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Attributed Network Alignment: Problem
Definitions and Fast Solutions

Si Zhang, Hanghang Tong

Abstract—
Networks are prevalent and often collected from multiple sources in many high-impact domains, which facilitate many
emerging applications that require the connections across multiple networks. Network alignment (i.e., to find the node
correspondence between different networks) has become the very first step in many applications and thus has been
studied in decades. Although some existing works can use the attribute information as part of the alignment process,
they still have certain limitations. For example, some existing network alignment methods can use node attribute
similarities as part of the prior alignment information, whereas most of them solely explore the topology consistency
without the consistency among attributes of the underlying networks. On the other hand, traditional graph matching
methods encode both the node and edge attributes (and possibly the topology) into an affinity matrix and formulate it as
a constrained nonconvex quadratic maximization problem. However, these methods cannot scale well to the large-scale
networks. In this paper, we propose a family of network alignment algorithms (FINAL) to efficiently align the attributed
networks. The key idea is to leverage the node/edge attribute information to guide the (topology-based) alignment
process. We formulate this problem as a convex quadratic optimization problem, and develop effective and efficient
algorithms to solve it. Moreover, we derive FINAL ON-QUERY, an online variant of FINAL that can find similar nodes for
the query nodes across networks. We perform extensive evaluations on real networks to substantiate the superiority of
our proposed approaches.

Index Terms—Network alignment, attributed networks, alignment consistency, on-query alignment
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1 INTRODUCTION

Networks in many areas such as finance and social analysis,
are often collected from multiple sources, leading to numer-
ous emerging high-impact applications. However, an im-
mense amount of these applications often require the knowl-
edge of the relationships across multiple networks. Network
alignment, on the other hand, is a powerful tool to ex-
plore the node correspondence amongst different networks,
and has become the very first step to many applications.
Finding the virtual identical twins across social networks,
for instance, enables to measure the node proximity at a
finer granularity [1]. Moreover, identification of the same
customers in different transaction networks contributes to
more comprehensive understandings of transaction behav-
iors and therefore helps detect financial fraud [2].

In the last two decades, there is a tremendous progress
that has been made on network alignment [3]. For example,
an early work IsoRank [4] propagates the node pairwise
similarities in a random walk-like way in the Kronecker
product graph. Some other works formulate network align-
ment as a maximum common subgraph problem, such as
[5], [6]. Although some existing methods can use the node
attribute information, most of them solely hypothesize the
topology consistency as the basic assumption, i.e., same nodes
connecting to the same or similar set of nodes. However, this
assumption has two fundamental limitations that (1) differ-
ent nodes might have similar connectivity patterns, and (2)
same nodes could exhibit disparately across networks.
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Meanwhile, many real-world networks are accompanied
by rich numerical and categorical attribute information,
including node attributes (e.g., user demographic informa-
tion) and/or edge attributes (e.g., interaction information
between users). Therefore, the fusion of both the topology
consistency and attribute consistency might be a good cure
to tackle these limitations. Researchers have been studying
how to leverage the node attribute information and/or net-
work structure to identify the unique users across different
social networks [7], [8], [9], [10]. For example, [10] extracts
some structural features of each node from the networks
and trains a binary classifier using the structural features
and other node attribute information, to identify the unique
users across multiple networks. More recently, COSNET
models both local consistency based on the node attributes
and global consistency based on the network structures
into an energy-based model to predict the anchor links [9].
These identity matching based methods only endorse the
attributes on nodes and require some identified nodes in
advance to train the model with network structures and
node attributes. On the other side, the traditional graph
matching approaches can encode both node and edge at-
tributes together with the adjacency matrices into an affinity
matrix [11], [12]. The nodes one-to-one mapping can be
obtained by solving a nonconvex quadratic maximization
problem. However, these methods are not scalable to the
large-scale networks.

Alternatively, in this paper, we shift our attention to the
unsupervised network alignment method that can not only
use the topological information of the networks, but can
also take advantages of both node and edge attributes. Yet,
it still remains to be a daunting task to align attributed
networks due to the following three challenges. First (Q1.
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Formulation), it is not clear how to assimilate both the node
and edge attribute information into the topology-based net-
work alignment and formulate it as a single optimization
problem. Second (Q2. Algorithms), the optimization problem
behind the topology-based network alignment is often non-
convex or even NP-hard (e.g., maximum common subgraph
optimization problem [5], [6]). Introducing attributes into
the alignment process could further perplex the correspond-
ing optimization problem. Third (Q3. Computations), while
the scalability of the alignment algorithms is much desir-
able, it remains unknown how to accelerate and scale up the
algorithms by taking advantage of some intrinsic properties
(e.g., low-rank) of real networks.

To address these challenges, in this paper, we propose
a family of effective and efficient algorithms to solve the
attributed network alignment problem. The key idea be-
hind our algorithms is to generalize the topology consistency
to alignment consistency and leverage attribute information
to guide the topology-based alignment process. Different
from [13], the algorithms are extended to multiple nu-
merical/categorical attributes. However, the computational
challenges lie in the matrix multiplication between sparse
adjacency matrix and the alignment matrix. Thanks to the
low-rank structure of many real-world networks, we further
propose an approximation algorithm for speed-up.

In some applications, we might be interested in finding
similar nodes across different networks (e.g., to find similar
users on LinkedIn for a given user on Facebook). We
define this problem as the on-query attributed network
alignment problem and propose a linear approximation al-
gorithm without solving the full alignment problem.

The main contributions are summarized as follows.
1) Formulations. We define the attributed network align-

ment problem and formulate it as a convex quadratic
optimization problem. As a side product, our formula-
tion helps reveal the quantitative relationships between
the (attributed) network alignment problem and several
other network mining problems.

2) Algorithms and Analysis. We propose a family of
algorithms FINAL to efficiently solve the attributed
network alignment problem. To speed up, we further
propose an approximation algorithm to solve full align-
ment problem. We propose a linear online algorithm
for on-query alignment problem. We then analyze the
optimality, convergence, complexity and stability.

3) Evaluations. We perform extensive experiments to vali-
date the efficacy of the proposed algorithms. Our evalu-
ations demonstrate that (1) our algorithms significantly
improve the alignment accuracy by up to 30% over
the existing methods; (2) the proposed FINAL-N+
algorithm leads to a better trade-off between alignment
accuracy and running time; and (3) our on-query align-
ment method scales linearly, with an around 90% rank-
ing accuracy compared with the exact full alignment
method and a near real-time response time.

The rest of the paper is organized as follows. Section
2 defines the attributed network alignment problem and
the on-query attributed network alignment problem. Sec-
tion 3 presents the proposed optimization formulation of
FINAL and its solutions followed by some analyses. Section
4 proposes two speed-up methods for approximate full

alignment and on-query alignment. Section 5 presents the
experimental results. Related work and conclusion are given
in Section 6 and Section 7.

2 PROBLEM DEFINITIONS
TABLE 1: Symbols and Notation

Symbols Definition
G = {A,G,F} an attributed network

A the adjacency matrix of the network
G the node attribute matrix of the network
F the edge attribute matrix of the network

n1, n2 # of nodes in G1 and G2

m1, m2 # of edges in G1 and G2

K,L # of the node and edge attributes
a, b node/edge indices of G1

x, y node/edge indices of G2

v, w node-pair indices of the vectorized alignment s = vec(S)
k(k′), l node/edge label indices

I,1 an identity matrix and a vector of 1s, respectively
H n2 × n1 prior alignment preference matrix
S n2 × n1 alignment matrix
r, p reduced ranks
α the parameter, 0 < α < 1

a = vec(A) vectorize a matrix A in column order
Q = mat(q, n2, n1) reshape vector q into a n2 × n1 matrix in column order

Ã symmetrically normalize matrix A
D = diag(d) diagonalize a vector d

⊗ Kronecker product
� element-wise matrix product

Table 1 summarizes the main symbols and notations
used throughout the paper. We use bold uppercase letters
for matrices (e.g., A), bold lowercase letters for vectors (e.g.,
s), and lowercase letters (e.g., α) for scalars. For matrix
indexing, we use a convention similar to Matlab’s syntax
as follows. We use A(i, j) to denote the entry at the inter-
section of the i-th row and j-th column of matrix A, A(i, :)
to denote the i-th row of A and A(:, j) to denote the j-
th column of A. We denote the transpose of a matrix by
the superscript T (e.g., AT is the transpose of A). We use˜ on top to denote the symmetric normalization of a matrix
(e.g., Ã = D−1/2AD−1/2, where D is the degree matrix of
A). The vectorization of a matrix (in the column order) is
denoted by vec(.), and the resulting vector is denoted by
the corresponding bold lowercase letter (e.g., a = vec(A)).

We represent an attributed network by a triplet: G =
{A,G,F}, where (1) A is the adjacency matrix, and (2) G
and F are the node attribute and edge attribute matrices,
respectively. The attributes of node-a corresponds to the
vector of G(a, :), and F(a,b) describes the edge attribute
vector of the edge between node-a and node-b. Note that
for both node and edge categorical attribute values, they
can be transformed into vectors by one hot encoding. Figure
1 presents an illustrative example. We can see from Figure
1(a), the set of nodes (2, 3, 4 and 5) from the first network
share the exact same topology with another set of nodes (2′,
3′, 4′ and 5′) in the second network. The topology alone
would be inadequate to differentiate these two sets. On the
other hand, we can see that (1) 2, 2′, 5 and 5′ share the same
node categorical attribute value; (2) 3, 3′, 4 and 4′ share the
same node categorical attribute value; and (3) the two edges
incident to 3 share the same edge categorical attribute value
with those incident to 4′. These node/edge attributes could
provide vital information to establish the accurate node-
level alignment (i.e., 2 aligns to 5′, 5 aligns to 2′, etc.). This
is exactly what this paper aims to address. Formally, the
attributed network alignment problem is defined as follows.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

(a) Input Attributed Networks. (b) Matrix Representation. (c) Alignment Output.

