
MSR-Asia at TREC-10 Video Track: Shot Boundary Detection Task

Yu-Fei Ma*, Jia Sheng+, Yuan Chen#, Hong-Jiang Zhang*

* Microsoft Research, Asia { i-yfma, hjzhang} @microsoft.com
+Department of Computer Science and Technology, Tsinghua University

Computer and Information Science and Engineering Department, University of Florida

Abstract

The video track is added into TREC-10, composed of two tasks, automatic shot boundary detection and video retrieval. In
this year, we (MSR-Asia) participated in the video track, focusing on shot boundary detection task. Our work is to find out
all of boundaries the shot changes by a fast algorithm based on uncompressed domain. In our algorithm, all of non-cut
transitions are considered as gradual transition, including dissolve, fade-in, fade-out, and all kinds of wipes. Experimental
results indicate that the accuracy and processing speed of our algorithm are all very satisfactory.

1. Introduction

Shot is the basic unit of video sequence, hence, is important for digital video processing. Shot boundary detection is the
first step for video content analysis. Since there are usually many shots in a video sequence, the automatic algorithm for
shot boundary detection is indispensable.

The shot transition can be classified into two types: abrupt transition (cut) and gradual transition. Gradual transition usually
includes dissolve, fade-in, fade-out and all kinds of wipes. Cuts are generated by camera operations, such as starting or
stopping recording, or editing operations, while gradual transitions are generated only by editing operations

There are so many literatures addressing the algorithms of shot boundary detection [1-7]. Two fundamental approaches are
used: 1) Compressed domain based methods [3,4,5], and 2) Uncompressed domain based methods [2,6,7]. The former
usually is much faster than the latter, but its accuracy is difficult to be improved. Additionally, the former must be adaptive
to different compression formats or decoders. Comparing with the former, much more methods could be used for the
uncompressed domain based methods. Moreover, with the enhancement of hardware and compression standards, the
decoding speed is never a drawback.

In this paper, we propose an uncompressed domain based approach for fast shot boundary detection. We employ a block-
wise comparison based algorithm for cut detection and a run-length based algorithm for gradual transition detection. They
are integrated seamlessly under the framework of Finite State Automata. In addition, the self-adaptive thresholds are used
for robustness purpose. The experiments were carried out on large amount video sequences. The test set is provided by
NIST (National Institute of Standard and Technology). The results are also evaluated by NIST.

The rest of paper is organized as follows. In section 2, we first introduce the system framework. The details of our
algorithms will be described in section 3. Then the experimental results are presented in section 4. Section 5 draws some
conclusions.

2. Framework

Our approach consists of four functional modules which are decoding, feature extraction, inter-frame comparison, and
decision, as shown in Fig.1. Since our algorithm is based on uncompressed data, the video sequences would be decoded in
the decoding module first, if it is in a compressed format, such as mpeg. Then, the visual features are extracted from each
decoded frames and compared in the feature extraction module and the Inter-frame comparison module respectively. In our

+ # This work was done while these authors were visiting Microsoft Research, Asia.

algorithm, block-based average color and color histograms are used as visual features. With a Finite State Automata, the
shot boundaries are detected by self-adaptive threshold in the decision module.

����

� � � � 	

� � � 	 � �
 �
� � � � � � �

�� � � � � � � 	

�
 � � � � � � � � �

� 	 � � � � �
 	

� �
 � � � � � � �
 � 	

� � 	 �

� 	 �
 � � � � � �
 �

� � � 	 � �
 � � �	 � � � � � � � � � � � � �� � � � � � � 	

�	 � � � �

�
 � � � � ! � � � �

� 	 � � � � �
 	

�	 � � � �

� � � �
 � 	
 � �	 � � � �

Fig.1: Framework

3 Algorithms Description

In our algorithms, we assume that if there is an apparent deviation in the visual feature between two frames, a shot
transition will occur there. So the difference between two successive frames is used as a measure of variation of video
sequence. The key issues here are 1) what visual features are extracted from frames, ands 2) what similarity measure is
adopted. We used different methods to deal with cut and gradual transition.

3.1 Cut Detection

The pixel-wise difference between two successive frames could be used as dissimilarity measure. However, it is very
sensitive to the motion, including camera movement and object motion. To reduce the disturbance of motion, we employ a

block based comparison. In RGB color space, let),,()()()()(t
ij

t
ij

t
ij

t
ij bgrc = denote the color of the pixel at the pixel),(ji

in the t-th frame. Then we divide each frame into nm × blocks and comparisons are carried out on blocks instead of

pixels. The average color of block),(qp in the t-th frame could be defined as follows:

�� ×
=

×
=

k

t
k

t
k

t
k

k

t
k

t
pq bgr

nm
c

nm
c),,(

11)()()()()((1)

where)(t
kc is the pixel color within a block field. Then the block-wise difference between t and (t-1)-th frame is defined:

||')1()()(−−= t
pq

t
pq

t
pq ccd ||||||)1()()1()()1()(−−− −+−+−= t

pq
t

pq
t

pq
t

pq
t

pq
t

pq bbggrr (2)

Finally, we count the number of blocks in frame t whose difference)(' t
pqd exceeds a threshold Tb. The inter-frame

difference value)t(
cD is thus decided by the proportion of the blocks which are sufficiently different between each other.

