers in the top-level and
the second-level using SVM classifiers.

Category Name

Topic number

Arts 505, 510, 527, 534, 545
Business 502, 514, 538, 542
Computers 501
Games -
Health 504, 508, 509, 511, 524, 532,
537, 539, 540, 542, 543, 544,
549
Home 507, 514, 548
Kids and Teens 512, 515, 519, 525, 527, 539,
549
News 541
Recreation 503, 507, 519, 521, 529, 535,
547, 549
Reference 502, 547
Regional -
Science 501, 502, 504, 513, 519, 522,
525, 528, 530, 542, 549, 550
Shopping 507, 508, 509, 511, 517, 519,
520, 522, 530, 532, 537, 539,
548, 549
Society 509, 510, 516, 517, 519, 520,
529, 534, 544, 545
Sports 506, 509, 548

Table 4: The categories of Topics.

Evaluating classifiers

After building the classifier in the training process, we
obtain 15 top-level classifiers and 431 second-level clas-
sifiers. Then we test both levels classifiers with provided
testing sets. To evaluate the performance of classifiers,
we use the standard precision (P), recall (R) and Fy
measures. Precision is the ratio of correct assignments
by the system to the total number of the system’s as-
signments. Recall is defined to be the ratio of correct as-
signments by the system to the total number of correct
assignments. The F] measures equally weights between
precision and recall in the following form :
2RP

R(R,P)= 5>)
This measure can be computed in 2 ways, micro-
averaging and macro-averaging. Micro-averaging can
be calculated from global average in all categories.
Macro-average can be calculated from individual cal-
culation in each category first, and then average over
categories. Table 3 shows the accuracy of our both top
and second level classifiers.

Applying the classifiers with TREC10

We use the top-level classifiers to classify the WT10g
collection and its 50 queries into 15 top-level cate-
gories: Arts, Business, Computers, Games, Health,

Topic number | Category of topic

507 Home.Consumer_Information
Home.Homeowners
Recreation.Autos
Recreation.Climbing
Shopping.Office_Products
Shopping.Tobacco
Shopping.Vehicles

Table 5: The second-level category of topic 507

500000 e —
450000 Web track collection }%
400000 o

350000
300000
250000 -
200000 |-
150000
100000

50000 LRy

Number of documents

¥

0
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
Category

Figure 1: The number of documents in the top-level
category.

Home, Kids_and_Teens, News, Recreation, Reference,
Regional, Science, Shopping, Society and Sports. Some
documents and topics cannot be classified in any
category, while some can be classified in one or more
categories. Categories of topics are summarized in
Table 4. There are 7 topics that cannot be contained in
any category i.e. 518, 523, 526, 531, 533, 536 and 546.
Then we pass the result to the second-level classifier
to classify them into 431 second-level categories. The
documents that pass the top-level classifier in each
category are classified by the second-level classifiers of
that category. Table 5 shows an example of the result.
Topic number 507 is in category Home, Recreation, and
Shopping within the top-level. After being classified
by the second-level classifier, topic 507 resides in
Home& Customer_Information, = Home&Homeowners,
Recreation&Autos, Recreation&Climbing, Shop-
ping& Office_Products, Shoppingé& Tobacco, and
Shopping& Vehicles, which are still in the sub-category
of Home, Recreation, and Shopping. We show the
amount of documents in the top and the second level
category in Figure 1 and 2 respectively. The X axis in
figure 1 represents the 15 top-level categories ranging
from Arts to Sports, while the X axis in figure 2
represents all 431 sub-categories in the second-level.

450000
400000
350000
300000
250000
200000 I

150000 | |
100000 MM Jﬂl 1+ | I
50000 LT —— 1 M

o LOTTIAY T b |
0 40 80 120 160 200 240 280 320 360 400 440
Category

T T T T T
Web track collection

Number of documents

Figure 2: The number of documents in the second-level
category.

