
FASTEN: Fast Sylvester Equation Solver for Graph Mining
Boxin Du

Arizona State University
boxin.du@asu.edu

Hanghang Tong
Arizona State University
hanghang.tong@asu.edu

ABSTRACT

The Sylvester equation o�ers a powerful and unifying primitive
for a variety of important graph mining tasks, including network
alignment, graph kernel, node similarity, subgraph matching, etc. A
major bottleneck of Sylvester equation lies in its high computational
complexity. Despite tremendous e�ort, state-of-the-art methods
still require a complexity that is at least quadratic in the number
of nodes of graphs, even with approximations. In this paper, we
propose a family of Krylov subspace based algorithms (FASTEN)
to speed up and scale up the computation of Sylvester equation
for graph mining. The key idea of the proposed methods is to
project the original equivalent linear system onto a Kronecker
Krylov subspace. We further exploit (1) the implicit representation
of the solution matrix as well as the associated computation, and (2)
the decomposition of the original Sylvester equation into a set of
inter-correlated Sylvester equations of smaller size. The proposed
algorithms bear two distinctive features. First, they provide the
exact solutions without any approximation error. Second, they
signi�cantly reduce the time and space complexity for solving
Sylvester equation, with two of the proposed algorithms having a
linear complexity in both time and space. Experimental evaluations
on a diverse set of real networks, demonstrate that our methods
(1) are up to 10, 000× faster against Conjugate Gradient method,
the best known competitor that outputs the exact solution, and (2)
scale up to million-node graphs.

1 INTRODUCTION

How can we link users from di�erent social network sites (e.g.,
Facebook, Twitter, LinkedIn, etc.)? How can we integrate di�er-
ent tissue-speci�c protein-protein interaction (PPI) networks to-
gether to prioritize candidate genes? How to predict the toxicity of
chemical molecules by comparing their three-dimensional struc-
ture? How can we detect suspicious transaction patterns (e.g.,
money-laundering ring) in the �nancial network given a template
pattern/query? The Sylvester equation [13], de�ned over the ad-
jacency matrices of the input networks, provides a powerful and
unifying primitive for a variety of key graph mining tasks, includ-
ing network alignment [23], graph kernel [20], node similarity [11],
subgraph matching [4], etc. Figure 1 presents an illustrative exam-
ple of using Sylvester equation for graph mining. Please refer to
Section 2 for its formal de�nition.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, Washington, DC, USA

© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

A major limitation of Sylvester equation lies in the high com-
putational complexity. For graphs with n nodes andm edges, the
straight-forward solver is O(n6) in time and O(m2) in space. Much
e�ort has been devoted to speed up the computation for solving
Sylvester equation. Nonetheless, state-of-the-art methods for plain
graphs require a complexity that is at least O(mn + n2) [21]. The
complexity for solving Sylvester equation would be even more in-
tensi�ed when the input graphs have accompanying node attributes.
For example, it would add an additional O(l) (l is the number of
node attribute values) to the time complexity of conjugate gradient
descent solver. Some recent approximate algorithms try to reduce
this complexity by matrix low-rank approximation. Nonetheless,
it still requires O(n2), even with such an approximation. Table 1
summarizes the time and space complexity of the existing methods
for solving Sylvester equations. Consequently, most of the existing
Sylvester equation solvers can only handle graphs with up to tens
of thousands of nodes.

Figure 1: An illustrative example of network alignment by

Sylvester equation [9, 21]. Left: the input plain graphs with

the dashed line indicating the preference matrix B. Right:

the solution matrix X of the corresponding Sylvester equa-

tion X = A1XA2 + B gives the cross-network node similar-

ity, where A1 and A2 are the adjacency matrices of the input

graphs; and a darker square on the right represents higher

cross-network node similarity. Best viewed in color. See the

details in Section 2.

To address this issue, we propose a family of Krylov subspace
based algorithms (FASTEN) to speed up and scale up the compu-
tation of Sylvester equation for graph mining. The key idea of
the proposed methods is to project the original corresponding lin-
ear system onto a Kronecker Krylov subspace. By doing so, we
are able to obtain an O(n) factor reduction in time complexity and
O(m2/n2) factor reduction in space complexity compared to normal
Krylov subspace based Sylvester equation solver for plain graphs
[13]. Building upon that, we seek to further reduce the complex-
ity. Here, our key observation is that the preference matrix in the
Sylvester equation is often low-rank (e.g. Figure 1), which implies
that the solution matrix itself must have low-rank structure. This,
together with some additional optimization (e.g., exploiting the lin-
earity by using the block-diagonal structure of the solution matrix
for the attributed graphs), helps further reduces the complexity of
the proposed method to be linear in both time and space, without

approximation error. Table 1 (shaded parts) summarizes the time
and space complexities of the proposed FASTEN algorithms.

The main contributions of the paper are:
• Novel Algorithms. We propose a family of e�cient and

accurate Sylvester equation solver for graph mining tasks,
with and without node attribute.
• Proof and Analysis. We provide theoretic analysis of the

proposed algorithms in terms of the accuracy and complex-
ity.

• Empirical Evaluations. We perform extensive experi-
mental evaluations on a diverse set of real networks with a
variety of graph mining tasks, which demonstrate that our
methods (1) are up to 10, 000× faster than the Conjugate
Gradient method, the best known competitor that output
exact solution , and (2) scale up to million-node graphs.

The rest of the paper is organized as follows. Section 2 formulate
the problem of the Sylvester equation for graph mining. Section 3
and 4 present our proposed algorithms in two scenarios, with or
without attributes. Section 5 presents the experimental results. In
section 6 we review the related work and we conclude the paper in
section 7.
Table 1: Complexity Summary and Comparison. r (the rank
of input graphs), l (number of node attributes) and k (sub-

space size) are much smaller compared withm and n. Some

small constants are omitted for clarity. See Section 3 and

Section 4 for details.)

