Mercure and MercureFiltre applied for Web and Filtering tasks
at TREC-10

M. BouGgHANEM, C. CHRISMENT, M. TMAR

IRIT-SIG
Campus Univ. Toulouse I11
118, Route de Narbonne
F-31062 Toulouse Cedex 4

Email: trec@irit.fr

1 Summary

The tests performed for TREC-10 focus on the Filtering (adaptive, batch and routing) tracks
and web tracks. The runs are based on Mercure system for web, routing and batch tracks,
and MercureFiltre for adaptive track.

2 Mercure model

Mercure is an information retrieval system based on a connexionist approach and modeled
by a multi-layered network. The network is composed of a query layer (set of query terms),
a term layer (representing the indexing terms) and a document layer [2] [3].

Mercure includes the implementation of a retrieval process based on spreading activation
forward and backward through the weighted links. Queries and documents can be used either
as inputs or outputs. The links between two layers are symmetric and their weights are based
on the tf — idf measure inspired from the OKAPI [5] and SMART term weightings.

- the query-term (at stage s) links are weighted as follows:

(s) _ % if (nqu > qtfui) (1)
gt fu; otherwise

Notations:
qq(;): the weight of the term ¢; in the query u at the stage s,
gt fui: the query term frequency of ¢; in ¢,

ngy: query length (number of terms) of ¢,



- the term-document link weights are expressed by:

tfij * (hl + ha x log (”ﬂ»
o e e 8+ hs L

Notations:

d;;: term-document weight of term ¢; and document d;
tfi;: the term frequency of ¢; in the document D;,

N: the total number of documents,

n;: the number of documents containing term ¢;,
hi,hs, hs, hqy and hs: constant parameters,

Ay: average document length.

The query evaluation is based on spreading activation. Each node computes an input and
spreads an output signal. The query modification is based on relevance back-propagation. It
consists in spreading backward the document relevance from the document layer to the query
layer [2].

2.1 Query evaluation

A query is evaluated using the spreading activation process described as follows:

1. The query u is the input of the network. Each node from the term layer computes
(s)

an input value from this initial query: In(t;) = ¢,
Out (t;) = g (In(t;)) where g is the identity function.

and then an activation value:

2. These signals are propagated forwards through the network from the term layer to the
document layer. Each document node computes an input: In (d;) = EZ'T:1 Out (t;) * d;;
and then an activation, Out (d;) = g (In (d;)) .

The set of retrieved documents, Qutput, (Out (di),Out (d3),...,Out (dy)) is then
ranked in a decreasing order of the activation value.

2.1.1 Query modification based on relevance back-propagation

The top retrieved documents are judged and a relevance value corresponding to the user
preference is assigned to each document (positive for relevant documents, negative for non-
relevant documents and null for non-judged documents). These values are used to compute
the DesiredQutput vector.

Coef_rel

. l; = f D; is rel t
DesiredOutput = (rely, rely, ... rely) { el nggff\lfr;f g 1o reevan (3)
rel; = S5 otherwise



1. This output is considered as an ”input” in the back-spreading process and is presented
to the document layer. Each document node computes an input value, In (d;) = rel;
and then an activation signal, Out (d;) = ¢ (In (d;)) .

2. This activation is back-spread to the term layer. Each term node computes an input
value, In (t;) = Zé\;l (d;; * Out (d;)) and then an output signal, Out (t;) = g (In (t;)) .

3. Finally, the new query-term links corresponding to the new query are computed as
follows: Q&SH) = (qfle), qT(LSQ—H), e ,qI(LST-H)) with qq(j—H) = M, * qf;) + My« Out (t;)
Notations:

T: the total number of indexing terms,

N: the total number of documents,

qij): the weight of the term ¢; in the query u at the stage s,

t;: the term ¢;,

d;: the document d;,

d;;: the weight of the link between the term ¢; and the document d;,

doclen;: document length in words (without stop words),

tfi;: the term frequency of ¢; in the document d;,

n;: the number of documents containing term ¢;,

gt f: query term frequency,

ng: query length (number of terms),

M, and Mpy: tuned and determined by a series of experiments and set to M, = 2
and M, = 0.75,

Coef_rel (Coef_Nrel): user preference positive value for relevant document and
negative value for non relevant document.