500 T

VIVhoIe ICoIIec{ion Tk
450 Topic Category Collection 4~

400

350

300

250

200
150

100

Number of relevant documents

' 3 XK Y

A Y K e’ i) 3 'Y ‘ M

0 KX*)‘ * ¥ v Kow ¥ 3 *y* &

500 505 510 515 520 525 530 535 540 545 550
Topic Number

50

wok A

¥
g

Figure 3: Comparison between relevant documents in
the whole collection and the top-level topic category
collection.

3.2 Experimental Setup and Results

We set the experiments into 3 phases: evaluating the
assumption, searching in topic category collection and
re-ranking score.

Phase I: Evaluating the assumption

In this sub-section we evaluate our assumption that
”Most relevant documents are in the same categories
as their query”, by examining the number of relevant
documents in topic category collection. Topic category
collection of each query is defined as a set of documents
that is in the same categories as its query.

Figure 3 provides the comparison between the total
amount of relevant documents that can be retrieved
from the whole collection and those from the top-level
topic category collection. The X axis is the topic num-
ber. The Y axis is the number of relevant documents.
For example, for the topic number 541, there are totally
372 relevant documents in the whole collection, and 347
relevant documents in the top-level topic category col-

T T T T
Relevant document ---x---
The number of documents -

- x X ¥ 3 -

100
90
80
70
60
50
40
30
20
10

x ¥

Percentage

'y

0
500 505 510 515 520 525 530 535 540 545 550
Topic Number

Figure 4: Percentage of relevant documents and number
of documents in the top-level topic category collection.

lection. Figure 4 shows the percentage of relevant doc-
uments and the percentage of the number of documents
for each topic in the top-level topic category collection.
For example, for the topic number 540, there are 100%
of the total relevant documents and 6.93% of the whole
documents being categorized in the top-level topic cate-
gory collection. Figure 5 shows the comparison between
the number of relevant documents for each topic in the
top-level topic category collection and the second-level
topic category collection, while figure 6 shows the com-
parison of the number of documents being categorized
in both levels.

As we can see from figure 3 and 4, most relevant
documents are categorized in their corresponding topic
category collection. There are 12 topics that have the
number of relevant documents in the topic category col-
lection less than 80 percents. Moreover, the size of the
topic category collection for each topic is less than 50
percents of the whole collection. This shows that our as-
sumption is correct for most of the relevant documents
and their corresponding topics. From figure 5 and 6,
relevant documents in the top-level topic category col-
lection are also found in the second-level topic cate-
gory collection, while the number of documents in the
second-level topic category collection decrease about 30
percents on average. This shows that our assumption
in the second-level is still correct.

However, there are some topics in both levels that do
not follow this assumption. The cause may be come
from the inefficiency of the classifier we use. There are
some topics and documents that are classified to the
wrong category. For this reason the result does not as
good as it should be.

Experiment Relevant Average per Query Average
Doc | Ret | Searched Searching Precision

Documents | time (sec)

Retrieve from whole documents 3363 | 2247 | 1692096 20.5067 0.2088
(100%)

Retrieve from top-level topic cat- | 3363 | 2132 | 530332 7.7179 0.2032

egory collection (31.34%) (37.63%) (—2.7%)

Retrieve from second-level topic | 3363 | 2030 | 450912 6.8697 0.1997

category collection (26.65%) (33.50%) (—4.4%)

Score Re-ranking 3363 | 2300 | 1692096 - 0.2163
(100%) (+3.6%)

Table 6: Average precision concluded from the experiments (50 Queries).

440 T
400 |-
360 X ¥
320 !
280
240
200
160
120
80

T T T T T T T
Top-level topic category collection ------
Second-level topic category collection ----4--- |

The number of relevant documents

L A I A XUk AR
0 Wl Ky e * o ak
500 505 510 515 520 525 530 535 540 545 550

Topic Number

Figure 5: Comparison between relevant documents in
the top-level and the second-level topic category collec-
tion.

Phase II: Searching in topic category collection

In this phase, we study the average precision of search-
ing in both levels of topic category collection. We re-
trieve top 1000 documents for each query. Table 6 show
the result of this phase comparing with the searching
result from the whole collection. From Table 6, the
average precision (0.2032) from searching only in the
top-level topic category collection is almost the same
as the average precision obtaining from searching in the
whole collection (0.2088), while the number of searching
documents and the searching time are only 31.34% and
37.63% of the whole. In case of the second-level, the
average precision (0.1997) decreases a little bit, while
the number of searching documents and the searching
time are only 26.65% and 33.50% of the whole.