Fig. 1: An illustrative example of the attributed network alignment problem. (a): two input attributed networks. (b): the
matrix representation for attributed networks, where two upper matrices represent the adjacency matrices, and the bottom
matrices represent the node attribute and edge attribute matrices of G1 by using one hot encoding. (c): the desired alignment
output (denoted by the red dashed lines).
Problem 1. ATTRIBUTED NETWORK ALIGNMENT.

Given: (1) two undirected attributed networks G1 =
{A1,G1,F1} and G2 = {A2,G2,F2} with n1 and n2 nodes
respectively, (2 - optional) a prior alignment preference H.

Output: the n2 × n1 soft alignment/similarity matrix S,
where S(x, a) represents to what extent node-a in G1 is aligned
with node-x in G2.

In the above definition, we have an optional input, to
encode the prior knowledge of pairwise alignment pref-
erence H, which is an n2 × n1 matrix. An entry in H
reflects our prior knowledge of the likelihood to align two
corresponding nodes across the two input networks. When
such prior knowledge is absent, we set all entries of H
equal, i.e., a uniform distribution. Without loss of generality,
we assume that A1 and A2 share a comparable size, i.e.,
O(n1) = O(n2) = O(n) and O(m1) = O(m2) = O(m).
This will also help simplify our complexity analyses.

Notice that the alignment matrix S in Problem 1 is
essentially a cross-network node similarity matrix. In some
applications, we might be interested in finding a small
number of similar nodes in one network w.r.t a query node
from the other network. For instance, we might want to
find the top-10 most similar LinkedIn users for a given
Facebook user. We could first solve Problem 1 and then
return the corresponding row or column in the alignment
matrix S, which might be computationally too costly as well
as unnecessary. Having this in mind, we further define the
on-query attributed network alignment problem as follows:

Problem 2. ON-QUERY ATTRIBUTED ALIGNMENT.
Given: (1) two undirected attributed networks G1 =

{A1,G1,F1} and G2 = {A2,G2,F2}, (2 -optional) a prior
alignment preference H, (3) a query node-a in G1.

Output: an n2 × 1 vector sa measuring similarities between
the query node-a in G1 and all the nodes in G2 efficiently.

3 TOPOLOGY MEETS ATTRIBUTES

In this section, we present our solutions to Problem 1. We
start by formulating Problem 1 as a regularized optimization
problem, and then propose effective algorithms to solve it,
followed by some theoretical analyses.

3.1 FINAL: Optimization Formulation

The key idea behind our proposed formulation lies in the
alignment consistency principle, which basically says that the
alignments between two pairs of nodes across two input
networks should be consistent if these two pairs of nodes
themselves are “similar/consistent” with each other. Let us
elaborate this using the following example. In Figure 2, we

are given two pairs of nodes: (1) node-a in G1 and node-x in
G2; and (2) node-b in G1 and node-y in G2. By the alignment
consistency principle, we require the alignment between a
and x, and that between b and y to be consistent (i.e., small
‖S(x, a)− S(y, b)‖), if the following conditions hold:
C1 Topology Consistency. Node a and b are close neighbors

in G1 (i.e., large A1(a, b)), and x, y are also close
neighbors in G2 (i.e., large A2(x, y));

C2 Node Attribute Consistency. Node a and x share the same
or similar node attributes, and so do b and y;

C3 Edge Attribute Consistency. Edge (a, b) and (x, y) share
the same or similar edge attributes.

The intuition behind the alignment consistency principle
is as follows. If we already know that node-a is aligned to
node-x (i.e., large S(x, a)), then their close neighbors (e.g., b
and y) with same or similar node attributes should have
a high chance to be aligned with each other (i.e., large
S(y, b)), where we say that b and y are close neighbors of
a and x respectively if they are connected by the same or
similar edge attributes, with large edge weights (i.e., large
A1(a, b) and A2(x, y)). This naturally leads to the following
objective function which we wish to minimize in terms of
the alignment matrix S:

J1(S) =
∑

a,b,x,y

[
S(x, a)√
f(x, a)

− S(y, b)√
f(y, b)

]2 A1(a, b)A2(x, y)︸ ︷︷ ︸
C1: Topology Consistency

(1)

× Ψ(x, a)Ψ(y, b)︸ ︷︷ ︸
C2: Node Attribute Consistency

× ϕ((x, y), (a, b))︸ ︷︷ ︸
C3: Edge Attribute Consistency

where (1) a, b = 1, ..., n1, and x, y = 1, ..., n2; (2) Ψ(·) is
the function that measures the node attribute similarities
between two nodes across networks; and (3) ϕ(·) measures
the edge attribute similarities between two edges in two
networks. Besides, the function f(·) is a node-pair nor-
malization function. For instance, in our paper, we use the
following function as f(x, a)

f(x, a) =
∑
b,y

A1(a, b)A2(x, y)Ψ(x, a)Ψ(y, b)ϕ((x, y), (a, b))

which measures how many (weighted) neighbor-pairs a and
x have that (1) share the same or similar node attributes
between themselves (e.g., b and y), and (2) connect to a and
x via the same or similar edge attributes, respectively. Note
that the functions Ψ(·) and ϕ(·) can be any existing simi-
larity function. In our paper, we use the cosine similarity to
measure the similarity between node/edge attributes, i.e.,

Ψ(x, a) = (
G1(a, :)

‖G1(a, :)‖2
)(

G2(x, :)

‖G2(x, :)‖2
)T

ϕ((x, y), (a, b)) = (
F1(a,b)

‖F1(a,b)‖2
)(

F2(x,y)

‖F2(x,y)‖2
)T

where ‖ · ‖2 is the vector L2 norm, G1,G2 represent
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the node attribute matrices of G1,G2 respectively, and
therefore G1(a, :) is the feature vector of node-a. Besides,
F1(a,b),F2(x,y) are the feature vectors of edge (a, b) in
G1 and (x, y) in G2. To ease the computation, we denote
N1,N2 as the normalized node attribute matrices where,
for example, N1(a, :) = G1(a,:)

‖G1(a,:)‖2 . Next, we denote the
edge feature vectors into a set of matrices. For edges in
G1, we denote El

1(a, b) as the l-th normalized attribute
value of the edge (a, b) and E1 is of same size as A1, i.e.,
El

1(a, b) =
F1(a,b)(l)

‖F1(a,b)‖2
. Similarly, we denote El

2(x, y) as the
l-th normalized attribute value of edge (x, y). The cosine
similarity functions Ψ(·) and ϕ(·) can be re-written as below.

Ψ(x, a) =

K∑
k=1

N1(a, k)N2(x, k) (2)

ϕ((x, y), (a, b)) =

L∑
l=1

El
1(a, b)El

2(x, y) (3)

Therefore, the objective function Eq. (1) can be written as

J1(S) =
∑

a,b,x,y

[
S(x, a)√
f(x, a)

− S(y, b)√
f(y, b)

]2 A1(a, b)A2(x, y)︸ ︷︷ ︸
C1: Topology Consistency

(4)

×
K∑

k=1

N1(a, k)N2(x, k)

K∑
k′=1

N1(b, k′)N2(y, k′)︸ ︷︷ ︸
C2: Node Attribute Consistency

×
L∑

l=1

El
1(a, b)El

2(x, y)︸ ︷︷ ︸
C3: Edge Attribute Consistency

where
f(x, a) =

∑
b,y

K∑
k,k′=1

L∑
l=1

A1(a, b)A2(x, y)N1(a, k)N2(x, k)

×N1(b, k′)N2(y, k′)El
1(a, b)El

2(x, y)

Next, we present an equivalent matrix form of J1, which
is more convenient for the following algorithm description
and the theoretical proof. By vectorizing the matrix S (i.e.,
s = vec(S)), and with the notation of element-wise product
and Kronecker product, Eq. (4) can be rewritten as

J1(s) =
∑
v,w

[
s(v)√
D(v, v)

− s(w)√
D(w,w)

]2W(v, w) (5)

=sT (I− W̃)s

where v = n2(a − 1) + x, w = n2(b − 1) + y, W = N[E �
(A1 ⊗ A2)]N and N = diag(

∑K
k=1 N1(:, k) ⊗ N2(:, k)),

E =
∑L
l=1 El

1 ⊗ El
2. W̃ = D−

1
2 WD−

1
2 is the symmetric

normalized matrix of W. The diagonal degree matrix D of
W is directly derived from f(x, a) and defined as

D = Ndiag(

K∑
k=1

L∑
l=1

((El
1�A1)N1(:, k))⊗ ((El

2�A2)N2(:, k))) (6)

Note that some diagonal elements in D could be zero (e.g.,
D(v, v) = 0). For such elements, we define the correspond-
ing D(v, v)−1/2 , 0.

In some cases where we want to encode the prior align-
ment preference matrix H into the alignment result, we
add a regularization term ‖s − h‖22 where h = vec(H).
When no such prior information is given, we set h as a
uniform column vector. From the optimization perspective,
this additional regularization term would also help prevent

Fig. 2: An illustration of alignment consistency.

the trivial solutions, such as a zero alignment matrix S or
the alignment matrix S where S(x, a) =

√
f(x, a).

Putting everything together, our proposed optimization
problem can be stated as follows.

argmin
s
J(s) = αsT (I− W̃)s + (1− α) ‖ s− h ‖22 (7)

where α is the regularization parameter.
Handling Categorical Attributes. In [13], the authors con-
sider the categorical node and edge attributes. We remark
that the formulations in [13] are equivalent to our formu-
lations by using one hot encoding on categorical attributes
into vector representations. To be specific, we briefly show
that the indicator function on categorical attributes is a
special case of cosine similarity. For example, consider coun-
tries as node attributes including {China, USA, Canada,
Germany} and three nodes from USA, USA, Canada, re-
spectively. The one hot encoding of attribute value USA is
represented as vector (0, 1, 0, 0), and that of attribute value
Canada is (0, 0, 1, 0). Apparently, only when two nodes are
both from USA, the cosine similarity of their node attributes
is equal to 1 and otherwise 0, which is equivalent to the
indicator function in [13]. Therefore, the formulations in [13]
are special cases of the formulations in this paper.