3 Batch and Routing Experiments

The batch and routing experiments were performed using Mercure system. The profiles were
learned using the same learning algorithm as before: the relevance back-propagation. The
relevance value assigned to each document was used as user judgement. It corresponds to
Coe f _rel in the relevance back-propagation algorithm.

The filtering algorithm starts with an initial query, built from all the topic parts, and its
relevance judgements corresponding to all documents with items down to 26150. A pool of
queries based on the learning method was then selected. All the remaining documents (with
items up to and including 26150) were used as test data.

3.1 Batch Filtering

The profiles in the batch task are learned using the relevance back-propagation method.
The TREC standard output file of each query was analyzed to build an output file containing;:

< topic >< func >< value >< thresh >< rank >< prec >< recall >< method >

As it has been done in [4]. The document activation weights which maximizes the utility
function were found and selected as thresholds. Then the queries corresponding to these



thresholds were selected and tested on a set of test documents. The documents weighted by
values higher than the threshold were selected for the corresponding query.

We build profiles using relevance back-propagation on the training dataset, then we apply
them on the test dataset.

The following algorithm is used:

For each profile P

1.

2.

9.

evaluate P on the training dataset

select top 10000, let resulty be the obtained document ranked list

=1

repeat

(a) build a new profile P; by relevance back-propagation

(b) evaluate P; on the training dataset

(c) select top 10000, let result; be the obtained document ranked list
(d) inc ¢

until 7 = max_iteration

. for each r € {1...10000}, ¢ € {0, 1,...maz_iteration}

(a) result;. contains top r documents from result;

(b) evaluate result;, using 79U utility

. select profile P; such as 3r € {0,1...10000} where result;. gives the best (max) 79U

apply F; on the test dataset, let test_result; be the obtained document ranked list

. select documents in test_result; having their rsv at least equal to the rsv of the rt*

document

submit this list

In the experiments, we carried out relevance twice. We found that this number of iterations
was enough to learn the profile.

We computed the utility on the top 10000 documents only as this set is likely to contain most
of the relevant documents.

3.1.1

Batch filtering results

Table 1 lists the comparative batch results.



TREC batch filtering
Evaluation measure | = maz | > median | < median Avg
F-Beta 1 24 59 0.392
SetPrecision 10 36 38 0.631
SetRecall 1 20 63 0.204
T10SU 0 28 56 0.181

Table 1: Comparative batch filtering results

3.2 Routing track
3.2.1 Description of the experiment

We experiment routing using a similar method then in the batch filtering track, the queries
having the best average precision in the training dataset were selected as routing queries, and
applied on the test documents.

3.2.2 Routing results

Table 2 shows the routing results at average uninterpolated precision.

TREC Routing
= maz | > median | < median | AvgP | Precision at 1000
2 47 35 0.092 0.5594

Table 2: Comparative routing results at average uninterpolated precision

The average number of relevant documents per profile is largely great than 1000. The
evaluation function used this year is the average uninterpolated precision, it consists on com-
puting the precision at each relevant document at its position in the ranked list, adding these
numbers up and divide by the total number of relevant documents. Relevant documents which
do not appear in the top 1000 receive a precision score of zero. Non relevant documents ap-
pearing in the top of the ranked have a large influence on the average uninterpolated precision.

4 Adaptive track

We experiment this year an adaptive filtering process [1] using MercureFiltre. MercureFiltre
is inspired from Mercure, It includes three elements: the profile, the document and the dis-
semination threshold. The profile and the document are represented by a set of weighted
terms. The adaptation concerns the profile and the dissemination threshold.