Algorithm Attributed(Y/N) Exact(Y/N) Time Space

FP [19, 20] Y Y O(n3) O(m2)
CG [19, 20] Y Y O(n3) O(m2)
Sylv. [19, 20] Y Y O(n3) O(m2)
ARK [7] Y N O(n2) O(n2)

Cheetah [10] Y N O(rn2) O(n2)
NI-Sim [9] N N O(n2) O(r2n2)

FINAL-P [21] N Y O(mn + n2) O(n2)
FINAL-NE [21] Y Y O(lmn + ln2) O(n2)
FINAL-N+ [21] Y N O(n2) O(n2)
FASTEN-P N Y O(kn2) O(n2)
FASTEN-P+ N Y O(km + kn) O(m + kn)
FASTEN-N Y Y O(mn/l + kn2/l) O(m/l + n2)
FASTEN-N+ Y Y O(km + k2ln) O(m + kln)

2 PROBLEM DEFINITION

The main symbols and notations used in the paper are summarized
in Table 2. The calligraphic letters G1 and G2 represent two attrib-
uted graphs. The uppercase bold letters A1 and A2 represent the
n × n adjacency matrices and the uppercase bold letters N1 and
N2 represent the node attribute matrices. N1 and N2 are diagonal
matrices in which Nj

1(a,a) = 1 if the node a in graph G1 has node
attribute j and otherwise it is zero. The uppercase bold letter N
without subscript or superscript is the combined node attribute ma-
trix of two input graphs. N =

∑l
j=1 N

j
1 ⊗ Nj

2 where l is the number
of node attributes. We use uppercase bold letter D as the combined
diagonal degree matrix of the two input graphs. For a matrix (e.g.,
X), we vectorize it in the column order to obtain its equivalent
vector representation (e.g., x = vec(X)). For an attributed network,
we index its nodes by the corresponding attributes in the adjacency
matrix, i.e., all the nodes with the same attribute are consecutive
rows/columns in the adjacency matrix, and their induced subgraph

is a block of the adjacency matrix with consecutive indices. For
example, for G1 in Figure 2, node-1 and node-2 are the �rst two
rows/columns in the adjacency matrix A1 since they share the same
node attribute (blue diamond); and node-3 and node-4 are the last
two rows/columns in A1 since they share the same node attribute
(green hexagon). This will simplify the description of the proposed
algorithms.

Table 2: Symbols and De�nition

Symbols De�nition

G1 = {A1,N1} an attributed graph
N combined node attribute matrix of input graphs
R, r residual matrix and residual vector

H1, H2 k × k Hessenberg matrices
D1,D2 diagonal degree matrices

I an identity matrix
B preference matrix in the Sylvester equation

Kk (A, r0) Krylov subspace with dimension k
k Krylov subspace size k � n
α the parameter 0 < α < 1
l the number of node attribute

b = vec(B) vectorize a matrix B in the column order
[A,B] concatenate two matrices in a row
[A;B] concatenate two matrices in a column

diag(A1, ...,Ai) diagonalize i matrices
⊗ Kronecker product

trace(·) trace of a matrix
‖ · ‖F Frobenius norm

Sylvester equation for graph mining. For the completeness, we
present a brief review of Sylvester equations and their applications
to graph mining. For more details, please refer to [9, 20, 21]. For
graphs without attributes, let A1 ← α1/2D−1/21 A1D

−1/2
1 and A2 ←

α1/2D−1/22 A2D
−1/2
2 be the normalized adjacency matrices of two

input graphs, andB be the preference matrix. We have the following
Sylvester equation [21].

X − A2XAT1 = B (1)
By the Kronecker product property, we have the equivalent linear
system of Equation (1) as follows.

(I −W)x = b (2)
where W = A1 ⊗ A2, b = vec(B) and x = vec(X). We assume that
A1 and A2 are of the same size n × n. For example, for the two
input graphs in Figure 1, A1 and A2 are 4 × 4 adjacency matrices
of G1 and G2 respectively, and B is the preference matrix to re�ect
the prior knowledge (the dashed line). The entries of the solution
matrix X indicate the similarity between a node pair across two
input graphs.

When the input graphs have attributes on nodes, the W ma-
trix in Equation (2) becomes W = D−1/2[N(A1 ⊗ A2)N]D−1/2.
To simplify the notation, let A(i j)1 ← α1/2D−1/21 Ni

1A1N
j
1D
−1/2
1 ,

A(i j)2 ← α1/2D−1/22 Ni
2A2N

j
2D
−1/2
2 be the attributed, normalized

adjacency matrices. We can see that A(i j)1 is of the same size of A1,

but it is ‘�ltered’ by the corresponding attributes. In other words,
A(i j)1 only contains links in A1 from nodes with attribute i to nodes
with attributes j. In this case, Equation (2) becomes:

[I −
l∑
i=1

l∑
j=1
(A(i j)1 ⊗ A(i j)2)]x = b (3)

Again, by the Kronecker product property, we have the following
equivalent Sylvester equation of Equation (3):

X −
l∑
i=1

l∑
j=1

A(i j)2 X(A(i j)1)
T = B (4)

For the ease of description of the proposed algorithms, we also
use a block-matrix representation. Take A1 for an example, we
have A1 = [A

i j
1]i, j=1, ...,l , where Ai j

1 is a block of matrix A1 from
rows of attribute i to columns of attribute j. Note the subtle dif-
ference between Ai j

1 and A(i j)1 : they have di�erent sizes and we
can verify that A1 =

∑l
i, j=1 A

(i j)
1 . We use a similar representa-

tion for other matrices in Equation (4), i.e., A2 = [A
i j
2]i, j=1, ...,l ,

B = [Bi j]i, j=1, ...,l , and X = [Xi j]i, j=1, ...,l .
Figure 2 presents an illustrative example of attributed Sylvester

equation. A1 and A2 are two 4 × 4 adjacency matrices, and N1 and
N2 are the node attribute matrices of G1 and G2. B represents the
prior knowledge (the dashed line). Each entry of the solution X
indicates a similarity score between a node pair across G1 and G2.
Although both A(11)1 and A11

1 correspond to links between node-1
and node-2 (since both nodes share the �rst attribute, i.e., blue
diamond), their sizes are di�erent: A(11)1 is of 4 × 4 whereas A11

1 is
of 2 × 2.

Figure 2: An illustrative example of attributed network

alignment by Sylvester equation [9, 21]. Left: the input

graphswith node attributes (colors and shapes). Dashed line:

preferencematrix. Right: the solutionmatrixX of Equation

(4), representing cross-network node similarity. A darker

square represents a higher similarity value. Best viewed in

color.

The Sylvester equations de�ned in Equation (1) and Equation (4),
together with their equivalent linear systems (Equation (2) and
Equation (3)) provide a very powerful tool for many graph min-
ing tasks. For example, the solution matrix X indicates the cross-
network node similarity, which can be directly used for the task
of network alignment; by aggregating the solution matrix X (e.g.,
by a weighted linear summation over the entries in X), it measures
the similarity between the two input graphs [7]; if one of the two

input graph is a small query graph, the solution matrix X becomes
the basis for (interactive) subgraph matching [4]; if the two input
graphs are identical without node attributes, the corresponding
Sylvester equation degenerates to SimRank and thus its solution
matrix X measures the node similarity [9].

However, as mentioned earlier, a major bottleneck lies in the high
computational complexity. In the next two sections, we present our
solutions to speed up and scale up the computation of Sylvester
equations, which are divided into two parts based on whether or
not the input graphs are attributed. See Table 1 for a summary and
comparison.