)nm/(nD
td

)t(
c)t(

pq
×= ≥ (3)

If the)t(
cD is larger than another threshold Tc, we will declare the current frame as a cut boundary. Experiment results

show that this block-wise comparison based method lessens the influence of global and local motion effectively.

After we got the differences between every consecutive frame pair, we can put them along the time axis to observe the
temporal distribution of the frame difference values. Fig.2. shows the inter-frame pixel-wise difference values of a video
sequence, which includes two cut transitions. The cut position can be clearly observed.

Fig.2. Frame-to-frame Different based on Block-wise Comparison

Two cut transitions occur at about frame #70 and frame #155 and the “ jump up” is easy to figure out.

Since it is difficult for a global threshold to be suitable for any type of videos, even for different segments in one sequence,
we adopt a sliding widow scheme for getting a self-adaptive threshold locally. It could be decided by (4) considering the
local first several maximum values during previous m frames.

�××=+ LMax
n

wT t

0
1

)1(1
 (4)

where LMax denotes the first n0 maximum values during that sliding window, �× LMax
n0

1 is the average difference

and w1 is the weight factor. By self-adaptive threshold, our method could adapt to the variation of motion intensity in video.
When the motion is intense, the threshold will become higher; and when the motion slows down, the threshold will also
drop.

3.2 Gradual Transition Detection

Due to the complexity of gradual transition, we extract color histogram from each frame as visual feature. Let)(tHis
denotes the color histogram of the t-th frame in RGB color space. Then we define a dissimilarity measure of successive
frames based on histogram intersection as (5):

[] []
nm

)iHis,iHis(MIN
D

)t(
N

i

)t(

)t(
g ×

−=

−

=
�

1

11 (5)

where][)(iHis t denotes the number of pixels falling into i-th bin, and nm × is the total number of pixels in one frame.

By observing the dissimilarity sequence in Fig. 3, we can see that the difference between the frames during the dissolve are
higher, although only slightly, than those in the preceding and following frames. Moreover, it is a continuous region. Our
task is to find the boundary of this region viz. the start and the end frame numbers. We propose a run-length based method
to detect this kind of regions. First, we still need a self-adaptive threshold much lower than cut’s threshold to detect the
variation during gradual transition. If the dissimilarity of two successive frames is higher than this threshold, we count the
frame number until this criterion is not met. We call this number as run-length. If the run-length reaches sufficient length, a
gradual transition is declared. Otherwise, no gradual transition occurs. Unlike cut detection, we take into account the all of
values in the previous sliding window except for those very high or very low values to decide threshold this time. It could
be defined as (6)

�××=+ LMedian
n

wT)t(
g

0
2

1 1
 (6)

where LMedian are the median values in the sliding window, �× LMedian
n0

1
 is the average value and w2 is the

weight factor.

Fig. 3. Frame-to-frame Difference based on Histogram Intersection.

A graduate transition occurs from #1040 to #1060.

3.3 Integration

In the final decision module, the two detection algorithms above are integrated by finite state automata (FSA), shown as Fig.
4. There are 4 states in this FSA for each frame: State 0 is normal state, namely, no cut or gradual transition occurs in
current frame; State 1 denotes a cut occurred in current frame; State 2 is a state during a suspect gradual transition; and
State 3 denotes a gradual transition occurred from the frame enters State 2 to that enters State 3.

Fig. 4: Integration in Finite State Automata

When a detection process is started, the frame is assumed in State 0 by default. If Dg<Tg, FSA will keep in State 0.
Otherwise we consider Dc. If Dc >=Tc, FSA will transfer to State 1, a cut is declared and FSA will go back to State 0. When
Dg>=Tg and Dc<Tc, FSA will transfer to State 2, entering a potential gradual transition, and the run-length detection process
will be started. In this state, if the condition Dg>=Tg and Dc<Tc is satisfied, the state will be kept. When Dg<Tg, the run-
length detection will finish. If the duration of run-length process is long enough, such as length>=L, FSA will jump to State
3, a gradual transition is declared, then FAS go back to State 0. When FAS is in State 2, there is another path to jump. If
Dc>=Tc, FSA will jump to State 1, a cut will be declared, then FAS go back to State 0. The FSA will resume a new
detection process, if only it goes back to Sate 0.