4.1 System initialisation

The user profile is represented as follows:



p(o) = ((tpl, w§0)> , <tp2, w£0)> . (tpn, wgo))) (4)

(0)

where ¢p; is a term and w,

(t)

; where ¢ represents the instant when the system makes the last profile
update. Initially, the term-profile weight is computed as follows:

is its weight in the initial profile (at ¢ = 0), the term-profile
weight is noted w

o tipi

wy = —
! maz; (tfp;)

(5)

The formula 5 seems to be abusively simplistic, but at the beginning of the filtering pro-
cess, no information is known but a set of terms and their occurrences in the initial user
profile. However, this weight will be adjusted by learning.

4.1.1 Filtering incoming documents

Each term belonging to a document arriving at time ¢ is weighted as follows:

(t) ()
) _ tfi N
di” = a o | Tt (6)
h3 + h4 * INIG) + tfz ni

Notations:

tfi(t): appearance frequency of the term ¢; in the document d(*)

hs, h4: constant parameters, for the experiments hz = 0.2 and hy = 0.7
di®: document length of d) (number of terms)

Al®): average document length

N®: number of incoming documents until time ¢

ngt): number of incoming documents containing the term ¢;

The weighting formula 6 is a form of Okapi term-profile weight used in Mercure.

N ngt) and AI®) are collection based parameters that are computed on the cumulative
documents filtered at ¢.

A relevance value noted rsv (d(t),p(t)) is then computed corresponding to the document
and the profile, as follows:

rsv (d(t),p(t)> = Z dgt) * w;t) (7)

ti€d(®) tpjep() and t;=tp;

The binary decision rule used for document filtering is the following:

if rsv (d(t),p(t)) > threshold®) accept the document
otherwise reject the document



4.1.2 Adaptive learning

The learning process is processed at each selected relevant document. Learning consists on
adapting the user representation: update term-profile weight, add new terms and remove
some non significant terms.
We assume that an interesting term must appear frequently in relevant documents, and appear
a little in non relevant documents. When a relevant document is selected, each term-profile
weight increases the more:

e it appears frequently in this document

(t)

e it appears in many relevant documents (r'(t) is near 1)

=

(t)

£

N(t)

e it appears in a few non relevant documents ( is near 0)

Notations:

rl(-t) : the number of relevant documents containing the term ¢; until the time ¢
RW: the total number of relevant documents until the time ¢

sgt) the number of non relevant documents containing the term ¢; until the time ¢.

The learning process we adopted is a kind of relevance reinforcement process. The problem
is assimilated to a linear equation resolution. The equation to resolve is to force obtaining a
rsv value [ to a relevant document. Each solution of this system is a set of weights affected to
the document terms. The constraints are that the weight of each term in the profile divided
by its importance according to the same profile is constant. The system is then the following;:

D) B
2ti€d®) tpiept) and ti=tp; d;” xw;” =f
W Wyt € d®? (®)
f(dg(‘t)vrz(t) 755t)> f(dgt) 7r](t) 7S§t)) 21 Y]

However, the rsv depends on the document length. Let o be the rsv value wished for a
relevant document with length dl,,,, & and dl,, are constants. When dI(*) increases 3 increases
but dl% decreases, so (3 is logistically proportional to the document length:

o

S <dl<f)) 9

s Tog (i) * 1% (9)
For these experiments, o = 20 and dl,, = 100.

The solution of the equation system 8 is a set of ” provisional” weights, for each term appearing

in the document, the provisional weight solution of the system 8 is the following:

(10)



The function f is proportional to the term importance. The function f used for these
experiments is the following:

(t) (t)
exrp (7* r"t ) * (1 — exp (7 (sit — 1)))

exp (7)

(11)

where R(®) is the number of relevant documents and S®) is the number of non relevant
documents until the time t. gamma is set to 3.