Krylov subspace methods for linear systems. A classic method for
solving a linear system Ax = b is via Krylov subspace methods [13].
It �rst generates an orthogonal basis of the its Krylov subspace
with an initial residual vector r0, denoted by Kk (A, r0), where
r0 = b − Ax0, and x0 is an initial solution. Then it iteratively
updates the residual vector and the corresponding solution vector x
over the Krylov subspace formed equation [13] Compared with the
alternative methods, e.g., (conjugate) gradient descent, the major
advantage of Krylov method lies in the ability to project the original
system onto a subspace with a much smaller dimension/size, which
can be in turn solved very e�ciently.

3 FAST ALGORITHMS FOR PLAIN GRAPHS

In this section, we address the Sylvester equation for plain graphs
without node attributes, i.e., Equation (1) and Equation (2). We
start with the key ideas and intuition behind the proposed algo-
rithms, and then present the detailed algorithms (FASTEN-P and
FASTEN-P+), followed by some analysis in terms of the accuracy
and complexity.

3.1 Intuition and Key Ideas

Let us �rst highlight the key ideas and intuition behind the two
proposed algorithms, using the example in Figure 1. First, if we
directly apply the standard Krylov subspace methods to solve
Equation (2), we would need to generate the orthonormal basis
ofKk2 (I−A1 ⊗ A2, r0) orKk2 (A1 ⊗ A2, r0), which requires a com-
plexity as high as O(n4) in both time and space. To avoid such a
high polynomial complexity, our �rst key idea is to represent the
Krylov subspace of I−A1 ⊗ A2 as well as conduct the subsequently
computation to update the residual/solution vectors indirectly by
the Krylov spaces of the two input graphs. Taking Figure 1 for an
example, where the two adjacency matrices are both 4 × 4. The
Krylov subspace of the corresponding Sylvester equation is in R16.
As will shown in the proposed FASTEN-P algorithm, we will de-
compose it into the Kronecker product of two Krylov subspace in
R4, which will largely reduce the time and space cost (FASTEN-P).

Second, notice that the solution matrix X itself is of size n × n.
Thus, if we compute and store it in a straight-forward way, it
still needs O(n2) complexity. Here, the key observation is that the
preference matrix B often has a low-rank structure. For the example
in Figure 1, the preference matrix B only has two non-zero entries
(B(3, 4) and B(4, 3)), making itself a rank-2 matrix. This observation
is crucial as it allows us to perform all the intermediate computation
as well as to represent the solution matrix X in an indirect way,
leading to a linear complexity (FASTEN-P+).

3.2 Proposed FASTEN-P Algorithm

Let D1 and D2 be the diagonal degree matrices of the adjacency
matrices of the two input graphs A1 and A2 respectively. We nor-
malize the adjacency matrices as A1 ← α1/2D1

−1/2A1D1
−1/2, and

A2 ← α1/2D2
−1/2A2D2

−1/2, where 0 < α < 1 is a regularization
parameter.

We �rst show how to representKk2 (A1 ⊗ A2, r0) indirectly in the
form Kk (A1, g) ⊗ Kk (A2, f). To be speci�c, let Vi = [v1, v2, ..., vi],
Wj = [w1,w2, ...,wj] for i ∈ {k,k + 1}, and j ∈ {k,k + 1},
where {vi }ki=1 and {wj }

k
j=1 are orthonormal basis of Kk (A1, g)

and Kk (A2, f), respectively. Let H1, H2 and H̃1, H̃2 be the Hes-
senberg and Hessenberg-like matrices generated by the Arnoldi
process [13]. We have that

H1 = VTkA1Vk ,H2 =WT
kA2Wk (5)

H̃1 = VTk+1A1Vk , H̃2 =WT
k+1A2Wk

H̃1, H̃2 are k × k and H̃1, H̃2 are (k + 1) × k . Notice that k is often
much smaller than n (i.e., k � n). Therefore the size of the above
Hessenberg and Hessenberg-like matrices is small. We can prove
that Vk ⊗Wk forms the orthonormal basis ofKk (A1, g)⊗Kk (A2, f)
(see the details in the proof of Theorem 3.1).

Next, we show how to update the residual vector r and the solu-
tion vector x using the indirect representation of Kk2 (A1 ⊗ A2, r0).
Let x0 be an initial solution of Equation (2). The initial residual
vector is:

r0 = b − (I − αW)x0 (6)
To obtain a new solution x1 = x0+z0, we want z0 ∈ Kk (A1, g)⊗

Kk (A2, f), i.e.,
z0 = (Vk ⊗Wk)y (7)

for an unknown vector y ∈ Rk2 . The new residual is:

r1 = r0 − [(A1 ⊗ A2)(Vk ⊗Wk)y − (Vk ⊗Wk)y] (8)

Based on Equation (5) , we seek to minimize the residual:

| |r1 | |2 = min
y∈Rk2

| |r0 − (A1 ⊗ A2)(Vk ⊗Wk)y + (Vk ⊗Wk)y| |2

= min
y∈Rk2

| |r0 − (A1Vn) ⊗ (A2Wk)y + (Vk ⊗Wk)y| |2

= min
y∈Rk2

| |r0 − (Vk+1H̃1) ⊗ (Wk+1H̃2)y + (Vk ⊗Wk)y| |2

= min
y∈Rk2

| |(Vk+1 ⊗Wk+1)[(Vk+1 ⊗Wk+1)
T r0 − (H̃1 ⊗ H̃2)y

+ (Ik+1,k ⊗ Ik+1,k)y]| |2

= min
y∈Rk2

| |(Vk+1 ⊗Wk+1)
T r0 − (H̃1 ⊗ H̃2)y + (Ik+1,k⊗

Ik+1,k)y| |2 (9)

where Ik,k+1 = [δi, j]1≤i≤k+1,1≤j≤k and δi, j is the Kronecker δ -
function. Equation (9) can be solved by:

min
Y∈Rk2

| |WT
k+1R0Vk+1 − H̃2YH̃T

1 + Ik+1,kYI
T
k+1,k | |F (10)

It can be proved that the least square problem in equation (10) can
be solved by the following linear system (see details in the proof of
Theorem 3.1):

L (Y) = C (11)

where L (Y) = H̃T
2 H̃2YH̃T

1 H̃1 − HT
2 YH1 − H2YHT

1 + Y, and C =
H̃T
2 W

T
k+1R0Vk+1H̃1 −WT

k R0Vk . Notice that the size of both Y and
C are k × k , so the dimension of Equation (11) is typically small
and we can solve it by Global Conjugate method [5].

Another subtle issue is how to choose the initial vectors g and
f for the Arnoldi Process. We use a procedure in [6] to choose f
and g to guarantee that r0 ∈ Kk (A1, g) ⊗ Kk (A2, f) as follows. If
| |R0 | |1 ≤ ||R0 | |∞, we choose f as the column of R0 with the largest
l2 norm and g = RT0 f/|f |

2
2 ; otherwise, we choose g as the row of R0

with the largest l2 norm and f = R0g/|g|22 .
Putting everything together, we have the overall algorithm for

solving the Equation (1) in Algorithm 1.