As a result, the objective function Eq. (7) is a more
generalized formulation which is capable of handling both
numerical and categorical attributes.

3.2 FINAL: Optimization Algorithms

The objective function in Eq. (7) is essentially a quadratic
function w.r.t. s. We seek to find its fixed-point solution by
setting its derivative to be zero

∂J(s)

∂s
= 2(I− αW̃)s + 2(α− 1)h = 0

which leads to the following equation

s = αW̃s + (1− α)h

= αD−
1
2 N(E� (A1 ⊗A2))ND−

1
2 s + (1− α)h (8)

We could directly develop an iterative algorithm based
on Eq. (8). However, such an iterative procedure involves
the Kronecker product between A1 and A2 whose time
complexity is O(m2). Although the Kronecker product can
be pre-computed, the O(m2) space complexity due to the
memory cost and the O(m2) time complexity in each it-
eration due to the matrix-vector multiplication are still
impractical for large networks.

In order to develop a more efficient algorithm, thanks to
a key Kronecker product property (i.e., vec(ABC) = (CT ⊗
A)vec(B)), we re-write Eq. (8) as follows

s = αD−
1
2 Nvec(

L∑
l=1

(El
2�A2)Q(El

1�A1)T )+(1−α)h (9)

where Q is an n2 × n1 matrix reshaped by q = ND−
1
2 s

in column order, i.e., Q = mat(q, n2, n1). We can show
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that Eq. (8) and Eq. (9) are equivalent with each other.
The advantage of Eq. (9) is that it avoids the expensive
Kronecker product, which leads to a more efficient iterative
algorithm FINAL-NE (summarized in Algorithm 1).
Algorithm 1 FINAL-NE: Attributed Network Alignment.
Input: (1) G1 = {A1,G1,F1} and G2 = {A2,G2,F2}, (2) op-

tional prior alignment preference H, (3) the regularization
parameter α, and (4) the maximum iteration number tmax.

Output: the n2 × n1 alignment matrix S between G1 and G2.
1: Construct normalized node attribute matrices N1,N2;
2: Construct normalized edge attribute matrices El

1,E
l
2, l =

1, · · · , L;
3: Compute the node attribute matrix N and degree matrix D;
4: Initiate the alignment s as a uniform vector, and t = 1;
5: while t ≤ tmax do
6: Compute vector q = ND−

1
2 s;

7: Reshape q as Q = mat(q, n2, n1);
8: Initiate an n2 × n1 zero matrix T;
9: for l = 1→ L do

10: Update T← T + (El
2 �A2)Q(El

1 �A1)T ;
11: end for
12: Update s← αD−

1
2 Nvec(T) + (1− α)h;

13: Set t← t+ 1;
14: end while
15: Reshape s to S = mat(s, n2, n1).

Variants of FINAL-NE.
Our proposed FINAL-NE algorithm assumes that the

input networks have both node and edge attributes. It is
worth pointing out that it also works when the node and/or
the edge attribute information is missing.

First, when only node attributes are available, we can
set all entries in the edge attribute matrices El to 1 where an
edge indeed exists. The intuition is that we treat all the edges
in the networks to share a common edge attribute value. In
this case, the fixed-point solution in Eq. (8) becomes

s = αD
− 1

2
n WnD

− 1
2

n s + (1− α)h

= αD
− 1

2
n N(A1 ⊗A2)ND

− 1
2

n s + (1− α)h
(10)

where Dn = Ndiag(
∑K
k=1(A1N1(:, k)) ⊗ (A2N2(:, k)))

denotes the degree matrix of Wn. Similar to Eq. (9), we can
use the vectorization operator to accelerate the computation.
We refer to this variant as FINAL-N, and omit the detailed
algorithm description due to space limitation.

Second, when only the edge attributes are available, we
treat all nodes to share one common node attribute value
by setting N to be an identity matrix. In this case, the fixed-
point solution in Eq. (8) becomes

s = αD
− 1

2
e (E� (A1 ⊗A2))D

− 1
2

e s + (1− α)h (11)
where De = diag(

∑L
l=1[(El

1 �A1)1] ⊗ [(El
2 �A2)1]). Again,

we omit the detailed algorithm description due to space,
and refer to this variant as FINAL-E.

Finally, if neither the node attributes nor the edge at-
tributes are available, Eq. (8) degenerates to

s = αD
− 1

2
u (A1 ⊗A2)D

− 1
2

u s + (1− α)h (12)
where Du = D1 ⊗D2, D1 and D2 are the degree matrix of
A1 and A2. This variant is referred to as FINAL-P.

3.3 Proofs and Analysis
We first analyze the convergence, optimality, complexity and
stability of our FINAL algorithms. Due to the space limit,
we only present the results for the most general case (i.e.,

FINAL-NE). Then we analyze the relationships between
FINAL and several classic graph mining problems.

We start with Lemma 1, which says the FINAL-NE
algorithm converges to the global optimal solution of Eq. (7).
Lemma 1. Convergence and Optimality of FINAL-NE.
Algorithm 1 converges to the closed-form global minimal solution
of J(s): s = (1− α)(I− αW̃)−1h.

Proof. Since W̃ is similar to the stochastic matrix WD−1 =

D
1
2 W̃D−

1
2 , the eigenvalues of W̃ are within [−1, 1]. Given

0 < α < 1, the eigenvalues of αW̃ are in (−1, 1).
We denote the alignment vector s in the t-th iteration as

s(t). We have that
s(t) = αtW̃th + (1− α)

t−1∑
i=0

αiW̃ih

Since the eigenvalues of αW̃ are in (−1, 1), we have that
lim

t→+∞
αtW̃t = 0 and lim

t→+∞

∑t−1
i=0 α

iW̃i = (I − αW̃)−1.

Putting these together, we have that
s = lim

t→+∞
s(t) = (1− α)(I− αW̃)−1h

Next, we prove that the above result is indeed the global
minimal solution of the objective function defined in Eq. (7).
We prove this by showing that J(s) in Eq. (7) is convex.
To see this, we have that the Hessian matrix of Eq. (7) is
O2J = 2(I−αW̃) with all eigenvalues of 2(I−αW̃) greater
than 0. In other words, we have that O2J is positive definite.
Therefore, the objective function defined in Eq. (7) is convex,
and its fixed-point solution by Algorithm 1 corresponds to
its global minimal solution, which completes the proof.

The time and space complexity of Algorithm 1 are
summarized in Lemma 2. Notice that such a complexity
is comparable to the complexity of topology-alone network
alignment methods, such as IsoRank [4]. In the next section,
we will propose an even faster algorithm.
Lemma 2. Complexity of FINAL-NE. The time complexity of
Algorithm 1 is O(Lmntmax + LKn2), and its space complexity
is O(n2). Here, n and m are the orders of the number of nodes
and edges of the input networks, respectively; K,L denote the
dimension of node and edge feature vectors respectively, and tmax
is the maximum iteration number.

Proof. It requires O(nK + mL) time and space complexity
for line 1-2. To compute N, it takes O(Kn2) time complex-
ity and O(n2) space complexity. Then based on Eq. (6),
constructing D requires O(2m + n2)KL time complexity
and O(n2) space complexity. Line 9-11 takes O(Lmn) time
complexity and O(n2) space complexity. Thus, line 5-14
with tmax iterations takes O(Lmntmax) time complexity and
O(n2) space complexity. In total, the FINAL-NE algorithm
takes O(Lmntmax + LKn2) time complexity and O(n2)
space complexity. This completes the proof.

Next, we present the stability analysis of the algorithm
FINAL-NE and the analysis on other variants can be easily
generalized. Due to the fact that many real-world networks
are often noisy, this analysis assists to perceive how robust
our proposed algorithms are to the noise/perturbation.
Given that the alignment vector s is the solution to the linear
system (I − αW̃)s = (1 − α)h, the stability of FINAL-NE
is equivalent to that of the corresponding linear system as:
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Lemma 3. Stability of FINAL-NE. If the perturbation on
the input networks δ = max{‖A1‖F , ‖A2‖F } satisfies the
following the conditions

δ ≤

√√√√√min

 εnA

αB − εn2A
,

√
εnA2

2α
+
C2

4
−
C

2
,

εn2A2

αA+ αnB + εn3A

 +
D2

4

−
D

2
(13)

and min
i
{di} ≤

α‖E� (A1 ⊗A2)‖F
εn2

(14)

where di = D(i, i), A = min
i
{di}, B = ‖A1‖F ‖A2‖F , C =

1
2 (B + A

n −
εn2A
α ), D = ‖A1‖F + ‖A2‖F , and 0 < ε <

1−α
(1+α)n2 is a constant, the relative error of the system due to the
perturbation is bounded by

‖ŝ− s‖2
‖s‖2

≤ 2ε

1− r κF (I− αW̃) <
2ε(1 + α)n2

1− α− ε(1 + α)n2
(15)

Proof. See Appendix.

Finally, we analyze the relationships between the pro-
posed FINAL algorithms and several classic graph mining
problems. Due to the space limit, we omit the detailed
proofs and summarize the major findings as follows.

A - FINAL vs. Node Proximity An important (single)
network mining task is the node proximity, i.e., to measure
the proximity/similarity between two nodes on the same
network. By ignoring the node/edge attributes and setting
A1 = A2, our FINAL algorithms, up to a scaling operation
D1/2, degenerate to SimRank [14] - a prevalent choice for
node proximity. Our FINAL algorithms are also closely
related to another popular node proximity method, random
walk with restart [15]. That is, Eq. (8) can be viewed as
random walk with restart on the attributed Kronecker graph
with h being the starting vector. Note that neither the
standard SimRank nor random walk with restart considers the
node or edge attribute information.

