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Abstract 
 
The video track is added into TREC-10, composed of two tasks, automatic shot boundary detection and video retrieval. In 
this year, we (MSR-Asia) participated in the video track, focusing on shot boundary detection task. Our work is to find out 
all of boundaries the shot changes by a fast algorithm based on uncompressed domain. In our algorithm, all of non-cut 
transitions are considered as gradual transition, including dissolve, fade-in, fade-out, and all kinds of wipes. Experimental 
results indicate that the accuracy and processing speed of our algorithm are all very satisfactory. 

 
1. Introduction 
 
Shot is the basic unit of video sequence, hence, is important for digital video processing.  Shot boundary detection is the 
first step for video content analysis. Since there are usually many shots in a video sequence, the automatic algorithm for 
shot boundary detection is indispensable.  
 
The shot transition can be classified into two types: abrupt transition (cut) and gradual transition. Gradual transition usually 
includes dissolve, fade-in, fade-out and all kinds of wipes. Cuts are generated by camera operations, such as starting or 
stopping recording, or editing operations, while gradual transitions are generated only by editing operations 

 
There are so many literatures addressing the algorithms of shot boundary detection [1-7]. Two fundamental approaches are 
used: 1) Compressed domain based methods [3,4,5], and 2) Uncompressed domain based methods [2,6,7]. The former 
usually is much faster than the latter, but its accuracy is difficult to be improved. Additionally, the former must be adaptive 
to different compression formats or decoders. Comparing with the former, much more methods could be used for the 
uncompressed domain based methods. Moreover, with the enhancement of hardware and compression standards, the 
decoding speed is never a drawback. 
 
In this paper, we propose an uncompressed domain based approach for fast shot boundary detection. We employ a block-
wise comparison based algorithm for cut detection and a run-length based algorithm for gradual transition detection. They 
are integrated seamlessly under the framework of Finite State Automata. In addition, the self-adaptive thresholds are used 
for robustness purpose. The experiments were carried out on large amount video sequences. The test set is provided by 
NIST (National Institute of Standard and Technology). The results are also evaluated by NIST. 
 
The rest of paper is organized as follows. In section 2, we first introduce the system framework. The details of our 
algorithms will be described in section 3. Then the experimental results are presented in section 4. Section 5 draws some 
conclusions. 
 

2. Framework 
 
Our approach consists of four functional modules which are decoding, feature extraction, inter-frame comparison, and 
decision, as shown in Fig.1. Since our algorithm is based on uncompressed data, the video sequences would be decoded in 
the decoding module first, if it is in a compressed format, such as mpeg. Then, the visual features are extracted from each 
decoded frames and compared in the feature extraction module and the Inter-frame comparison module respectively. In our 
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algorithm, block-based average color and color histograms are used as visual features. With a Finite State Automata, the 
shot boundaries are detected by self-adaptive threshold in the decision module. 
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Fig.1: Framework 

 
3 Algorithms Description 
 
In our algorithms, we assume that if there is an apparent deviation in the visual feature between two frames, a shot 
transition will occur there. So the difference between two successive frames is used as a measure of variation of video 
sequence. The key issues here are 1) what visual features are extracted from frames, ands 2) what similarity measure is 
adopted. We used different methods to deal with cut and gradual transition. 
 
3.1 Cut Detection 
 
The pixel-wise difference between two successive frames could be used as dissimilarity measure. However, it is very 
sensitive to the motion, including camera movement and object motion. To reduce the disturbance of motion, we employ a 
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Finally, we count the number of blocks in frame t whose difference )(' t
pqd  exceeds a threshold Tb. The inter-frame 

difference value )t(
cD is thus decided by the proportion of the blocks which are sufficiently different between each other. 
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If the )t(
cD  is larger than another threshold Tc, we will declare the current frame as a cut boundary. Experiment results 

show that this block-wise comparison based method lessens the influence of global and local motion effectively.  
 
After we got the differences between every consecutive frame pair, we can put them along the time axis to observe the 
temporal distribution of the frame difference values. Fig.2. shows the inter-frame pixel-wise difference values of a video 
sequence, which includes two cut transitions. The cut position can be clearly observed. 