Algorithm 1 FASTEN-P
Input: Normalized adjacency matrices A1 and A2, tolerance pa-

rameter ϵ > 0, Krylov subspace size k > 0, preference matrix
B;

Output: The solution X of Equation (1).
1: Initialize X and the residual matrix R;
2: while | |R| |F > ϵ do
3: Choose Arnoldi vectors g ∈ Rn and f ∈ Rn ;
4: Apply Arnoldi Process on A1, A2 and obtain H̃1, H̃2, Vk ,

Vk+1, Wk , Wk+1;
5: Use Global Conjugate Gradient method for the linear sys-

tem L (Y) = C;
6: Update solution X← X + VkYWT

k ;
7: Update residual R← R − Vk+1H̃1YH̃T

2 W
T
k+1 + VkYW

T
k ;

8: end while

The �rst line is the initialization of the solution matrix and the
residual. Line 2 to 8 are the outer loop, while line 5 is the inner
loop which uses the Global Conjugate Gradient method. Line 6
(Equation (7)) updates the solution matrix X at each iteration. Line
7 (Equation (8) and Equation (9)) updates the residual matrix R at
each iteration.

3.3 Proposed FASTEN-P+ Algorithm

To further reduce the time and space complexity of FASTEN-P,
we explore the low-rank structure of the preference matrix B of
Equation (1). Firstly, it is common in many graph mining tasks that
the matrix B of Equation (1) has a low-rank structure. For example,
in network alignment, anchor links are often sparse (e.g. in Figure 1,
only 1 anchor link is given). If the prior knowledge of anchor links
is unknown, matrix B becomes a uniform matrix, which means it
is rank-1. Secondly, it turns out that the low-rank structure of the
preference matrix B would imply the solution matrix X must have
a low-rank block matrix structure (see the detailed analysis and
proof in Lemma 3.2). This allows us to implicitly represent both
the residual matrix and the solution matrix, which leads to a linear

complexity.
The improved algorithm (FASTEN-P+) is summarized in Algo-

rithm 2. As we can see the residual R is implicitly represented by
the multiplication of U1 and U2, and the solution X is implicitly rep-
resented by the multiplication of M and N. The residual is updated
at each iteration in line 9 and the solution is updated in line 7. Due
to the implicit representation of the initial residual matrix, we need

a slightly di�erent procedure to choose the Arnoldi vector in line
4. Given the implicit representation of residual by U1 and U2, let
r1 = eTU1U2, r2 = U1U2e (e is an all-one vector), and let i1 and i2 be
the indexes of the largest entries in r1 and r2. If max(r1) ≥ max(r2),
we choose f as U1U2(:, i1) , and then g = UT2 U

T
1 f/|f |

2
2 ; otherwise,

we set g as UT2 U1(i2, :)T , and then f = U1U2g/|g|22 .

Algorithm 2 FASTEN-P+
Input: Normalized adjacency matrices A1 and A2, tolerance pa-

rameter ϵ > 0, Krylov subspace size k > 0, preference matrix
B;

Output: The implicit representation for the solution matrix X of
Equation (1): P and Q .

1: Initialize P,Q. Set e be an all-one vector.;
2: Let U1 ← B(:, 1) , U2 ← e;
3: while trace(U2

T (U1
TU1)U2) > ϵ do

4: Choose Arnoldi vectors g ∈ Rn and f ∈ Rn ;
5: Apply Arnoldi Process on A1 and A2 to obtain H̃1, H̃2, Vk ,

Vk+1, Wk , Wk+1;
6: Use Global Conjugate Gradient method for L (Y) = C;
7: Construct P← [P,VkY],Q← [Q,WT

k];
8: L2 ← Vk+1H̃1YH̃T

2 , P2 ←WT
k+1, L3 ← VkY, P3 ←WT

k ;
9: Construct U1 ← [U1, L2, L3], U2 ← [U2

T , PT2 , P
T
3]

T ;
10: end while

11: Return P,Q.

From line 3 to line 10 are the outer loop where the algorithm
updates P, Q, U1, U2 and checks stopping condition. Line 6 is the
inner loop of Global Conjugate Gradient method.

We remark that the low-rank representation for the solution
matrix X in Algorithm 2 bears subtle di�erence from [7, 21, 22],
which approximate the input adjacency matrices with an inevitable
approximation error. In contrast, the low-rank representation of
the solution matrix in the proposed FASTEN-N is due to the low-
rank structure of the preference matrix B, regardless whether or
not A1 and A2 are low-rank. As such, it does not introduce any
approximation error.

3.4 Proofs and Analysis

3.4.1 Correctness. The correctness of FASTEN-P is summarized
in Theorem 3.1, which says the matrix X by Algorithm 1 �nds the
exact solution of Equation (1).1

Theorem 3.1 (Correctness of FASTEN-P). The matrix X by

Algorithm 1 is the exact solution of Equation (1) w.r.t the tolerance ϵ .
Proof. First, we prove that Vk ⊗Wk is the orthonormal basis

of Kk (A1,д) ⊗ Kk (A2, f). The Hessenberg matrix H1 ⊗ H2 and
A1 ⊗ A2 satisfy the following relationship

H1 ⊗ H2 = (VTkA1Vk) ⊗ (W
T
kA2Wk)

= (VTk ⊗WT
k)(A1 ⊗ A2)(Vk ⊗Wk)

= (Vk ⊗Wk)
T (A1 ⊗ A2)(Vk ⊗Wk)

1Following the convention in scienti�c computing, we say a solution X is exact w.r.t.
a tolerance parameter ϵ if the Frobenius norm of the di�erence between X and the
solution by the direct method is less than ϵ . Throughout the paper, ϵ is set to be a
very small number, e.g., ϵ = 10−7 .

Therefore, Vk ⊗Wk forms the orthonormal basis of Kk (A1, g) ⊗
Kk (A2, f).

We then show that the least square problem with regard to Y in
Equation (10) can be solved by a normal Equation (11).

We de�ne the following linear operation: Φ(Y) = H̃2YH̃T
1 −

Ik+1,kYITk+1,k . Then, we have that | |R1 | |F = | |WT
k+1R0Vk+1 −

Φ(Y)| |F is minimized if and only if the following condition holds
[6]:

ΦT (WT
k+1R0Vk+1 − Φ(Y)) = 0

where Φ(Y)T is the joint linear operation of Φ(Y). Therefore, we
have that
H̃T
2 (W

T
k+1R0Vk+1−Φ(Y))H̃1−ITk+1,k (W

T
k+1R0Vk+1−Φ(Y))Ik+1,k = 0

which is equivalent to Equation (11).
Finally, we prove that Algorithm 1 gives the exact solution of

Equation (2). For an arbitrary vector v ∈ Kk (A1, g) ⊗ Kk (A2, f),
we have that (I−A1 ⊗ A2)v also belongs toKk (A1, g) ⊗ Kk (A2, f).
This is because (A1 ⊗ A2)v ∈ Kk (A1, g) ⊗ Kk (A2, f).