(t)

The ”provisional” weight pw,’ contributes in learning the term-profile weight correspond-
ing to the term ¢;, we use the following gradient propagation formula:

wEtH) = wl(-t) + log <1 + pwz(-t)) (12)

We add 1 to pwz(-t) to avoid adding negative value to the term-profile weight.

4.1.3 Threshold setting and updating

For each topic, the dissemination threshold should be set and updated [6]. To set the intial
threshold, we consider for this experiment that first 40 incoming documents are non relevant,
the threshold is initialized with the average of the top 10 rsv values computed for these doc-
uments.

Threshold updating is made periodically at each 10 selected documents as follows:

Threshold™") = Threshold® « Ay x Ay * As (13)
S(t+1)
A = —exp —acw + 2 (14)
1
Be g sy
NT(t-I—l)
Az = exp (—7> +1 (16)

Notations:

., B. and 7. are corrector parameters,

R+ is the number of selected relevant documents between instants ¢ and t+1,
S(+1) is the number of selected non relevant documents between instants ¢ and
t+1,

N+1) is the number of incoming documents between instants ¢ and ¢ + 1,
NT+Y) s the number of all incoming documents until instant ¢ + 1.



Ajq enables to increase the threshold if the proportion of selected non relevant documents

(%) is high, A5 enables to decrease the threshold if the proportion of relevant rejected docu-

ments is assumed to be relatively high (RL_;S), Az enables to increase the threshold less quikly

when the number of evaluated documents (N) is assumed to be enough for learning.

4.1.4 Adaptive results

Table 3 lists the adaptive results.

TREC adaptive filtering
Evaluation Avg
F-Beta 0.0192
SetPrecision 0.3865
SetRcall 0.0196
T10SU 0.0297

Table 3: Adaptive filtering results

Unfortunately, we have had no time to submit our results.

5 Web Track Experiment

This year experiment is based on Mercure sample search. Two runs were submitted to be
integrated on the pool:

1. Merxtd: simple search using the title and the descirption fields
2. Merxt: simple search using the title field

Table 4 shows the comparative web results:

Type Run average precision | =max | > median | < median
Merxtd | title + description simple search 0.1729 2 18 30
Merxt title simple search 0.1438 0 26 24

Table 4: Web results - 50 queries

References

[1] N. J. BELKIN, W. B. CrOFT, Information retrieval and information filtering: two sides
of the same coin?, COMMUNICATIONS OF THE ACM 35(12), PAGEs 29-38, 1992.

[2] M. BouGcHANEM, C. CHRISMENT & C. SOULE-DUPUY, Query modification based on rel-
evance back-propagation in Adhoc environment, INFORMATION PROCESSING AND MAN-
AGEMENT, 35(1999), PAGEs 121-139, ApPrIL 1999.



[3] M. BoucHanNEM, T. Dkaki, J. MoTHE & C. SouLeE-Dupuy, Mercure at TREC-
7, PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON TEXT RETRIEVAL
TREC-7, E. M. VoorHEEs AND D.K. HArMmAN (ED.), NIST SP 500-242, PAGES
413-418, NOVEMBER 1998.

[4] S. WALKER, S. E. ROBERTSON, M. BouGcHANEM, G. J. F. JoNEs, K. SPARCK JONES,
Okapt at TREC-6 automalic and ad hoc, VLC, routing, fillering and (JSDR, PROCEED-
INGS OF THE 6TH INTERNATIONAL CONFERENCE ON TEXT RETRIEVAL TREC-6, D.K.
HarmaN (Ebp.), NIST SP 500-240, paGEs 125-136, NOVEMBER 1997.

[5] S. E. RoBERTSON, S. WALKER Okapi/Keenbow at TREC-8 IN PROCEEDINGS OF THE
TREC-8 CONFERENCE, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY,
PAGES 151-161, NovEMBER 2000.

[6] S. E. RoBERTSON, S. WALKER, Threshold setting in adaptive filtering, JOURNAL OF
DOCUMENTATION 56, PAGES 312-331, 2000.

10