 
 

 
Fig.2. Frame-to-frame Different based on Block-wise Comparison 

Two cut transitions occur at about frame #70 and frame #155 and the “ jump up”  is easy to figure out. 
 

Since it is difficult for a global threshold to be suitable for any type of videos, even for different segments in one sequence, 
we adopt a sliding widow scheme for getting a self-adaptive threshold locally. It could be decided by (4) considering the 
local first several maximum values during previous m frames. 
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where LMax  denotes the first n0 maximum values during that sliding window, �× LMax
n0

1  is the average difference 

and w1 is the weight factor. By self-adaptive threshold, our method could adapt to the variation of motion intensity in video. 
When the motion is intense, the threshold will become higher; and when the motion slows down, the threshold will also 
drop.  
 
3.2 Gradual Transition Detection 
 

Due to the complexity of gradual transition, we extract color histogram from each frame as visual feature. Let )(tHis  
denotes the color histogram of the t-th frame in RGB color space. Then we define a dissimilarity measure of successive 
frames based on histogram intersection as (5): 
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where ][)( iHis t  denotes the number of pixels falling into i-th bin, and nm ×  is the total number of pixels in one frame. 

 
By observing the dissimilarity sequence in Fig. 3, we can see that the difference between the frames during the dissolve are 
higher, although only slightly, than those in the preceding and following frames. Moreover, it is a continuous region. Our 
task is to find the boundary of this region viz. the start and the end frame numbers. We propose a run-length based method 
to detect this kind of regions. First, we still need a self-adaptive threshold much lower than cut’s threshold to detect the 
variation during gradual transition. If the dissimilarity of two successive frames is higher than this threshold, we count the 
frame number until this criterion is not met. We call this number as run-length. If the run-length reaches sufficient length, a 
gradual transition is declared. Otherwise, no gradual transition occurs. Unlike cut detection, we take into account the all of 
values in the previous sliding window except for those very high or very low values to decide threshold this time. It could 
be defined as (6) 
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where LMedian  are the median values in the sliding window, �× LMedian
n0

1
 is the average value and w2 is the 

weight factor.  



 

 
Fig. 3.  Frame-to-frame Difference based on Histogram Intersection.  

A graduate transition occurs from #1040 to #1060. 
 
3.3 Integration 
 
In the final decision module, the two detection algorithms above are integrated by finite state automata (FSA), shown as Fig. 
4. There are 4 states in this FSA for each frame: State 0 is normal state, namely, no cut or gradual transition occurs in 
current frame; State 1 denotes a cut occurred in current frame; State 2 is a state during a suspect gradual transition; and 
State 3 denotes a gradual transition occurred from the frame enters State 2 to that enters State 3. 

 
Fig. 4: Integration in Finite State Automata 

 
When a detection process is started, the frame is assumed in State 0 by default. If Dg<Tg, FSA will keep in State 0. 
Otherwise we consider Dc. If Dc >=Tc, FSA will transfer to State 1, a cut is declared and FSA will go back to State 0. When 
Dg>=Tg and Dc<Tc, FSA will transfer to State 2, entering a potential gradual transition, and the run-length detection process 
will be started. In this state, if the condition Dg>=Tg and Dc<Tc is satisfied, the state will be kept. When Dg<Tg, the run-
length detection will finish. If the duration of run-length process is long enough, such as length>=L, FSA will jump to State 
3, a gradual transition is declared, then FAS go back to State 0. When FAS is in State 2, there is another path to jump. If 
Dc>=Tc, FSA will jump to State 1, a cut will be declared, then FAS go back to State 0. The FSA will resume a new 
detection process, if only it goes back to Sate 0. 
 



4. Experiments 
 
Experiments are carried out on the test video sequences provided by NIST, and the results are also evaluated by NIST. 
NIST provided participants of video track about 11 hours video data. Among them, more than 5 hours’  data are used as 
final test set including 42 video sequences. In this section, we pick out 16 video sequences with the bigger size from the 
NIST evaluation results to analysis the performance of our algorithms. As we can see, Table. 1 lists the general evaluation 
results considering cut and gradual transition as a whole. Table. 2 and Table. 3 list the evaluation results of cut and gradual 
transition detection respectively. Besides, we also test processing speed of our algorithm on PC with the configuration of 
PIII 450MHz, 256MB. The results are listed in Table. 4. 
 