Therefore, the Kronecker subspace is invariant under matrix
I − A1 ⊗ A2. According to [13], this is a su�cient condition for
the solution obtained from any (oblique or orthogonal) projection
method onto the Kronecker subspace to be exact. Thus, FASTEN-
P gives the exact solution of Equation (1) or its equivalent linear
system (Equation (2)), which completes the proof. �

In order to prove the correctness of FASTEN-P+, we �rst give
the following lemma, which says that the low-rank structure of
the preference matrix B implies that the solution matrix X must be
low-rank as well.

Lemma 3.2 (Low-rank structure of the Sylvester eqation).
If the preference matrix B in Equation (1) is of low-rank r , then the

rank of the solution matrix X of the Equation (1) is upper-bounded by
pr , where p is the number of iterations in the outer loop in Algorithm

2.

Proof. Omitted for space. �
Based on Lemma 3.2 and following a similar process as the proof

for Theorem 3.1, we can prove that Algorithm 2 also gives the exact
solution of Equation (1).

Lemma 3.3 (Correctness of FASTEN-P+). If P and Q are the

two matrices returned by Algorithm 2, matrix X = PQ is the exact

solution of Equation (1) w.r.t the tolerance ϵ .

Proof. Omitted for space. �

3.4.2 E�iciency. The time and space complexity of FASTEN-P
and FASTEN-P+ are summarized in Lemma 3.4. We can see that the
proposed FASTEN-P has a quadratic complexity in both time and
space, which is already better than state-of-the-art algorithms for
solving Sylvester equations on plain graphs - they either produce an
inexact solution or require a super-quadratic time complexity (See
Table 1 for a comparison). Furthermore, the proposed FASTEN-P+
has a linear complexity in both time and space.

Lemma 3.4 (Complexity of FASTEN-P and FASTEN-P+). The

time and space complexity of FASTEN-P are O((2k + 4)pn2) and
O(n2) respectively. The time and space complexity of FASTEN-P+ are

O(kp(m+ (r + 2k + 1)n)) andO(m+ (r + 2k + 1)n) respectively, where
p is the number of iterations in the outer loop and r is the rank of B.

Proof Omitted for space. �

4 FAST ALGORITHMS FOR ATTRIBUTED

GRAPHS

In this section, we present the attributed Sylvester equation solvers
(FASTEN-N and FASTEN-N+) for Equation (3) and Equation (4). We
start by introducing the intuition and key ideas, and then present
the detailed algorithms, followed by some analysis in terms of the
accuracy and complexity.

4.1 Intuition and Key Ideas

First, we cannot directly apply FASTEN-P or FASTEN-P+ to solve
Equation (3) and (4). The main di�culty lies in the summation of
Kronecker products on the left side of Equation (3), which should
be �rst approximated by a single Kronecker product and itself could
takeO(n3) in time (nearest Kronecker product) [20]. To address this
issue, the key observation is that the solution matrix X for the at-
tributed Sylvester equation (i.e., Equation (4)) has a block-diagonal
structure. This allows us to decompose the original Sylvester equa-
tions into a set of inter-correlated small-scaled Sylvester equations,
which can be in turn solved by block coordinate descent methods
(FASTEN-N). Second, by exploring the low-rank structure of the
solution matrix (as we did in the FASTEN-P+ algorithm in Section
3), we will be able to obtain a linear algorithm to solve Equation (4).
Let us explain this by the example in Figure 2. We can rewrite
its attributed Sylvester equation as follows (Equation (12)). It can
be seen that we only need to solve two inter-correlated Sylvester
equations w.r.t two 2 × 2 diagonal blocks (X11 and X22), which can
be in turn solved by an e�cient block coordinate descent (BCD) [18]
method. For the two o�-diagonal blocks (X12 and X21), they are
the same as the corresponding blocks in the preference matrix B.

X11 − [A11
2 X11(A11

1)
T + A12

2 X22(A12
1)

T] = B11 (12a)

X22 − [A21
2 X11(A21

1)
T + A22

2 X22(A22
1)

T] = B22 (12b)

X12 = B12 (12c)

X21 = B21 (12d)

4.2 Proposed FASTEN-N Algorithm

In the general case, Equation (4) can be decomposed into a group
of inter-correlated equations of block variables:

Xii −

l∑
q=1

Aiq
2 Xqq (Aiq

1)
T = Bii (13a)

Xi j = Bi j (13b)

where 1 ≤ i, j ≤ l , i , j. Since the o�-diagonal blocks Xi j are the
same as the corresponding blocks in B, we will focus on solving
Equation (13a) in the proposed algorithm, using a BCD method.
The goal is to minimize the overall residual, namely the residual of
Equation (4). In each iteration, one diagonal block variables will be
updated with other blocks �xed. Let B̃i = Bii +

∑l
j,i A

i j
2 X

j j (Ai j
1)

T .
We will solve the following equation in the ith iteration in order to
update Xii :

Xii − Aii
2 X

ii (Aii
1)

T = B̃i (14)

If we only treat Xii as variables with all other diagonal blocks �xed,
Equation (14) is a Sylvester equation without attributes, and thus
can be e�ciently solved by the proposed FASTEN-P algorithm in
Section 3.

Algorithm 3 FASTEN-N
Input: Normalized adjacency matrices A1 and A2, node attribute

matrices N1 and N2, preference matrix B, tolerance parameter
ϵ > 0, Krylov subspace size k > 0, number of node attribute l ;

Output: The solution X of Equation (4).
1: Initialize each diagonal block variable Xii ,∀1 ≤ i ≤ l , residual

matrix R;
2: Construct block matrices Ai j

1 , Ai j
2 , Bi j , Bi j , ∀1 ≤ i, j ≤ l by the

node attribute matrices N1, N2;
3: while | |R| |F > ϵ do
4: for i = 1, ..., l do
5: Compute B̃i = Bii +

∑
j,i A

i j
2 X

j j (Ai j
1)

T ;
6: Apply Algorithm 1 on Equation (14) to obtain Xii ;
7: end for

8: Let R←
∑l
j=1(B

j j − Xj j) +
∑l
i=1

∑l
j=1 A

i j
2 X

j j (Ai j
1)

T ;
9: end while

The proposed FASTEN-N is summarized in the algorithm 3. Line
1 and 2 initialize the diagonal block variables, and the block matrices
used in the decomposed set of equations. Line 3 to line 9 are the
outer loop which uses the BCD method and checks the stopping
condition. Line 6 is the inner loop of Algorithm 1. Line 8 updates
the overall residual of Equation (4).