B - FINAL vs. Graph Kernel The alignment result s by
our FINAL algorithms is closely related to the random walk
based graph kernel [16]. To be specific, if k(G1,G2) is the ran-
dom walk graph kernel between the two input graphs and
p is the stopping vector, we can show that k(G1,G2) = pT s.
This intuitively makes sense, as we can view the graph ker-
nel/similarity as the weighted aggregation (by the stopping
vector p) over the pairwise cross-network node similarities
(encoded by the alignment vector s). We also remark that
in the original random walk graph kernel [16], it mainly
focuses on the node attribute information.

C - FINAL vs. Existing Network Alignment Methods If
we ignore all the node and edge attribute information, our
FINAL-P algorithm is equivalent to IsoRank [4] by scaling
the alignment result and alignment preference by D1/2.
We would like to point out that such a scaling operation
is important to ensure the convergence of the iterative
procedure. Recall that the key idea behind our optimization
formulation is the alignment consistency. When the attribute
information is absent, the alignment consistency principle is
closely related to the concept of “squares” behind NetAlign
algorithm [5]. Like most, if not all of the, existing network
alignment algorithms, the node or the edge attribute infor-
mation is ignored in IsoRank and NetAlign.

We remark that these findings are important in the fol-
lowing two aspects. First, they help establish a quantitative
relationship between several, seemingly unrelated graph
mining problems, which might in turn help better under-
stand these existing graph mining problems. Second, these
findings also have an important algorithmic implication.
Take SimRank as an example, it was originally designed for
plain graphs (i.e., without attributes), and was formulated
from random walk perspective and it is not clear what
the algorithm tries to optimize. By setting G1 = G2 and
ignoring the attribute information, our objective function in
Eq. (7) provides a natural way to interpret SimRank from
an optimization perspective. By setting G1 = G2 alone, our
FINAL algorithms can be directly used to measure node
proximity on an attributed network. Finally, our upcoming
FINAL ON-QUERY algorithm also naturally provides an
efficient way (i.e., with a linear time complexity) for on-
query SimRank with or without attribute information (i.e.,
finding the similarity between a given query node and all
the remaining nodes in the same network).
4 SPEED-UP COMPUTATION

In this section, we address the computational issue. To be
specific, we will focus on two scenarios. First, to solve
Problem 1, our proposed FINAL algorithms in Section 3
have a time complexity of O(mn), where we have dropped
the lower order terms. We propose an effective approximate
algorithm that reduces the time complexity to O(n2). Sec-
ond, for Problem 2, solving the full alignment problem not
only still requires O(n2) time, but also is unnecessary, as we
essentially only need a column or a row from the alignment
matrix S. To address this issue, we propose an effective
algorithm for Problem 2 with a linear time complexity.
For presentation clarity, we restrict ourselves to the case
where there is only node attribute information, although
our proposed strategies can be naturally applied to the more
general case where we have both node and edge attributes.
4.1 Speed-up FINAL-N
According to Lemma 1, the alignment vector s in FINAL-N
converges to its closed-form solution as follows.

s = (1− α)(I− αW̃n)−1h

= (1− α)(I− αD
− 1

2
n N(A1 ⊗A2)ND

− 1
2

n )−1h (16)

The key idea to speed up FINAL-N is to efficiently
approximate such a closed-form solution. To be specific, we
first approximate the two adjacency matrices by top-r eigen-
value decomposition: A1 = U1Λ1U

T
1 and A2 = U2Λ2U

T
2 .

Then the rank-r approximation of Wn is Ŵn = N(U1 ⊗
U2)(Λ1 ⊗ Λ2)(UT

1 ⊗UT
2 )N. Substitute it into Eq. (16), we

can approximate the alignment vector s as

s ≈(1− α)[I− αD
− 1

2
n NU(Λ1 ⊗Λ2)UTND

− 1
2

n ]−1h

=(1− α)(I + αD
− 1

2
n NUΛUTND

− 1
2

n )h (17)

where U = U1 ⊗U2, and Λ is an r2 × r2 matrix computed
by Sherman-Morrison Lemma [17]: Λ = [(Λ1 ⊗ Λ2)−1 −
α(UT

1 ⊗UT
2 )ND−1

n N(U1 ⊗U2)]−1.
Based on Eq. (17), our proposed FINAL-N+ algorithm

is summarized in Algorithm 2. The time complexity of
FINAL-N+ is summarized in Lemma 4. Note that we often
have r � n,m� n2 andK � n. Therefore, compared with
FINAL-N, FINAL-N+ is more efficient in time complexity.
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Algorithm 2 FINAL-N+: Low-Rank Approximation of
FINAL-N.
Input: (1) G1 = {A1,G1} and G2 = {A2,G2}, (2) optional

prior alignment preference H, (3) the regularization param-
eter α, and (4) the rank of eigenvalue decomposition r.

Output: approximate alignment matrix S between G1 and G2.
1: Construct normalized node attribute matrices N1,N2;
2: Construct node attribute matrix N and degree matrix Dn;
3: Construct alignment preference vector h = vec(H);
4: Eigen-decomposition U1Λ1U

T
1 ← A1, U2Λ2U

T
2 ← A2

5: Compute U = U1 ⊗U2;
6: Compute Λ = [(Λ1 ⊗Λ2)−1 − αUTND−1

n NU]−1;
7: Compute s by Eq. (17);
8: Reshape vector s to S = mat(s, n2, n1).

Lemma 4. Time Complexity of FINAL-N+. FINAL-N+
takes O(n2r4 +Kn2) in time where n is the order of the number
of nodes, r is the rank of eigenvalue decomposition and K is the
dimension of node feature vectors.
Proof. It requires O(nK) and O(Kn2) time complexity
to compute N1(N2) and N, respectively. Line 4 takes
O(mr+nr2) time complexity for eigenvalue decomposition
on A1,A2. Line 5 takes O(n2r2) time complexity. The time
complexity of line 6 and line 7 is O(n2r4). In total, the time
complexity of FINAL-N+ is O(n2r4 +Kn2).
4.2 Proposed Solution for Problem 2
In Problem 2, we want to find an n2 × 1 vector sa which
measures the similarities between the query node-a in G1

and all the n2 nodes in G2 (i.e., cross-network similarity
search). It is easy to see that sa is essentially the a-th column
of the alignment matrix S, or equivalently a certain portion
of the alignment vector s, i.e., sa = S(:, a) = s(v : w) where
v = (a− 1)n2 + 1 and w = an2.

However, if we call FINAL-N or FINAL-N+ to find
S and then return the ranking vector sa, it would take at
least O(n2) time. To accelerate, we propose an approximate
algorithm (FINAL ON-QUERY) which directly finds sa in
linear time, without solving the full alignment matrix S.

We first relax the degree matrix Dn to its upper-bound
D̂n = D1 ⊗ D2. There are two reasons for taking such a
relaxation. First, it would take O(n2) time to compute the
Dn matrix directly. On the other hand, D̂n can be indirectly
expressed by the Kronecker product between D1 and D2,
each of which only takes O(m) time. Second, since D̂n is an
upper-bound of the Dn matrix, such a relaxation will not
affect the convergence of FINAL-N. By this relaxation, the
fixed-point solution in Eq. (10) can be approximated as

s = αND̂
− 1

2
n (A1 ⊗A2)D̂

− 1
2

n Ns + (1− α)h (18)
where D̂n = D1 ⊗D2.

By a similar procedure in FINAL-N+, the low-rank
approximate solution for s is

s ≈ (1− α)h + α(1− α)D̂
− 1

2
n NUΛ̂UTND̂

− 1
2

n h (19)
where Λ̂ = [(Λ1 ⊗Λ2)−1 − αUTND̂−1

n U]−1.
Since both D̂n and N are diagonal matrices, the ranking

vector for node-a is
sa =(1− α)[h(v : w) + α[D̂

− 1
2

n NUΛ̂UTND̂
− 1

2
n h](v : w)]

=(1− α)[H(:, a) + αdiag(

K∑
k=1

N1(a, k)N2(:, k)) (20)

×(D1(a, a)D2)−
1
2 [(U1(a, :)⊗U2)︸ ︷︷ ︸

O(nr2)

Λ̂︸︷︷︸
O(n2r4+r6)

UTND̂
− 1

2
N h︸ ︷︷ ︸

O(n2r2)

]

Notice that Eq. (20) still needs O(n2) time due to the
last two terms. We reduce the time cost for computing
g = UTND̂

− 1
2

n h as follows. First, we take a rank-p singular
value decomposition (SVD) on H, i.e., H =

∑p
i=1 σiuiv

T
i .

Then, by the vectorization operator, we have that

g =

p∑
i=1

K∑
k=1

σi(

O(nr)︷ ︸︸ ︷
UT

1 diag(N1(:, k))D
− 1

2
1 vi)

⊗ (UT
2 diag(N2(:, k))D

− 1
2

2 ui︸ ︷︷ ︸
O(nr)

) (21)

We can see that the time cost for Eq. (21) is reduced to
O(pKrn), which is linear w.r.t. the number of nodes n.