4. Experiments

Experiments are carried out on the test video sequences provided by NIST, and the results are also evaluated by NIST.
NIST provided participants of video track about 11 hours video data. Among them, more than 5 hours’ data are used as
final test set including 42 video sequences. In this section, we pick out 16 video sequences with the bigger size from the
NIST evaluation results to analysis the performance of our algorithms. As we can see, Table. 1 lists the general evaluation
results considering cut and gradual transition as a whole. Table. 2 and Table. 3 list the evaluation results of cut and gradual
transition detection respectively. Besides, we also test processing speed of our algorithm on PC with the configuration of
PIII 450MHz, 256MB. The results are listed in Table. 4.

Table. 1 Evaluation Results: as a whole
Name Frame

Number
Reference
Transition
Count

Deletion
rate

Insertion
rate

Recall Precision Correction
probability

ahf1.mpg 15679 107 0.102 0.168 0.897 0.842 0.948
anni005.mpg 11364 65 0.153 0.107 0.846 0.887 0.922
anni009.mpg 12307 103 0.368 0.155 0.631 0.802 0.814
bor03.mpg 48451 237 0.067 0.139 0.932 0.870 0.965
bor08.mpg 50569 528 0.094 0.140 0.905 0.865 0.951
bor12.mpg 24550 135 0.340 0.140 0.659 0.824 0.829
bor17.mpg 49801 246 0.337 0.150 0.662 0.815 0.830
eal1.mpg 16048 81 0.271 0.370 0.728 0.662 0.863
nad28.mpg 52927 298 0.161 0.177 0.838 0.825 0.918
nad31.mpg 52405 239 0.175 0.213 0.824 0.794 0.911
nad33.mpg 49768 214 0.046 0.168 0.953 0.85 0.976
nad53.mpg 25783 158 0.107 0.183 0.892 0.829 0.945
nad57.mpg 12781 67 0.208 0.208 0.791 0.791 0.894
pfm1.mpg 14686 82 0.134 0.231 0.865 0.788 0.932
senses111.mpg 86789 308 0.090 0.142 0.909 0.864 0.954
ydh1.mpg 22276 119 0.168 0.252 0.831 0.767 0.915
Average 34136 187 0.176 0.184 0.823 0.817 0.910

Table. 2 Evaluation Results: Cut

Name Frame
Number

Reference
Transition
Count

Deletion
rate

Insertion
rate

Recall Precision Correction
probability

ahf1.mpg 15679 62 0.080 0.161 0.919 0.850 0.959
anni005.mpg 11364 38 0.026 0.052 0.973 0.948 0.986
anni009.mpg 12307 38 0.157 0.105 0.842 0.888 0.920
bor03.mpg 48451 226 0.061 0.044 0.938 0.954 0.968
bor08.mpg 50569 375 0.034 0.128 0.965 0.882 0.982
bor17.mpg 49801 126 0.087 0.015 0.912 0.982 0.956
eal1.mpg 16048 61 0.131 0.0 0.868 1.0 0.934
nad28.mpg 52927 181 0.160 0.077 0.839 0.915 0.919
nad31.mpg 52405 183 0.087 0.060 0.912 0.938 0.956
nad33.mpg 49768 188 0.010 0.037 0.989 0.963 0.994
nad53.mpg 25783 81 0.024 0.024 0.975 0.975 0.987
nad57.mpg 12781 44 0.227 0.022 0.772 0.971 0.886
pfm1.mpg 14686 61 0.098 0.081 0.901 0.916 0.950
senses111.mpg 86789 292 0.061 0.006 0.938 0.992 0.969
ydh1.mpg 22276 67 0.014 0.194 0.985 0.835 0.992
Average 34776 135 0.084 0.067 0.915 0.934 0.957

Table. 3 Evaluation Results: Gradual Transition
Name Frame

Number
Reference
Transition
Count

Deletion
rate

Insertion
rate

Recall Precision Correction
probability

ahf1.mpg 15679 45 0.133 0.177 0.866 0.829 0.933
anni005.mpg 11364 27 0.333 0.185 0.666 0.782 0.833
anni009.mpg 12307 65 0.492 0.184 0.507 0.733 0.753
bor03.mpg 48451 11 0.181 2.090 0.818 0.281 0.908
bor08.mpg 50569 153 0.241 0.169 0.758 0.816 0.878
bor12.mpg 24550 135 0.340 0.140 0.659 0.824 0.829
bor17.mpg 49801 120 0.6 0.291 0.4 0.578 0.699
eal1.mpg 16048 20 0.7 1.5 0.3 0.166 0.649
nad28.mpg 52927 117 0.162 0.333 0.837 0.715 0.918
nad31.mpg 52405 56 0.464 0.714 0.535 0.428 0.767
nad33.mpg 49768 26 0.307 1.115 0.692 0.382 0.845
nad53.mpg 25783 77 0.194 0.350 0.805 0.696 0.902
nad57.mpg 12781 23 0.173 0.565 0.826 0.593 0.912
pfm1.mpg 14686 21 0.238 0.666 0.761 0.533 0.880
senses111.mpg 86789 16 0.625 2.625 0.375 0.125 0.687
ydh1.mpg 22276 52 0.365 0.326 0.634 0.66 0.816
Average 34136 60 0.346 0.714 0.652 0.571 0.826