4.3 Proposed FASTEN-N+ Algorithm

In order to further reduce the time and space complexity of FASTEN-
N, we explore a similar strategy as in FASTEN-P+ by the low-rank
structure of the preference matrix B. Here, we further represent
each block matrix of B in its low-rank form, which allows to im-
plicitly represent the solution block matrices Xii in the low-rank
forms when solving the Equation group (13a). The proposed algo-
rithm FASTEN-N+ is summarized in Algorithm 4. Like FASTEN-N,
it also uses the block coordinate descent method. A key di�er-
ence between FASTEN-N and FASTEN-N+ lies in that, instead of
calculating B̃i directly, FASTEN-N+ represents it by two matrices
B̃1i = [B

ii (:, 1),Ai j
2 Pi] and B̃2i = [e;QiA

i j
1], ∀1 ≤ i ≤ l , where e

is an all-one vector, and Pi , Qi are the implicit representation of
solution Xii .

In Algorithm 4, line 4 to line 10 are the outer loop which uses the
BCD method and checks the stopping condition, and line 7 is the
inner loop of Algorithm 2. In line 6, the revised preference matrix
B̃i in the equation group (13a) is represented by two low-rank
matrices. In line 9, the residual of each equation in the equation
group is indirectly represented as well.

4.4 Proofs and Analysis

4.4.1 Correctness. The correctness of the proposed FASTEN-N
and FASTEN-N+ is summarized in Theorem 4.1, which says that
both algorithms �nd the exact solution of Equation (4).

Algorithm 4 FASTEN-N+
Input: Normalized adjacency matrices A1 and A2, node attribute

matrices N1 and N2, preference matrix B, tolerance parameter
ϵ > 0, subspace size k > 0;

Output: The implicit solution Pi , Qi , ∀1 ≤ i ≤ l of Equation 14.
1: Initialize Pi , Qi , ∀1 ≤ i ≤ l . Set e be an all-one vector;
2: Construct block matrices Ai j

1 , Ai j
2 , Bi j , Bi j , ∀1 ≤ i, j ≤ l by the

node attribute matrices N1 and N2;
3: Let Ui1 ← Bii (:, 1), Ui2 ← e;
4: while

∑l
i trace((U2

i)T ((U1
i)TU1

i)U2
i) > ϵ do

5: for i = 1, ..., l do
6: B̃1i ← [U

i
1,A

i j
2 Pi], B̃

2
i ← [U

i
2;QiA

i j
1], ∀1 ≤ i ≤ l ;

7: Apply Algorithm 2 on Equation (14) to obtain Pi , Qi ;
8: end for

9: Ui1 ← [U
i
1,−Pi ,A

i j
2 Pj], U

i
2 ← [U

i
2;−Qi ;Qj (A

i j
1)

T], ∀1 ≤
i, j ≤ l ;

10: end while

11: Return Pi and Qi , (i = 1, ..., l).

Theorem 4.1 (Correctness of FASTEN-N and FASTEN-N+).
The solution matrix X by Algorithm 3 is the exact solution of Equa-

tion (4) w.r.t the tolerance ϵ . If Pi and Qi , (i = 1, ..., l) are the ma-

trices returned by Algorithm 4, matrix X = diag(P1Q1, ..., PlQl) +∑l
i,j B

(i j)) is the exact solution of Equation (4) w.r.t the tolerance ϵ .

Proof. Omitted for space. �

4.4.2 E�iciency. The time and space complexity of FASTEN-N
and FASTEN-N+ are summarized in Lemma 4.2. We can see that
the proposed FASTEN-N has a quadratic complexity in both time
and space. Furthermore, the proposed FASTEN-N+ has a linear
complexity in both time and space (See Table 1 for comparison).

Lemma 4.2 (Complexity of FASTEN-N and FASTEN-N+). The

time and space complexity of FASTEN-N areO(p2mn/l+(2k+4)p2n2/l)
and O(n2 + m/l) respectively. The time and space complexity of

FASTEN-N+ areO((p1km +p1k(r + lk +k + 1)n)p2l) andO(m + (r +
kp1(l −1))n), respectively. p1 is the number of iterations of FASTEN-N

or FASTEN-N+in the inner loop, and p2 is the number of iterations of

the outer loop, and r is the rank of the preference matrix B.

Proof. Omitted for space. �

5 EXPERIMENTAL RESULTS

In this section, we present the experimental results. The exper-
iments are designed to evaluate the e�ciency, the e�ectiveness
and the parameter sensitivity of the proposed family of algorithms
(FASTEN).

5.1 Experimental Setup

Datasets. We evaluate the proposed algorithms on �ve real-world
datasets [17], which are summarized in Table 3.

• DBLP: This is a co-authorship network with each node
representing an author. Each author is assigned one node
attribute vector of the number of publications in 29 major
conferences [12].

Table 3: Datasets Summary

Dataset Name Category # of Nodes # of Edges

DBLP Co-authorship 9,143 16,338
Flickr User relationship 12,974 16,149
LastFm User relationship 15,436 32,638
AMiner Academic network 1,274,360 4,756,194
LinkedIn Social network 6,726,290 19,360,690

• Flickr: This is a network of friends on the image and video
hosting website Flickr. Node attribute vector is constructed
from users’ pro�le information (e.g. age, gender, location,
etc.) [24].

• LastFm: Collected in 2013, this is the following network
of users on the music website LastFm [24]. A detailed
pro�le of users is provided. The node attribute vector is
also constructed from users’ pro�le information.

• AMiner: AMiner dataset represents the academic social
network. Undirected edges represent co-authorship and
the node attribute vector is extracted from the number of
published papers [24].

• LinkedIn: The graph of LinkedIn dataset is from users’ con-
nections in the social network LinkedIn. The node attribute
vector is constructed from users’ pro�le information (e.g.
age, gender, occupation, etc.)

ComparisonMethods. We compare the proposed methods against
four baseline methods, the Fixed Point method (FP) [19], the Conju-

gate Gradient Method (CG) [19], FINAL-P+ [21], and FINAL-N+ [21].
According to [20], CG is best known method in terms of e�ciency
to obtain the exact solution of the Sylvester equation studied in this
paper. FP is widely used in solving Sylvester equation and linear
system. FINAL-P+ and FINAL-N+ are two recent approximate meth-
ods that solve the Sylvester equation on plain graph and attributed
graph respectively [21]. We set the rank of the input networks to
2 in both FINAL-P+ and FINAL-N+ to ensure a fast computation,
and the runtime of these two methods with a higher rank would be
longer than the results reported below. We terminate an algorithm
if it does not �nish within 3, 000 seconds.
Repeatability. All datasets are publicly available. We will release
the code of our proposed algorithms upon the publication of the
paper. All experiments are performed on a server with 64 Intel(R)

(a) Log of running time on di�er-

ent datasets. Lower is better.