We reduce the time cost for Λ̂ by reformulating as
follows, whose time complexity is O(Knr2 +Kr4 + r6)

Λ̂ = [

O(r2)︷ ︸︸ ︷
(Λ2 ⊗Λ1)−1−α

K∑
k=1

(

O(nr2)︷ ︸︸ ︷
UT

1 diag(N1(:, k))D−1
1 U1)

⊗ (UT
2 diag(N2(:, k))D−1

2 U2︸ ︷︷ ︸
O(nr2)

)]−1 (22)

Putting everything together, we have

sa =(1− α)H(:, a) + α(1− α)diag(

K∑
k=1

N1(a, k)N2(:, k)) (23)

× (D1(a, a)D2)−
1
2︸ ︷︷ ︸

O(n)

[(U1(a, :)⊗U2)︸ ︷︷ ︸
O(nr2)

Λ̂︸︷︷︸
O(Knr2+Kr4+r6)

g︸︷︷︸
O(pKnr)

]

Based on Eq. (23), our proposed FINAL ON-QUERY al-
gorithm is summarized in Algorithm 3. The time complexity
of FINAL ON-QUERY is summarized in Lemma 5. Notice
that we often have r, p � n, mH � m � n2 and K � n.
FINAL ON-QUERY has a linear time complexity w.r.t the
size of the input network, which is much more scalable than
both FINAL-N and FINAL-N+.

Algorithm 3 FINAL ON-QUERY: Approximate On-Query
Algorithm for Node Attributed Networks.
Input: (1) G1 = {A1,G1} and G2 = {A2,G2}, (2) optional

prior alignment preference H, (3) the regularization param-
eter α, (4) the rank of eigenvalue decomposition r, and (5)
the rank of SVD for H p.

Output: approximate ranking vector sa between node-a in G1

and all nodes in G2.
Pre-Compute:

1: Compute degree matrices D1 and D2;
2: Rank r eigenvalue decomposition U1Λ1U

T
1 ← A1;

3: Rank r eigenvalue decomposition U2Λ2U
T
2 ← A2;

4: Rank p singular value decomposition
∑p

i=1 σiuiv
T
i ← H;

5: Compute g by Eq. (21);
6: Compute Λ̂ by Eq. (22);

Online-Query:
7: Compute sa by Eq. (23).

Lemma 5. Time complexity of FINAL ON-QUERY. The
time complexity of FINAL ON-QUERY is O(r6 +mr+ nr2 +
mHp+np2 +Knr2 +Kr4 +pKnr) where n,m are the orders
of the number of nodes and edges respectively, r, p is the rank
of eigenvalue decomposition and SVD, K is the number of node
attributes and mH is the number of non-zero elements in H.
Proof. The eigenvalue decomposition of A1 and A2 takes
O(mr + nr2). The complexity of SVD in line 4 requires
O(mHp+np2) time. As Eq. (23) shows, its time complexity is
O(Knr2+Kr4+r6+pKnr). Thus the total time complexity
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of Algorithm 3 is O(r6 +mr+ nr2 +mHp+ np2 +Knr2 +
Kr4 + pKnr).
5 EXPERIMENTAL RESULTS
In this section, we present the experimental results and anal-
ysis of our proposed algorithms FINAL. The experiments
are designed to evaluate the following aspects:
• Effectiveness: How accurate are our algorithms for align-

ing attributed networks?
• Efficiency: How fast are our proposed algorithms?

5.1 Experimental Setup
Datasets. We evaluate our proposed algorithms on eight
real-world attributed networks.
• Co-Authorship Network: This dataset contains 42,252

nodes and 210,320 edges [18]. Each author has a feature
vector which represents the number of publications of
the author in each of 29 major conferences.

• Douban: This Douban dataset was collected in 2010 and
contains 50k users and 5M edges [19]. Each user has
rich information, such as the location and offline event
participation. Each edge has an attribute representing
whether two users are contacts or friends.

• Flickr: This dataset was collected in 2014 and consists
of 215,495 users and 9,114,557 friend relationships.
Users have detailed profile information, such as gen-
der, hometown and occupation, each of which can be
treated as the node attributes [9].

• Lastfm: This dataset was collected in 2013 and contains
136,420 users and 1,685,524 following relationships [9].
A detailed profile of some users is also provided, in-
cluding gender, age and location, etc.

• Myspace: This dataset contains 854,498 users and 6,489,
736 relationships. The profile of users includes gender,
hometown and religion, etc. [9].

• ACM Citation: This dataset was collected in 2016 and
it contains 2,381,688 papers. Each paper has a list of
authors as well as the venue of the paper.

• DBLP Citation: This dataset was collected in 2016 and
it contains 3,272,991 papers. Each paper has a list of
authors as well as its venue.

• ArnetMiner: ArnetMiner dataset consists of the informa-
tion up to year 2013. The whole dataset has 1,053,188
nodes and 3,916,907 undirected edges [9].

Based on these datasets, we construct the following six
alignment scenarios for evaluations.
S1. Co-Authorship vs. Co-Authorship. We extract a subnetwork
with 9,143 users/nodes from the original dataset, together
with their publications in each conference. We randomly
permute this subnetwork with noisy edge weights and
treat it as the second network. We choose the most active
conference of a given author as the node attribute, i.e., the
conference with the most publications. We construct the
prior alignment preference H based on the node degree
similarity. For this scenario, the prior alignment matrix H
alone leads to a very poor alignment result, with only 0.6%
one-to-one alignment accuracy.
S2. Douban Online vs. Douban Offline. We construct an
alignment scenario for Douban dataset in the same way as
[19]. We construct the offline network according to users’
co-occurrence in social gatherings. We treat people as (1)
‘contacts’ of each other if they participate in the same offline

events more than ten times but less than twenty times, and
(2) ‘friends’ if they co-participate in more than twenty social
gatherings. The constructed offline network has 1,118 users
and we extract a subnetwork with 3,906 nodes from the
provided online network that contains all these offline users.
We treat the location of a user as the node attribute, and
‘contacts’/‘friends’ as the edge attribute. We use the degree
similarity to construct the prior alignment preference H
which itself leads to 7.07% one-to-one alignment accuracy.
S3. Flickr vs. Lastfm. We have the partial ground-truth
alignment for these two datasets [9]. We extract the sub-
networks from them that contain the given ground-truth
nodes. The two subnetworks have 12,974 nodes and 15,436
nodes, respectively. We consider the gender of a user as
node attribute. For those users with the missing information
of gender, we treat them as ‘unknown’. Same as [9], we
sort nodes by their pagerank scores and label 1% highest
nodes as ‘opinion leaders’, the next 10% nodes as ‘middle
class’ and remaining nodes as ‘ordinary users’. Edges are
attributed by the level of people they connect to (e.g., leader
with leader). We use the username similarity as the prior
alignment preference by the Jaro-Winkler distance [20]. The
username similarity alone can correctly align 61.50% users.
S4. Flickr-Myspace. We have the partial ground-truth align-
ment for these two datasets. We extract two subnetworks
that contain these ground-truth nodes. The subnetwork of
Flickr has 6,714 nodes and the subnetwork of Myspace has
10,733 nodes. We use the same way as S3 for node attributes,
edge attributes and the prior alignment preference. The
username similarity achieves 61.80% accuracy.
S5. ACM-DBLP Co-authorship. We extract from both datasets
the papers that are published in four areas, including data
mining, machine learning, database and information re-
trieval/web mining. We construct the co-authorship net-
works based on each paper’s co-author relationship. That
is, if two authors co-author a paper in above areas, then we
link this two authors in the co-authorship network. Then,
we extract from the two constructed co-authorship networks
the subgraphs that contain 9,872 nodes and 39,561 edges
in ACM co-authorship network and 9,916 nodes and 44,808
edges in DBLP co-authorship network, respectively. Besides,
we consider both numerical and categorical attributes. For
numerical node attributes, we treat the number of papers of
an author in each of the 17 venues as an attribute, which
leads to a 17 dimensional feature vector. We use the four
areas as the node categorical attributes. That is, for example,
if an author published the most papers in data mining area,
then we label this node as ’data mining’. We consider cate-
gorical edge attributes, and similarly, we use the area where
two authors mostly collaborate with each other. We use the
degree similarity matrix as the prior alignment preference
which alone can only correctly align 20.76% users.
S5. ArnetMiner-ArnetMiner. We use the same method as S1
to construct the alignment scenario as well as the prior
alignment preference. This scenario contains the largest
networks, and therefore is used for efficiency evaluations.
Comparison Methods. For the proposed FINAL algo-
rithms, we test the following variants, including (1) FINAL-
NE with categorical node and edge attributes; (2) FINAL-
NE(N) with numerical node and edge attributes; (3)
FINAL-N with categorical node attributes; (4) FINAL-
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N(N) with numerical node attributes; (5) FINAL-E with
categorical edge attributes; (6) FINAL-N+, a low-rank ap-
proximation of FINAL-N. We compare them with the fol-
lowing existing network alignment algorithms including (1)
IsoRank [4], (2) NetAlign [5], (3) UniAlign [21], (4) Klau’s
Algorithm [6], (5) HubAlign [22] and (6) RRWM [23].
Machines and Repeatability. Experiments are performed
on a Windows machine with four 3.6GHz Intel Cores and
32G RAM. The algorithms are programmed with MATLAB1.

5.2 Effectiveness Analysis
We first evaluate the impact of the permutation noise on
the alignment accuracy. We use a heuristic greedy matching
algorithm [24] as a post-processing step on the similarity
matrix to obtain the one-to-one alignments between the two
input networks, and then compute the alignment accuracy
with respect to the ground-truth. The results are summa-
rized in Figure 3. We have the following observations. First,
all of our proposed methods outperform the existing align-
ment methods. Specifically, our FINAL algorithms achieve
an up to 30% improvement in terms of the alignment
accuracy over the comparison methods. Second, FINAL-
N and FINAL-E both outperform the existing methods
in most scenarios, yet are not as good as FINAL-NE,
suggesting that node attributes and edge attributes might
be complementary in terms of improving the alignment
accuracy. Third, the alignment accuracy of FINAL-N+ is
very close to its exact counterpart FINAL-N (i.e., with a
95% accuracy compared with FINAL-N). Fourth, by jointly
considering the attributes and the topology of networks,
our methods are more resilient to the permutation noise.
Moreover, for the two networks whose topologies are dra-
matically different from each other (e.g., Douban online-
offline networks), the accuracy gap between FINAL-N+
and the existing methods is even bigger (Figure 3(b)). This
is because in this case, the topology information alone
(IsoRank, NetAlign, Klau and HubAlign) could actually mis-
lead the alignment process. Finally, as Figure 3(c) shows,
using numerical attributes (i.e., FINAL-NE(N) and FINAL-
N(N)) could further improve the performance of FINAL-
NE with categorical attributes.