Table. 1 Evaluation Results: as a whole  
Name Frame 

Number 
Reference 
Transition 
Count 

Deletion 
rate 

Insertion 
rate 

Recall Precision Correction 
probability 

ahf1.mpg 15679 107 0.102 0.168 0.897 0.842 0.948 
anni005.mpg 11364 65 0.153 0.107 0.846 0.887 0.922 
anni009.mpg 12307 103 0.368 0.155 0.631 0.802 0.814 
bor03.mpg 48451 237 0.067 0.139 0.932 0.870 0.965 
bor08.mpg 50569 528 0.094 0.140 0.905 0.865 0.951 
bor12.mpg 24550 135 0.340 0.140 0.659 0.824 0.829 
bor17.mpg 49801 246 0.337 0.150 0.662 0.815 0.830 
eal1.mpg 16048 81 0.271 0.370 0.728 0.662 0.863 
nad28.mpg 52927 298 0.161 0.177 0.838 0.825 0.918 
nad31.mpg 52405 239 0.175 0.213 0.824 0.794 0.911 
nad33.mpg 49768 214 0.046 0.168 0.953 0.85 0.976 
nad53.mpg 25783 158 0.107 0.183 0.892 0.829 0.945 
nad57.mpg 12781 67 0.208 0.208 0.791 0.791 0.894 
pfm1.mpg 14686 82 0.134 0.231 0.865 0.788 0.932 
senses111.mpg 86789 308 0.090 0.142 0.909 0.864 0.954 
ydh1.mpg 22276 119 0.168 0.252 0.831 0.767 0.915 
Average  34136 187 0.176 0.184 0.823 0.817 0.910 

 
Table. 2 Evaluation Results: Cut  

Name Frame 
Number 

Reference 
Transition 
Count 

Deletion 
rate 

Insertion 
rate 

Recall Precision Correction 
probability 

ahf1.mpg 15679 62 0.080 0.161 0.919 0.850 0.959 
anni005.mpg 11364 38 0.026 0.052 0.973 0.948 0.986 
anni009.mpg 12307 38 0.157 0.105 0.842 0.888 0.920 
bor03.mpg 48451 226 0.061 0.044 0.938 0.954 0.968 
bor08.mpg 50569 375 0.034 0.128 0.965 0.882 0.982 
bor17.mpg 49801 126 0.087 0.015 0.912 0.982 0.956 
eal1.mpg 16048 61 0.131 0.0 0.868 1.0 0.934 
nad28.mpg 52927 181 0.160 0.077 0.839 0.915 0.919 
nad31.mpg 52405 183 0.087 0.060 0.912 0.938 0.956 
nad33.mpg 49768 188 0.010 0.037 0.989 0.963 0.994 
nad53.mpg 25783 81 0.024 0.024 0.975 0.975 0.987 
nad57.mpg 12781 44 0.227 0.022 0.772 0.971 0.886 
pfm1.mpg 14686 61 0.098 0.081 0.901 0.916 0.950 
senses111.mpg 86789 292 0.061 0.006 0.938 0.992 0.969 
ydh1.mpg 22276 67 0.014 0.194 0.985 0.835 0.992 
Average  34776 135 0.084 0.067 0.915 0.934 0.957 

 