(b) Log of running time on di�er-

ent datasets. Lower is better.

Figure 3: E�ciency comparison on plain and attributed net-

works. Best viewed in color. Datasets: 1: DBLP, 2: Flickr,
3: LastFm, 4: Aminer with 25K nodes, 5: Aminer with 100K
nodes, 6: Aminer, and 7: LinkedIn.

Xeon(R) CPU cores at 2.00 GHz and 1.51 TB RAM. The operating
system is Red Hat Enterprise Linux Server release 6.9. All codes
are written in MATLAB R2017a using a single thread.

5.2 E�ciency

A - Speedup. We �rst evaluate how much speedup the proposed
algorithms can achieve over baseline methods, on seven real-world
datasets, including two subsets of AMiner with 25K and 100K nodes
respectively. The results are presented in Figure 3.

As we can see from Figure 3(a), the proposed FASTEN-P already
outperforms all the baselines on all datasets even including the
approximate method FINAL-P+. The proposed FASTEN-P+ outper-
forms all baseline methods as well as FASTEN-P by a large margin.
When it is applied on the largest dataset LinkedIn, the running
time of FASTEN-P+ is less than 100 seconds; whereas all the other
methods cannot �nish within 3, 000 seconds. On AMiner (with 25K
nodes) dataset, FASTEN-P+ is more than 10, 000× faster than CG

(3, 000+ seconds vs. 0.3 seconds).
On the attributed networks (Figure 3(b)), the proposed FASTEN-

N outperforms CG and FP, and its running time is close to FINAL-N+

although the latter produces an approximate solution. The proposed
FASTEN-P+ outperforms all baseline methods as well as FASTEN-N
by a large margin. On AMiner (with 25K nodes) dataset, FASTEN-
N+ is more than 10, 700× faster than CG. (3, 000+ seconds vs. 0.28
seconds) .

(a) Running time vs.

Log(number of nodes). Dataset:

Aminer without attributes

(b) Running time vs.

Log(number of nodes). Dataset:

Aminer with attributes

Figure 4: Scalability on plain (left) and attributed graphs

(right). Best viewed in color.

B - Scalability. The scalability experiments are conducted on
the largest Aminer dataset. We run experiments on graphs with
di�erent size (ranging from 5K to 1.2M nodes) 100 times, and report
the average running time. The results are presented in Figure 4.
We can see that all the baseline methods are at least quadratic
w.r.t the number of nodes in graphs, and could not �nish within
3, 000 seconds for graphs with more than 100, 000 nodes. Both the
proposed FASTEN-P+ and FASTEN-N+ scale linearly to million-
node graphs.

5.3 E�ectiveness

For the e�ectiveness evaluation, we de�ne the error of the solution
as: Error = | |X − X′ | |F where X is the solution matrix by FASTEN
or other baseline methods, and X′ is computed by the direct method
on the equivalent linear system of the Sylvester equation (namely

Equation (2) and (3)). Since the direct method takes O(n6) in time,
we use a subset ofAMiner with 4K nodes in this experiment to avoid
extremely long running time of the direct method. We compare
the Error vs. the running time of our methods with all the baseline
methods in Figure 5. We can observe that the Conjugate Gradient

(CG) method and all of our proposed FASTEN algorithms have a
very small Error (less than 10−7). Error of both Fixed Point and
FINAL-N+ are more than 10−4. In the meanwhile, the running time
of the proposed FASTEN is smaller than all baseline methods in all
cases.

(a) log of error vs. log of running

time (ϵ = 10−12, k = 14)
(b) log of error vs. log of running

time (ϵ = 10−7, k = 5)

Figure 5: Error vs. running time comparison of �ve meth-

ods on plain graphs (left) and attributed graphs (right). Best

viewed in color.

5.4 Parameter Sensitivity

In the proposed FASTEN algorithms, we need to set Krylov subspace
size k , which might a�ect the convergence rate and the running
time of the proposed algorithms. Generally speaking, a smaller k
makes the computation of the inner loop faster, but might cause a
slower convergence of the outer loop (see Section 3 and Section 4 for
the detailed descriptions of inner loop and outer loop); on the other
hand, it would take longer time for the inner-loop with a larger k al-
though it might help reduce the iteration number of the outer-loop .

Figure 6: Sensitivity study

of FASTEN-P. Best viewed in

color.

Take FASTEN-P as an ex-
ample, we report the run-
ning time of FASTEN-P
vs. the subspace size k
on three datasets in Fig-
ure 6. We can see the run-
ning time stays stable at
a low number when 14 ≤
k ≤ 60, and it starts to
increase when k is out-
side this range. Overall,
we found that the running
time of all the four pro-
posed algorithms is insen-
sitive in a relatively large
range of the Krylov sub-
space size k .

6 RELATEDWORK

A variety of graph mining tasks use Sylvester equation as a core
building block. Vishwanathan et al. in [19] propose and compare
four algorithms for Sylvester equation in the context of random

walk graph kernel, including the Fixed Point iterative method (FP),
the Conjugate Gradient method (CG), one Sylvester equation solver
(Sylv.) and the direct method. ARK by Kang et al. in [7] applies the
top-r eigen-decomposition on the adjacency matrices to compute
an approximate graph kernel with a lower complexity. Cheetah [10]
by Li et al. tracks the graph kernel by incrementally updating the
low-rank approximation of input graphs. For the task of network
alignment, FINAL by Zhang et al. [21] propose a �xed point method
as well as an approximate method to solve the attributed Sylvester
equation. For the task of subgraph matching, FIRST by Du et al. [4]
propose an approximate method for solving the Sylvester equation
in the scenario of interactive subgraph matching.