Second, we evaluate the impact of the noise in the prior
alignment preference (i.e., H) on the alignment results,
which is summarized in Figure 4. As expected, a higher
noise in H has more negative impacts on the alignment
accuracy for most of the methods. Nonetheless, our FINAL
algorithms still consistently outperform all other four exist-
ing methods across different noise levels.

In addition, we conduct the comparisons between the
proposed FINAL algorithm and other baseline methods to
show the alignment performance by using various informa-
tion. For RRWM, we compute the cosine similarity matrix
of the node attributes and edge attributes respectively, then
combine them with the Kronecker product of the adjacency
matrices to form the affinity matrix [11]. For the rest of
comparison scenarios, we calculate the cosine similarity
values among node attributes as the node similarities across
networks, which will then be used as the prior alignment

1. The source code of our algorithms can be downloaded here: http:
//www.public.asu.edu/∼szhan172/FINAL-KDD16.zip.

matrix H of the baseline methods (named as NodeSim).
Similarly, the average between the node attribute similarity
matrix and the originally designed prior matrix (used in
Figure 3 and Figure 4), is considered as the prior matrix
(named as Hybrid). The results are summarized in Table
2. First, we observe that given the exact same set of infor-
mation, the proposed FINAL-NE outperforms the RRWM
algorithm in terms of the alignment accuracy. This indicates
even with the more rigorous constraints of the optimization
problem in RRWM, the intricacy of solving the problem itself
might mislead the alignment solution. Second, we observe
that given the node attributes and prior alignment matrix,
our proposed FINAL-N method outperforms other baseline
methods. This indicates although the additive combination
of attributes and the prior knowledge could lead to an
improvement within the baseline methods themselves, our
algorithms still achieve a better performance due to the
alignment consistency.

5.3 Efficiency Analysis

Quality-Speed Trade-off. We first evaluate how different
methods balance the alignment accuracy and the running
time for the full network alignment problem (i.e., Problem
1). The results are summarized in Figure 5. Note that the
results of RRWM are not included here because it takes days
to finish the computation, which is not even comparable
with other methods. As we can see, the running time of
our proposed exact methods is only slightly higher than its
topology-alone counterpart (i.e., IsoRank), and in the mean-
while, they all achieve a 10%-20% accuracy improvement.
FINAL-NE(N) and FINAL-N(N) are faster than FINAL-
NE in Figure 5 (c) because using numerical attributes
could lead to a faster convergence. Besides, FINAL-N+
and UniAlign are the fastest, yet the proposed FINAL-N+
produces a much higher alignment accuracy. We do not
show the balance of Klau’s Algorithm in Figure 5 (a) and (b),
because the running time is usually several hours which is
not comparable with other methods. For NetAlign and Klau’s
Algorithm, we observe that they take much longer running
time when the input prior alignment preference matrix
H is not sparse enough, as it involves a time-consuming
Hungarian step during each iteration.

Second, we evaluate the quality-speed trade-off for on-
query alignment problem. Here, we treat the top-10 ranking
results by FINAL-N as the ground-truth, and compare the
average ranking accuracy of 500 random nodes with two
proposed approximate algorithms (FINAL-N+ and FINAL
ON-QUERY). The results are summarized in Figure 6. We ob-
serve that (1) FINAL-N+ preserves a 95% ranking accuracy,
with a more than 10× speedup over FINAL-N, (2) FINAL
ON-QUERY preserves an about 90% ranking accuracy, and
it is 100× faster than the exact FINAL-N.
Scalability. We first evaluate the scalability of FINAL-
N+, which is summarized in Figure 7. We can see that
the running time is quadratic w.r.t the number of nodes
of the input networks, which is consistent with the time
complexity results in Lemma 4. Second, we evaluate the
scalability of FINAL ON-QUERY, for both its pre-compute
phase and online-query phase. As we can see from Figure
8, the running time is linear w.r.t the number of nodes in
both stages, which is consistent with Lemma 5. In addition,
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(c) ACM-DBLP.
Fig. 3: (Higher is better.) Alignment accuracy vs. the noise level in
networks. (tmax = 30, r = 5).
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(b) Flickr-Myspace.
Fig. 4: (Higher is better.) Alignment accuracy
vs. the noise level in H. (tmax = 30, r = 5).

FINAL-NE FINAL-N RRWM IsoRank NetAlign Klau HubAlign
Original NodeSim Hybrid Original NodeSim Hybrid Original NodeSim Hybrid Original NodeSim Hybrid

DBLP-Coauthor 0.9011 0.8193 0.8732 0.7281 0.8097 0.5568 0.7254 0.7121 0.8179 0.6961 0.4800 0.5075 0.6201 0.6313 0.6127
Douban 0.4114 0.3265 0.0420 0.0546 0.1404 0.3050 0.0150 0.2066 0.0242 0.0635 0.2299 0.0564 0.0106 0.0206 0.0528

ACM-DBLP 0.3889 0.3573 0.3300 0.1897 0.1777 0.3108 0.2520 0.2879 0.3368 0.2553 0.1994 0.2588 0.1867 0.1325 0.2606
Flickr-Lastfm 0.7114 0.6814 0.6416 0.4027 0.2987 0.6345 0.4558 0.2345 0.5376 0.3518 0.2832 0.5155 0.5878 0.3097 0.6216

Flickr-Myspace 0.6992 0.6629 0.6779 0.3596 0.2509 0.5431 0.4494 0.2060 0.3708 0.3745 0.2022 0.4082 0.5506 0.1573 0.4307

TABLE 2: Alignment with different alignment prior matrices.
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Fig. 5: Balance between the accuracy and the speed. tmax = 30, r = 5.
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FINAL-N+.

the actual online-query time on the entire ArnetMiner data
set (with r = 10) is less than 1 second, suggesting that
the proposed FINAL ON-QUERY method might be well
suitable for the real-time query response.
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Fig. 8: Scalability of FINAL ON-QUERY.

6 RELATED WORK

The network alignment has attracted lots of research inter-
ests with extensive literatures. It appears in numerous do-

mains, ranging from bioinformatics [4], [22], [25], computer
vision [11], [12], to data mining [21], [26].

Network Alignment. A classic alignment approach can
be attributed to IsoRank algorithm [4], which is in turn
inspired by PageRank [27]. The original IsoRank algorithm
propagates the pairwise node similarity in the Kronecker
product graph. Several approximate algorithms have been
proposed to speed up its computation. IsoRankN [25] ex-
tends the original IsoRank algorithm and uses a similar ap-
proach as PageRank-Nibble [28] to align multiple networks.

Bayati et al. [29] propose a maximum weight matching
algorithm for graph alignment using the max-product belief
propagation [30]. Bradde et al. [31] propose another dis-
tributed message-passing algorithm based on belief prop-
agation for protein-protein interaction network alignment.
Besides, NetAlign [5] is proposed by formulating the net-
work alignment problem as an integer quadratic program-
ing problem to maximize the number of “squares”. BigAlign
formulates the bipartite network alignment problem and
uses the alternating projected gradient descent to solve it
[21]. Zhang et al. solve the multiple anonymized network
alignment in two steps, i.e., unsupervised anchor link in-
ference and transitive multi-network matching [32]. Other
multiple network alignment works include [33], [34], [35].
More recently, Liu et al. leverages the network embedding
techniques for network alignment [36]. Moreover, [37] stud-
ied the partial co-alignment problem which is to align both
users and their locations simultaneously. Mohammadi et
al. propose a tensor-based network alignment for higher-
order network alignment [38]. MAGNA++ is another state-
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of-the-arts that simultaneously maximizes the node conser-
vation and edge conservation used in bioinformatics [39].
Chen et.al propose a community-based nework alignment
method that can not only find the node-level alignment,
but also the alignment among the communities across net-
works [40]. [41] proves that the alignment matrix has a
low rank structure thanks to the low rank characteristics of
many real-world networks. Compared with these network
alignment methods, our FINAL algorithms is more gen-
eralizable to handle the consistency among both topology
and the numerical/categorical node and/or edge attributes.
In a closely related thread, most of the graph matching
algorithms can naturally use both the node and edge at-
tributes and the graph topology [11], [12]. However, these
algorithms cannot scale well to large-scale networks.

Anchor Link Inference. A related problem is to identify
users from multiple social networks (i.e., the cross-site user
identification problem). Early works include the user profile
based matching [42], [43] and the network structure based
matching methods [44]. For example, [42] identifies the
users across different social platforms by combining both
the usernames and the tags in the user profiles. Tan et
al. [45] propose a subspace learning method, which models
user relationship by a hypergraph. However, the lack of
the combinations of the node attributes and the structural
information often leads to inaccurate results. To alleviate
this issue, Zafarani et al. identify users by modeling user be-
havior patterns based on human limitations, exogenous and
endogenous factors [8]. Liu et al. propose a method to iden-
tify same users by behavior modeling, structure consistency
modeling and learning by multi-objective optimization [46].
COSNET [9] considers both local the global consistency and
uses an energy-based model to find connections among
multiple heterogeneous networks. Besides, CLF collectively
predicts the anchor and social links, and then propagate
the predicted links across partially aligned probabilistic
networks [47]. Man et al. propose a network embedding
based method for anchor link prediction, which leverages
the observed anchor links to capture the specific regularities
and then learns the stable cross-network mappings [48].
However, all these methods require the pre-aligned nodes.
7 CONCLUSION

In this paper, we study the attributed network alignment
problem, including the full alignment version as well as
its on-query variant. To address these problem, we formu-
late our generalized alignment consistency principle into
a quadratic optimization problem. We first introduce our
proposed exact algorithms FINAL that can align across
attributed networks with a provable optimality, conver-
gence and stability, and with a comparable complexity with
their topology-alone counterparts. We then propose (1) an
approximate alignment algorithm (FINAL-N+) to further
reduce the time complexity, and (2) an effective alignment
algorithm (FINAL ON-QUERY) to solve the on-query net-
work alignment problem with a linear time complexity. We
conduct extensive empirical evaluations on real networks,
which demonstrate the efficacy of our proposed algorithms.
8 ACKNOWLEDGEMENT

This material is supported by the National Science Founda-
tion under Grant No. IIS-1651203, IIS-1715385, IIS-1743040,

and CNS-1629888, by DTRA under the grant number
HDTRA1-16-0017, by the United States Air Force and
DARPA under contract number FA8750-17-C-0153, by Army
Research Office under the contract number W911NF-16-1-
0168, and by the U.S. Department of Homeland Security
under Grant Award Number 2017-ST-061-QA0001. The con-
tent of the information in this document does not necessarily
reflect the position or the policy of the Government, and
no official endorsement should be inferred. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation here on.