Table. 3 Evaluation Results: Gradual Transition 
Name Frame 

Number 
Reference 
Transition 
Count 

Deletion 
rate 

Insertion 
rate 

Recall Precision Correction 
probability 

ahf1.mpg 15679 45 0.133 0.177 0.866 0.829 0.933 
anni005.mpg 11364 27 0.333 0.185 0.666 0.782 0.833 
anni009.mpg 12307 65 0.492 0.184 0.507 0.733 0.753 
bor03.mpg 48451 11 0.181 2.090 0.818 0.281 0.908 
bor08.mpg 50569 153 0.241 0.169 0.758 0.816 0.878 
bor12.mpg 24550 135 0.340 0.140 0.659 0.824 0.829 
bor17.mpg 49801 120 0.6 0.291 0.4 0.578 0.699 
eal1.mpg 16048 20 0.7 1.5 0.3 0.166 0.649 
nad28.mpg 52927 117 0.162 0.333 0.837 0.715 0.918 
nad31.mpg 52405 56 0.464 0.714 0.535 0.428 0.767 
nad33.mpg 49768 26 0.307 1.115 0.692 0.382 0.845 
nad53.mpg 25783 77 0.194 0.350 0.805 0.696 0.902 
nad57.mpg 12781 23 0.173 0.565 0.826 0.593 0.912 
pfm1.mpg 14686 21 0.238 0.666 0.761 0.533 0.880 
senses111.mpg 86789 16 0.625 2.625 0.375 0.125 0.687 
ydh1.mpg 22276 52 0.365 0.326 0.634 0.66 0.816 
Average  34136 60 0.346 0.714 0.652 0.571 0.826 

 
 

Table. 4 Processing Speed Comparison 
Name Frame Number Test time (s) Normal time (s) Speed up 
ahf1.mpg 15679 367 540 1.47 
anni005.mpg 11364 254 379 1.49 
anni009.mpg 12307 287 410 1.43 
bor03.mpg 48451 1115 1616 1.45 
bor08.mpg 50569 1171 1687 1.44 
bor12.mpg 24550 565 819 1.45 
bor17.mpg 49801 1189 1661 1.40 
eal1.mpg 16048 378 540 1.43 
nad28.mpg 52927 1177 1766 1.50 
nad31.mpg 52405 1250 1748 1.40 
nad33.mpg 49768 1152 1660 1.44 
nad53.mpg 25783 605 860 1.42 
nad57.mpg 12781 297 426 1.43 
pfm1.mpg 14686 342 495 1.45 
senses111.mpg 86789 1998 2986 1.45 
ydh1.mpg 22276 518 743 1.43 
Average  34136 792 1146 1.44 

 
By observing the evaluation results, it is concluded that: 
 
1) The average probability of correct cut detection is more than 95% with more than 90% average recall and precision. 

This result indicates that our cut detection algorithm is very effective. 
2) The average probability of correct gradual transition detection is more than 80% with about 60% average recall and 

precision. This result is satisfying considering the complexity of gradual transition. Because gradual transition consists 
of all kinds of non-cut transitions.  

3) The average correction probability of all of transitions is more than 90% with more than 80% average recall and 
precision. It proves that integration method with finite state automata is much effective and efficient. 



4) Comparing with the video playback time, the processing speed of our algorithm is much faster. Without any 
optimization, the processing speed could approach about 1.5 times of real-time on the PIII 450MHz 256MB personal 
computer.  

 
On the other hand, we also find some mismatching between our ground truth and those provided by the organizer in the 
case of graduate transition. These mismatching affect our evaluation results to a certain degree. Some examples are listed in 
Table.5. 
 

Table. 5. Some Mismatched Samples 
Video Sequences Mismatching in ground truth 
bor08.mpg #49326 to #49349 
bor12.mpg #16497 to #16520 
bor17.mpg #9679 to #9686;    #9745 to #9752 
nad28.mpg #327 to #339,    #2035 to #2057,   #26591 to #26609, 

#37696 to #37709,   #52197 to #52211 
… … …… 

 

5. Conclusions 
 
In this paper, we described our work in TREC-10 video track shot boundary detection task. We also reported and analyzed 
the evaluation results by NIST. The experimental results indicate that our shot boundary detection algorithm based on 
uncompressed domain is effective and much faster than real-time. By some optimizations, the speed of processing can be 
further improved.  
 
However, there still is much room to improve our algorithm, especially for gradual transition. For example, some tolerances 
should be added into run-length based method. Because if the potential gradual transition state ends when only one inter-
frame difference drops below the threshold Tg, some gradual transitions would be truncated. Another shortcoming is that 
the spans of gradual transition we detected are much longer than the real transitions sometime. Besides, how to integrate 
two detection algorithms also can still lead to additional improvements. 
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