The Sylvester equation has been studied for a long time in the
applied mathematics and scienti�c computing community, and has
applications in many domains. The classic full orthogonal method
FOM [16], conjugate gradient method CG [15] and global minimal
residual method GMRES [14] are summarized by Saad et al. in [13].
Recently, many studies on the generalized Sylvester equation are
proposed. Ke et al. propose a preconditioned nested splitting con-
jugate gradient iterative method [8] for large sparse generalized
Sylvester equation. Bao et al. propose a Galerkin and minimal
residual method [1] for iteratively solving a generalized Sylvester
equation which has a similar formation as our problem. Beik et al.
propose global Krylov subspace methods [2] for solving general
coupled matrix equations, which can be seen as a generalized ver-
sion of the Sylvester equation in our setting. In [3], Bouhamidi et
al. propose a global-GMRES which uses modi�ed global Arnoldi
algorithm to solve the linear matrix equation of the generalized
Sylvester equation.
7 CONCLUSION

In this paper, we propose a family of Krylov subspace based al-
gorithms (FASTEN) to speed up and scale up the computation of
Sylvester equation for graph mining. The key idea of the pro-
posed methods is to project the original equivalent linear system
onto a Kronecker Krylov subspace. Based on that, we propose
the following to further reduce complexity, including (1) implicitly
representing the solution based on its low-rank structure, and (2) de-
composing the original Sylvester equation into a set of small-scale,
inter-correlated Sylvester equations. The proposed algorithms bear
two distinctive features. First, they provide the exact solutions with-
out any approximation error. Second, they signi�cantly reduce the
time and space complexity for solving Sylvester equation. Two of
the proposed algorithms have linear time and space complexity. We
conduct numerous experiments on real-world data, and show that
the FASTEN family of algorithms (i) produce the exact solution, (ii)
are up to more than 10, 000× faster than the best known method,
and (iii) scale up to million-node graphs in about 100 seconds.

8 ACKNOWLEDGEMENTS

This material is supported by the National Science Foundation
under Grant No. IIS-1651203, IIS-1715385, IIS-1743040, and CNS-
1629888, by DTRA under the grant number HDTRA1-16-0017, by
the United States Air Force and DARPA under contract number
FA8750-17-C-0153 2 and by Army Research O�ce under the con-
tract number W911NF-16-1-0168. The content of the information in

2Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

this document does not necessarily re�ect the position or the policy
of the Government, and no o�cial endorsement should be inferred.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation here on.

REFERENCES

[1] Liang Bao, Yiqin Lin, and Yimin Wei. 2006. Krylov subspace methods for the
generalized Sylvester equation. Applied mathematics and computation 175, 1
(2006), 557–573.

[2] Fatemeh Panjeh Ali Beik and Davod Khojasteh Salkuyeh. 2011. On the global
Krylov subspace methods for solving general coupled matrix equations. Com-

puters & Mathematics with Applications 62, 12 (2011), 4605–4613.
[3] Abderrahman Bouhamidi and Khalide Jbilou. 2008. A note on the numerical ap-

proximate solutions for generalized Sylvester matrix equations with applications.
Appl. Math. Comput. 206, 2 (2008), 687–694.

[4] Boxin Du, Si Zhang, Nan Cao, and Hanghang Tong. 2017. First: Fast interactive
attributed subgraph matching. In Proceedings of the 23rd ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining. ACM, 1447–1456.
[5] A El Guennouni, Khalide Jbilou, and AJ Riquet. 2002. Block Krylov subspace

methods for solving large Sylvester equations. Numerical Algorithms 29, 1 (2002),
75–96.

[6] Dan Y Hu and Lothar Reichel. 1992. Krylov-subspace methods for the Sylvester
equation. Linear Algebra Appl. 172 (1992), 283–313.

[7] U Kang, Hanghang Tong, and Jimeng Sun. 2012. Fast random walk graph kernel.
In Proceedings of the 2012 SIAM International Conference on Data Mining. SIAM,
828–838.

[8] Yi-Fen Ke and Chang-Feng Ma. 2014. A preconditioned nested splitting conjugate
gradient iterative method for the large sparse generalized Sylvester equation.
Computers & Mathematics with Applications 68, 10 (2014), 1409–1420.

[9] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu, and Tianyi
Wu. 2010. Fast computation of simrank for static and dynamic information net-
works. In Proceedings of the 13th International Conference on Extending Database

Technology. ACM, 465–476.
[10] Liangyue Li, Hanghang Tong, Yanghua Xiao, and Wei Fan. 2015. Cheetah:

fast graph kernel tracking on dynamic graphs. In Proceedings of the 2015 SIAM

International Conference on Data Mining. SIAM, 280–288.
[11] Kensuke Onuma, Hanghang Tong, and Christos Faloutsos. 2009. TANGENT: a

novel,’Surprise me’, recommendation algorithm. In Proceedings of the 15th ACM

SIGKDD international conference on Knowledge discovery and data mining.
[12] Adriana Prado, Marc Plantevit, Céline Robardet, and Jean-Francois Boulicaut.

2013. Mining graph topological patterns: Finding covariations among vertex
descriptors. Knowledge and Data Engineering, IEEE Transactions on 25, 9 (2013),
2090–2104.

[13] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.
[14] Youcef Saad and Martin H Schultz. 1986. GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM Journal on scienti�c

and statistical computing 7, 3 (1986), 856–869.
[15] Jonathan Richard Shewchuk et al. 1994. An introduction to the conjugate gradient

method without the agonizing pain. (1994).
[16] Kunio Tanabe. 1971. Projection method for solving a singular system of linear

equations and its applications. Numer. Math. 17, 3 (1971), 203–214.
[17] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-

netminer: extraction and mining of academic social networks. In Proceedings of

the 14th ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, 990–998.
[18] Paul Tseng. 2001. Convergence of a block coordinate descent method for nondif-

ferentiable minimization. Journal of optimization theory and applications 109, 3
(2001), 475–494.

[19] SVN Vishwanathan, Karsten M Borgwardt, and Nicol N Schraudolph. 2006. Fast
computation of graph kernels. In Proceedings of the 19th International Conference

on Neural Information Processing Systems. MIT Press, 1449–1456.
[20] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M

Borgwardt. 2010. Graph kernels. Journal of Machine Learning Research 11, Apr
(2010), 1201–1242.

[21] Si Zhang and Hanghang Tong. 2016. FINAL: Fast Attributed Network Alignment..
In KDD. 1345–1354.

[22] Si Zhang, Hanghang Tong, Jie Tang, Jiejun Xu, and Wei Fan. [n. d.]. iNEAT:
Incomplete Network Alignment.

[23] Yongfeng Zhang. 2014. Browser-oriented universal cross-site recommendation
and explanation based on user browsing logs. In Proceedings of the 8th ACM

Conference on Recommender systems.
[24] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S Yu. 2015. Cosnet:

Connecting heterogeneous social networks with local and global consistency.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM, 1485–1494.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Fast Algorithms for Plain Graphs
	3.1 Intuition and Key Ideas
	3.2 Proposed FASTEN-P Algorithm
	3.3 Proposed FASTEN-P+ Algorithm
	3.4 Proofs and Analysis

	4 Fast Algorithms for Attributed Graphs
	4.1 Intuition and Key Ideas
	4.2 Proposed FASTEN-N Algorithm
	4.3 Proposed FASTEN-N+ Algorithm
	4.4 Proofs and Analysis

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Efficiency
	5.3 Effectiveness
	5.4 Parameter Sensitivity

	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