REFERENCES

[1] J. Ni, H. Tong, W. Fan, and X. Zhang, “Inside the atoms: ranking
on a network of networks,” in KDD. ACM, 2014.

[2] V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu,
M. Snoeck, and B. Baesens, “Apate: A novel approach for au-
tomated credit card transaction fraud detection using network-
based extensions,” Decision Support Systems, 2015.

[3] F. Emmert-Streib, M. Dehmer, and Y. Shi, “Fifty years of graph
matching, network alignment and network comparison,” Informa-
tion Sciences, 2016.

[4] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple pro-
tein interaction networks with application to functional orthology
detection,” Proceedings of the National Academy of Sciences, 2008.

[5] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang,
“Algorithms for large, sparse network alignment problems,” in
ICDM. IEEE, 2009.

[6] G. W. Klau, “A new graph-based method for pairwise global
network alignment,” BMC bioinformatics, 2009.

[7] S. Bartunov, A. Korshunov, S.-T. Park, W. Ryu, and H. Lee, “Joint
link-attribute user identity resolution in online social networks,”
in KDD, Workshop on Social Network Mining and Analysis. ACM,
2012.

[8] R. Zafarani and H. Liu, “Connecting users across social media
sites: a behavioral-modeling approach,” in KDD. ACM, 2013.

[9] Y. Zhang, J. Tang, Z. Yang, J. Pei, and P. S. Yu, “Cosnet: Connecting
heterogeneous social networks with local and global consistency,”
in KDD. ACM, 2015.

[10] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across
multiple heterogeneous social networks,” in CIKM. ACM, 2013.

[11] F. Zhou and F. De la Torre, “Factorized graph matching,” in CVPR.
IEEE, 2012.

[12] ——, “Deformable graph matching,” in CVPR, 2013.
[13] S. Zhang and H. Tong, “Final: Fast attributed network alignment,”

in KDD, 2016.
[14] C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu, “Fast compu-

tation of simrank for static and dynamic information networks.”
ACM, 2010.

[15] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with
restart and its applications,” 2006.

[16] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt, “Graph kernels,” JMLR, 2010.

[17] W. W. Piegorsch and G. Casella, “Erratum: inverting a sum of
matrices,” SIAM review, 1990.

[18] A. Prado, M. Plantevit, C. Robardet, and J.-F. Boulicaut, “Mining
graph topological patterns: Finding covariations among vertex
descriptors,” TKDE, 2013.

[19] E. Zhong, W. Fan, J. Wang, L. Xiao, and Y. Li, “Comsoc: adaptive
transfer of user behaviors over composite social network.” ACM,
2012.

[20] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string
metrics for matching names and records,” 2003.

[21] D. Koutra, H. Tong, and D. Lubensky, “Big-align: Fast bipartite
graph alignment,” in ICDM. IEEE, 2013.

[22] S. Hashemifar and J. Xu, “Hubalign: an accurate and efficient
method for global alignment of protein–protein interaction net-
works,” Bioinformatics, 2014.

[23] M. Cho, J. Lee, and K. M. Lee, “Reweighted random walks
for graph matching,” in European conference on Computer vision.
Springer, 2010.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

[24] G. Kollias, S. Mohammadi, and A. Grama, “Network similarity
decomposition (nsd): A fast and scalable approach to network
alignment,” TKDE, 2012.

[25] C.-S. Liao, K. Lu, M. Baym, R. Singh, and B. Berger, “Isorankn:
spectral methods for global alignment of multiple protein net-
works,” Bioinformatics, 2009.

[26] B. Du, S. Zhang, N. Cao, and H. Tong, “First: Fast interactive
attributed subgraph matching,” in KDD. ACM, 2017.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank
citation ranking: bringing order to the web.” 1999.

[28] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning
using pagerank vectors.” IEEE, 2006.

[29] M. Bayati, D. Shah, and M. Sharma, “Maximum weight matching
via max-product belief propagation.” IEEE, 2005.

[30] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief
propagation and its generalizations,” Exploring artificial intelligence
in the new millennium, 2003.

[31] S. Bradde, A. Braunstein, H. Mahmoudi, F. Tria, M. Weigt, and
R. Zecchina, “Aligning graphs and finding substructures by a
cavity approach,” EPL (Europhysics Letters), 2010.

[32] J. Zhang and S. Y. Philip, “Multiple anonymized social networks
alignment,” Network, 2015.

[33] V. Vijayan and T. Milenković, “Multiple network alignment via
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APPENDIX
PROOF OF STABILITY OF FINAL-NE
Based on the closed-form solution of FINAL, we have the
corresponding non-perturbed and perturbed linear systems:

(I− αW̃)s = (1− α)h (24)

(I− α(W̃ + ∆W))ŝ = (1− α)h (25)

where W̃ = D−
1
2 N[E�(A1⊗A2)]ND−

1
2 and D = N[E�

(A1 ⊗ A2)]N1. ∆W is the perturbation on W̃. Besides,
s, ŝ are the alignment vectors before and after perturbation,
respectively. Before we show the stability analysis of linear
systems, we present several propositions to pave the way
for our final result.

Denote P = E � (A1 ⊗A2) and P̂ = P + ∆P = E �
[(A1 + ∆A1)⊗ (A2 + ∆A2)]. Then we have

∆P = E� (A1 ⊗∆A2 + ∆A1 ⊗A2 + ∆A1 ⊗∆A2) (26)

where ∆A1 and ∆A2 are the perturbation on the input
networks A1 and A2, respectively. And denote di = D(i, i)
and d̂i = D̂(i, i) where D̂ = N(P + ∆P)N1.

Our first proposition shows max
1≤i,j≤n2

{| 1√
d̂id̂j
− 1√

didj
|}

can be upper bounded.

Proposition 1. Let ∆1 = max
1≤i,j≤n2

{| 1√
d̂id̂j
− 1√

didj
|}, then ∆1

is upper-bounded by

∆1 ≤max

 1

min
i
{di}

−
1

min
i
{di}+ n‖∆P‖F

,
1

min
i
{di} − n‖∆P‖F

−
1

min
i
{di}

 (27)

Proof. Let C1 = max
1≤i,j≤n2

{ 1√
didj

− 1√
d̂id̂j
} and C2 =

max
1≤i,j≤n2

{ 1√
d̂id̂j
− 1√

didj
}. Apparently, ∆1 = max{C1, C2}.

Among others, since d̂i = di + N(i, i)
∑
p

∆P(i, p)N(p, p)

and similarly for d̂j , we have the following inequalities:

C1 = max
1≤i,j≤n2

{ 1√
didj

− 1√
d̂id̂j

}

≤ max
1≤i,j≤n2

{ 1√
didj

− 1√
di + N(i, i)

∑
p |∆P(i, p)|N(p, p)

× 1√
dj + N(j, j)

∑
q |∆P(j, q)|N(q, q)

}

≤ max
1≤i,j≤n2

{ 1√
didj

− 1√
(di + ‖∆P‖∞)(dj + ‖∆P‖∞)

}

≤ max
1≤i,j≤n2

{ 1√
didj

− 1√
(di + n‖∆P‖F )(dj + n‖∆P‖F )

}

Note that the second line above takes the equality when
all perturbations are nonnegative, i.e., ∆P ≥ 0. We gen-
eralize the r.h.s of the last inequality above by the func-
tion f(x, y) = 1√

xy −
1√

(x+c)(y+c)
where c is any positive

constant. And the function f(x, y) has the property that it
decreases as either x or y increases. This can be shown by:

∂f(x, y)

∂x
=

1

2(x+ c)
√

(x+ c)(y + c)
− 1

2x
√
xy

< 0

Similarly, we can show ∂f(x,y)
∂y < 0. Thus, C1 can be further

upper bounded by

C1 ≤
1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(28)

Next, we give an upperbound for C2. Similarly to C1, we
have the following inequalities for C2:
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C2 = max
1≤i,j≤n2

{ 1√
d̂id̂j

− 1√
didj
}

≤ max
1≤i,j≤n2

{ 1√
di −N(i, i)

∑
p |∆P(i, p)|N(p, p)

× 1√
dj −N(j, j)

∑
q |∆P(j, q)|N(q, q)

− 1√
didj
}

≤ max
1≤i,j≤n2

{ 1√
(di − ‖∆P‖∞)(dj − ‖∆P‖∞)

− 1√
didj
}

≤ max
1≤i,j≤n2

{ 1√
(di − n‖∆P‖F )(dj − n‖∆P‖F )

− 1√
didj
}

Note that the second line above takes the equality when
all perturbations are non-positive, i.e., ∆P ≤ 0. Then
we generalize the last inequality above by the function
g(x, y) = 1√

(x+b)(y+b)
− 1√

xy where b is any negative con-

stant. And we can easily show it monotonically decreases
as either x or y increases by its derivative ∂g(x,y)

∂x < 0 and
∂g(x,y)
∂y < 0. In this way, C2 is further upper bounded by

C2 ≤
1

min
i
{di} − n‖∆P‖F

− 1

min
i
{di}

(29)

Thus, ∆1 can be upper bounded by

∆1 ≤ max

 1

min
i
{di}

−
1

min
i
{di}+ n‖∆P‖F

,
1

min
i
{di} − n‖∆P‖F

−
1

min
i
{di}


Next, our second lemma shows that max

1≤i,j≤n2

{
1√
d̂id̂j

}
can be upper bounded.