Phase ITI: Re-ranking Score

The experiments from re-ranking phase use the pre-
diction value from the SVM classifiers. We retrieve
5000 documents for each query and re-rank the score

le+06 T T T T T T T T
Top-level topic category collection ------

900000 [Second-level topic category collection ----4--- o
800000 b

x i
700000 ,f":
600000 ix i
500000 by

400000

300000

The number of documents

200000 |i-%-3
100000

3

0
500 505 510 515 520 525 530 535 540 545 550
Topic Number

Figure 6: Comparison between the number of docu-
ments in the top-level and the second-level topic cate-
gory collection.

of each retrieved document depending on its prediction
value using the re-ranking equation(5) below and then
we keep top 1000 documents for evaluation. The pa-
rameters of the equation are the prediction value, the
constants, and the original score. In current experi-
ments we can increase the precision a little bit. The
result shows that our re-ranking equation does not take
much effect so we must still look for better parame-
ters of equation. For this experiment we consider only
the top-level topic category documents. The re-ranking
equation is:

Newscore = orig_score + 0.5 x orig_score x i (4)

= pired;f?g“l“e; (i>1) = (i=1) (5)

The prediction value is calculated as the following.
For example, query number 1 is in category A and B
with prediction value 0.1 and 0.3. Document 1 is in
category A, B, and C. Document 2 is in category A
and C. Document 3 is in category C. The prediction

Experiment

Relevant document

Relevant retrieved | Average precision

HomePage Finding Task 252
with Query Expansion

120 0.1902

Table 7: Final result of HomePage Finding Task with Query Expansion.

value in query 1 of document 1 is 0.4, document 2 is
0.1 and document 3 is 0. The number of 0.5 and 2.75
in equation (4) and (5) are concluded from the exper-
iments, 0.5 controls the max increasing score, 2.75 is
the reference value. If our prediction value exceeds the
reference value, the total point (half of original score)
will be increased.

Table 6 shows that re-ranking method can increase
the fraction of precision from 0.2088 to 0.2163 (+3.6%).
However, this re-ranking method is in preliminary step,
we are looking for better re-ranking equation to get
more retrieval accuracy.

4 Homepage Finding Task

Since topics in homepage finding task have very few
words, we then apply an query expansion technique [16]
to add some more useful words to them. We first remove
stop words and stem the rest of the homepage finding
topics and use them as our unexpanded queries. Our
query expansion method has been divided into 3 steps
described in the next paragraph. After these steps, we
obtain 5 types of queries: I, I, III, IV and V, respec-
tively. The query expansion type which gives the best
result for homepage finding training set is chosen to ex-
pand the homepage finding topics.

Step I, we send the unexpanded queries to the Google
search engine and keep the top 20 search results. If the
query length is more than 10 words, we break that query
into multiple word-segments (each segment has at least
9 words), send every word-segment to the Google search
engine and keep the top 20 search results of all word-
segments. We then intersect each search result of the
word-segments to obtain the final 20 search results.

Step I, we remove stop words and stem the rest of the
search results from step I and find document frequency
of all words. If document frequency of any word is more
than 5, we will use that words to expand the query to
be searched in the homepage finding collection. This
query is called Type I query. For those words whose
document frequency are less than or equal to 5, they
will be sorted by their document frequency, the first
highest document frequency is used to build the Type
IT query, the second highest document frequency is used
to build the Type III query, and so on.

Step III, for the Type II query, we add the first high-
est document frequency word that we obtain from step
IT above to the unexpanded query and resend that query

to the Google search engine to get the top 20 search re-
sults. For these 20 search results, we repeat the step
II, i.e. remove stop words and stem the rest and keep
only words whose document frequency are more than 5
to add to the unexpanded query to build the Type II
query. For the Type III to Type V query we repeat the
same process as we do for the Type II query described
in the beginning of this paragraph.