Table. 4 Processing Speed Comparison
Name Frame Number Test time (s) Normal time (s) Speed up
ahf1.mpg 15679 367 540 1.47
anni005.mpg 11364 254 379 1.49
anni009.mpg 12307 287 410 1.43
bor03.mpg 48451 1115 1616 1.45
bor08.mpg 50569 1171 1687 1.44
bor12.mpg 24550 565 819 1.45
bor17.mpg 49801 1189 1661 1.40
eal1.mpg 16048 378 540 1.43
nad28.mpg 52927 1177 1766 1.50
nad31.mpg 52405 1250 1748 1.40
nad33.mpg 49768 1152 1660 1.44
nad53.mpg 25783 605 860 1.42
nad57.mpg 12781 297 426 1.43
pfm1.mpg 14686 342 495 1.45
senses111.mpg 86789 1998 2986 1.45
ydh1.mpg 22276 518 743 1.43
Average 34136 792 1146 1.44

By observing the evaluation results, it is concluded that:

1) The average probability of correct cut detection is more than 95% with more than 90% average recall and precision.

This result indicates that our cut detection algorithm is very effective.
2) The average probability of correct gradual transition detection is more than 80% with about 60% average recall and

precision. This result is satisfying considering the complexity of gradual transition. Because gradual transition consists
of all kinds of non-cut transitions.

3) The average correction probability of all of transitions is more than 90% with more than 80% average recall and
precision. It proves that integration method with finite state automata is much effective and efficient.

4) Comparing with the video playback time, the processing speed of our algorithm is much faster. Without any
optimization, the processing speed could approach about 1.5 times of real-time on the PIII 450MHz 256MB personal
computer.

On the other hand, we also find some mismatching between our ground truth and those provided by the organizer in the
case of graduate transition. These mismatching affect our evaluation results to a certain degree. Some examples are listed in
Table.5.

Table. 5. Some Mismatched Samples
Video Sequences Mismatching in ground truth
bor08.mpg #49326 to #49349
bor12.mpg #16497 to #16520
bor17.mpg #9679 to #9686; #9745 to #9752
nad28.mpg #327 to #339, #2035 to #2057, #26591 to #26609,

#37696 to #37709, #52197 to #52211
… … ……

5. Conclusions

In this paper, we described our work in TREC-10 video track shot boundary detection task. We also reported and analyzed
the evaluation results by NIST. The experimental results indicate that our shot boundary detection algorithm based on
uncompressed domain is effective and much faster than real-time. By some optimizations, the speed of processing can be
further improved.

However, there still is much room to improve our algorithm, especially for gradual transition. For example, some tolerances
should be added into run-length based method. Because if the potential gradual transition state ends when only one inter-
frame difference drops below the threshold Tg, some gradual transitions would be truncated. Another shortcoming is that
the spans of gradual transition we detected are much longer than the real transitions sometime. Besides, how to integrate
two detection algorithms also can still lead to additional improvements.

Acknowledgement

The authors would like to thank Dong Zhang for his helpful work on implementing some useful experimental tools.

References

[1] G. Ahanger and Thomas D.C. Little, “A Survey of Technologies for Parsing and Indexing Digital Video”, Journal of Visual
Communication and Image Representation, 7, 1, pp. 28043, 1996.

[2] H.J. Zhang, A. Kankanhalli, and S.W. Smoliar, “Automatic partitioning of full-motion video”, Multimedia Systems, 1, pp.10-28,
1993.

[3] J. Meng, Y. Juan, S.-F. Chang, “Scene Change Detection in a MPEG Compressed Video Sequence”, Journal, Publisher, Location,
pp. 1-10, Date.

[4] B.L. Yeo and B. Liu, “Rapid scene analysis on compressed video”, IEEE Transactions on Circuits and Systems for Video
Technology, 5, 6, pp. 533-544, 1995.

[5] S.-B. Jun, K. Yoon, H.-Y. Lee, “Dissolve transition detection algorithm using spatio-temporal distribution of MPEG macro-block
types” , ACM Multimedia 2000, pp. 391-394, 2000.

[6] A. Nagasaka and Y. Tanaka, “Automatic Video Indexing and Full-Video Search for Object Appearances”, Visual Database Systems,
II, pp. 113-127, Elsevier Science Publishers, 1992.

[7] C.F. Lam, M.C. Lee, “Toward some innovative video scene change detection techniques”, A
CM Multimedia 1998, 1998.