Proposition 2. Let ∆2 = max
1≤i,j≤n2

{
1√
d̂id̂j

}
, then ∆2 is upper

bounded by
∆2 ≤

1

min
i
{di} − n‖∆P‖F

(30)

Furthermore, when ∆1 is upper bounded by 1
min

i
{di} −

1
min

i
{di}+n‖∆P‖F , a tighter bound of ∆2 is as below:

∆2 ≤
2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

(31)

Proof. Obviously, the value of 1√
d̂id̂j

increases as either d̂i

or d̂j decreases. Followed by the conclusion of Eq. (29), we
know that min

i
{d̂i} ≥ min

i
{di} − n‖∆P‖F . Thus, we have

∆2 ≤
1

min
i
{d̂i}

≤ 1

min
i
{di} − n‖∆P‖F

Moreover, when ∆1 is upper bounded by 1
min

i
{di} −

1
min

i
{di}+n‖∆P‖F , it means for any indices p, q which satisfy

d̂pd̂q ≤ dpdq ,
1√
d̂pd̂q

− 1√
dpdq

≤ 1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

That is, for these p, q,

max
p,q
{ 1√

d̂pd̂q

} ≤ 1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

+
1√
dpdq

≤ 2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

For those indices k, l where d̂kd̂l ≥ dkdl, we have

max
k,l
{ 1√

d̂kd̂l

} ≤ max
k,l
{ 1√

dkdl
} ≤ 1

min
i
{di}

Since 1
min
i
{di}

≤ 2
min
i
{di}
− 1

min
i
{di}+n‖∆P‖F

≤ 1
min
i
{di}−n‖∆P‖F

,

in this case, ∆2 is more tightly bounded by

∆2 ≤
2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

And this finishes the proof.
Armed with the above upperbound for ∆1 and ∆2,

we give the bound for δ = max{‖∆A1‖F , ‖∆A2‖F } to
guarantee ‖∆W‖F ≤ ε

α‖I− αW̃‖F .

Proposition 3. If min
i
{di} ≤ α‖E�(A1⊗A2)‖F

εn2 , and the maxi-
mum perturbation on the input networks δ satisfies

δ ≤

√√√√√min

 εnA

αB − εn2A
,

√
εnA2

2α
+
C2

4
−
C

2
,

εn2A2

αA+ αnB + εn3A

 +
D2

4

−
D

2
(32)

where A = min
i
{di}, B = ‖A1‖F ‖A2‖F , C = 1

2 (B + A
n −

εn2A
α ), D = ‖A1‖F + ‖A2‖F , and ε > 0 is a constant, then the

following is guaranteed:

‖∆W‖F ≤
ε

α
‖I− αW̃‖F . (33)

Proof. We can easily have the following inequalities:

‖∆W‖F = ‖D̂−
1
2 N(P + ∆P)ND̂−

1
2 −D−

1
2 NPND−

1
2 ‖F

≤ ‖D̂−
1
2 NPND̂−

1
2 −D−

1
2 NPND−

1
2 ‖F + ‖D̂−

1
2 N∆PND̂−

1
2 ‖F

≤ max
i
{N(i, i)}2(‖D̂−

1
2 PD̂−

1
2 −D−

1
2 PD−

1
2 ‖F + ‖D̂−

1
2 ∆PD̂−

1
2 ‖F )

≤ ‖D̂−
1
2 PD̂−

1
2 −D−

1
2 PD−

1
2 ‖F + ‖D̂−

1
2 ∆PD̂−

1
2 ‖F

=

√√√√√ n2∑
i,j=1

(
1√
d̂id̂j

−
1√
didj

)2(P(i, j))2 +

√√√√√ n2∑
i,j=1

(
1√
d̂id̂j

)2(∆P(i, j))2

≤ ∆1‖P‖F + ∆2‖∆P‖F

Meanwhile, ‖I − αW̃‖F =
√
n4 + α2‖W̃‖2F ≥ n2. In this

way, to guarantee ‖∆W‖F ≤ ε
α‖I− αW̃‖F , we need

∆2‖∆P‖F ≤
εn2

α
−∆1‖P‖F . (34)

Next, we divide the following proof into two cases, depend-
ing on the upper bound of ∆1.

Case 1. Based on Eq. (27) and Eq. (31), when ∆1 is
upper bounded by 1

min
i
{di} −

1
min

i
{di}+n‖∆P‖F , ∆2 is upper

bounded by 2
min

i
{di} −

1
min

i
{di}+n‖∆P‖F . In order to make

sense on ‖∆P‖F , we first need to satisfy εn2

α −∆1‖P‖F ≥ 0.
Thus, we have

∆1 ≤
1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

≤ εn2

α‖E� (A1 ⊗A2)‖F

By solving the above inequality, we have

‖∆P‖F ≤
εnmin

i
{di}

α‖E� (A1 ⊗A2)‖F − εn2 min
i
{di}

(35)

min
i
{di} ≤

α‖E� (A1 ⊗A2)‖F
εn2

(36)
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Among others, Eq. (36) is to make the r.h.s of Eq. (35)
greater than or equal to 0. Moreover, by substituting the
upperbound of ∆1 and ∆2 (i.e., Eq. (27) and Eq. (31)) into
Eq. (34), we have

εn2

α
≥ (

1

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

)‖A1‖F ‖A2‖F

+ (
2

min
i
{di}

− 1

min
i
{di}+ n‖∆P‖F

)‖∆P‖F

which can be solved by

‖∆P‖F ≤

√
εnmin

i
{di}2

α
+
C2

4
− C

2
(37)

where C = 1
2 (‖A1‖F ‖A2‖F +

min
i
{di}
n −

εn2 min
i
{di}

α ).
Then based on Eq. (26), since ‖∆P‖F ≤ δ2 + (‖A1‖F +

‖A2‖F )δ where δ = max{‖∆A1‖F , ‖∆A2‖F }, combined
with Eq. (35) and Eq. (37), we have

δ ≤ min


√

εnA

αB − εn2A
+
D2

4
,

√√√√√
εnA2

α
+
C2

4
−
C

2
+
D2

4

−D2
(38)

where A = min
i
{di}, B = ‖A1‖F ‖A2‖F and D =

(‖A1‖F + ‖A2‖F ) / 2.
Case 2. When ∆1 is upper bounded by 1

min
i
{di}−n‖∆P‖F −

1
min

i
{di} , by substituting Eq. (27) and Eq. (30) into Eq. (34),

we have the following inequality:
εn2

α
≥ (

1

min
i
{di} − n‖∆P‖F

− 1

min
i
{di}

)‖A1‖F ‖A2‖F

+
‖∆P‖F

min
i
{di} − n‖∆P‖F

which can be solved by
‖∆P‖F ≤

εn2A2

αnB + αA+ εn3A
(39)

Moreover, since we need to guarantee ∆1 ≤
εn2

α‖E�(A1⊗A2)‖F , we have another bound for ‖∆P‖F in this
case as below:

‖∆P‖F ≤
εnA2

εn2A+ α‖E� (A1 ⊗A2)‖F
(40)

Because the r.h.s in Eq. (40) is greater than that in Eq. (39),
the upper bound of Eq. (39) naturally guarantee ‖∆P‖F
has a meaningful solution. Then, similarly, given ‖∆P‖F ≤
δ2 + (‖A1‖F + ‖A2‖F )δ, we obtain the upper bound of δ in
this case as following:

δ ≤

√
εn2A2

αnB + αA+ εn3A
+
D2

4
− D

2
(41)

In word, by combining Eq. (38) and Eq. (41), we have

δ ≤

√√√√√min

 εnA

αB − εn2A
,

√
εnA2

2α
+
C2

4
−
C

2
,

εn2A2

αA+ αnB + εn3A

 +
D2

4

−
D

2

which finishes the proof.

Now, we present the sensitivity analysis for the linear

systems in Eq. (24).

Lemma 6. For the linear systems as Eq. (24), if the perturbation
on the input networks satisfies Eq. (32) and Eq. (36), and ε <

1−α
(1+α)n2 , the relative error of the system due to the perturbation
is bounded by

‖ŝ− s‖F
‖s‖F

≤ 2ε

1− r κF (I− αW̃) <
2ε(1 + α)n2

1− α− ε(1 + α)n2
(42)

where ŝ is the output after perturbations.

Proof. Based on the well-known sensitivity analysis of linear
system [49], if the linear systems in Eq. (24) satisfy that: (1)
α‖∆W‖F ≤ ε‖I − αW̃‖F , and (2) r = εκF (I − αW̃) < 1,
then

‖ŝ− s‖F
‖s‖F

≤ 2ε

1− r
κF (I− αW̃)

The first condition can be satisfied by Eq. (32) and Eq.
(36). For the second condition, given that

κF (I− αW̃) ≤ n2κ2(I− αW̃) <
(1 + α)n2

1− α
we need the constant ε < 1−α

(1+α)n2 . Then we can have

‖ŝ− s‖F
‖s‖F

≤ 2ε

1− r
κF (I− αW̃) <

2ε(1 + α)n2

1− α− ε(1 + α)n2

which finishes the proof.
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