After we tested 5 Types of the expanded queries with
homepage finding training set, we have found that the
Type IV query provided the best result. We then apply
the Type IV query to expand all the homepage finding
queries, and use those expanded queries to search in the
homepage finding collection. Table 7 concludes the final
results.

5 Conclusion

In our Kasetsart TREC-10 experiments this year, we
change indexing and testing tool from SMART version
11.0 to WORMS, our own retrieval engine, and use the
Okapi weighting scheme in both web ad hoc and home-
page finding tasks instead of the pivoted length nor-
malized weighting scheme that we used in TREC-9 ex-
periments last year. We also propose a novel retrieval
approach using text categorization to improve retrieval
effectiveness of the TREC-10 web ad hoc task. After
we re-rank the resulting score, we get a little bit of pre-
cision increased. By searching relevant documents only
in the top-level topic category collection, we obtain as
good average precision as searching in the whole doc-
ument collection, while the number of searching doc-
uments and the searching time reduce to 31.34% and
37.63% of the whole.

In the homepage finding task, we apply a query ex-
pansion method and using the Google search engine to
find more words to be added into the homepage finding
topics. We found that the result is quite promising.

Acknowledgement

We would like to thank all MIKE staffs, especially Hong,
Wit, A, Banana, for their programming support and
working spirit. We also thank Mr. Somsak Sripray-
oonsakul from the Parallel Research Group for good
support in our work.

References

[1]
[2]
3]

[6]

[7]

(8]

[10]

[11]

[12]

[13]

[14]

Google search engine. http://www.google.com.
Open directory project. http://dmoz.org/.

C. B. A. Singhal and M. Mitra. Pivoted document
length normalization. In Proceedings of the 19th
ACM-SIGIR Conference. ACM Press, pages 412—
420, 1996.

R. Baeza-Yates and B. Riberiro-neto. Modern
Information Retrieval, chapter 7, pages 167-168.
Addison-Wesley, 1999.

C. J. C. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121-167, 1998.

D. Filo and J. Yang.
http://www.yahoo.com.

Yahoo home page.

A. Inc. Altavista search index.

http://www.altavista.digital.com.

T. Joachims. Making large-scale svin learning prac-
tical. In Advances in Kernel Methods. MIT Press,
1998.

T. Joachims. Text categorization with support vec-
tor machines: Learning with many relevant fea-

tures. European Conference on Machine Learning
(ECML), 1998.

Y. Labrou and T. Finin. Yahoo! as an ontology -
using yahoo! categories to describe documents to
describe documents. In Proceedings of CIKM’99,
pages 180-187, Oct. 1999.

P. Norasetsathaporn and A. Rungsawang. Kaset-
sart university trec-9 experiments. In The Ninth
Text Retrieval Conference (TREC-9), NIST Spe-
cial Publication 500-249, 2000.

E. Osuna, R. Freund, and F. Girosi. Support vec-
tor machines: Training and applications. Technical
report, AIM-1602, 1997.

S. Robertson, S. Walker, S. Jones, M. Hancock-
Beaulieu, and M. Gatford. Okapi at trec-2. In
The Second Text RFEtrieval Conference (TREC-2),
NIST Special Special Publication 500-215, pages
21-34, August-September 1993.

S. Robertson, S. Walker, S. Jones, M. Hancock-
Beaulieu, and M. Gatford. Okapi at trec-3. In The
Third Text REtrieval Conference (TREC-3), NIST
Special Publication 500-226, November 1994.

[15]

[16]

[17]

A. Rungsawang, P. Uthayopas, M. Lertprasertkul,
P. Ingongngam, and A. Laohakanniyom. Worms:
A high-performance text retrieval prototype.
HPC-ASIA The Fourth International Confer-
ence/Exhibition on High Performance Computing
in Asia-Pacific Region, 2001.

A. Sugiura and O. Etzioni. Query routing for web
search engines. In The Proceedings 9 th Interna-
tional World Wide Web Conference, pages 412—
420, May 2000.

Y. Yang and J. O. Pedersen. A comparative study
on feature selection in text categorization. In Inter-

national Conference on Machine Learning, pages
412-420, 1997.

