INEAT: Incomplete

Abstract—Network alignment and network completion are two
fundamental cornerstones behind a wealth of high-impact graph
mining applications. The state-of-the-arts have been addressing
these two tasks in parallel. That is, most of the existing network
alignment methods have implicitly assumed that the topology of
the input networks for alignment are perfectly known apriori,
whereas the existing network completion methods admit either
a single network (i.e., matrix completion) or multiple aligned
networks (e.g., tensor completion). In this paper, we argue that
network alignment and completion are inherently complementary
with each other, and hence propose to jointly address them so that
the two tasks can mutually benefit from each other. We formulate
the problem from the optimization perspective, and propose an
effective algorithm (INEAT) to solve it. The proposed method
offers two distinctive advantages. First (Alignment accuracy), our
method benefits from the higher-quality input networks while
mitigates the effect of the incorrectly inferred links introduced by
the completion task itself. Second (Alignment efficiency), thanks
to the low-rank structure of the complete networks and the
alignment matrix, the alignment process can be significantly
accelerated. We perform extensive experiments which show
that (1) the network completion can significantly improve the
alignment accuracy, i.e., up to 30% over the baseline methods;
(2) the network alignment can in turn help recover more missing
edges than the baseline methods; and (3) our method achieves a
good balance between the running time and the accuracy, and
scales with a provable linear complexity in both time and space.

I. INTRODUCTION

In the era of big data, networks arising from many high-
impact applications are often multi-sourced (i.e., variety) and
incomplete (i.e., veracity), e.g., the social networks from
different social platforms, the protein-protein interaction (PPI)
networks from multiple tissues, transaction networks from
multiple financial institutes, etc. As such, network alignment
(i.e., to find the node correspondence across multiple net-
works) and network completion (i.e., to infer the missing
links) become two key and common tasks in many graph
mining applications. Although the multi-sourced and incom-
plete characteristics often co-exist in many real networks, the
state-of-the-arts have been largely addressing them in parallel.
That is, most of the existing network alignment methods have
implicitly assumed that the topology of the input networks for
alignment are perfectly known apriori [1], [2], whereas the
existing network completion methods admit either a single
network (i.e., matrix completion [3]) or multiple aligned
networks (e.g., tensor completion [4]). How can we align two
input networks when one or both of them are incomplete (e.g.,
with missing entries in the corresponding adjacency matrices
of the input networks)?

A natural choice could be completion-then-alignment. That
is, we first run network completion task on each of the two
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input networks separately, and then align the two complete
networks. However, this strategy has some fundamental limits.
First (Alignment accuracy), the promise of the completion-
then-alignment strategy lies in that by inferring the miss-
ing links of each input network, it would provide higher-
quality input networks for the alignment task. However, the
completion task itself might introduce noisy links, which
might compromise, or even outweight the benefits of the
correctly inferred missing links for the alignment task. Second
(Alignment efficiency), the network alignment alone is already
computationally costly. Most of the existing methods (even
with approximation, such as [5]) have a time/space complexity
that is at least O(n?), where n is the number of nodes of
the input networks, mainly due to the computation/storage of
the alignment matrix and the sparse matrix-matrix multiplica-
tion between the input adjacency matrices and the alignment
matrix!. By inferring the missing links, network completion
would make each input network denser. If we simply conduct
the network alignment task on such densified networks, it
might make the computation even more intensive.

To address these limitation, we hypothesize that network
alignment and network completion are inherently comple-
mentary with each other due to the following reasons. First,
(HI) alignment helps completion. If two nodes across two
networks are aligned together, intuitively, they might share
similar connectivity patterns in both networks (e.g., connecting
to the same set of nodes). Therefore, the knowledge about
the existence or the absence of links in one network could
help inferring the missing links in another network via align-
ment. Second, (H2) completion helps alignment. As mentioned
above, network completion could potentially improve the
alignment accuracy by providing higher-quality input networks
for the alignment task. Moreover, network completion itself
implicitly assumes a low-rank structure on the input networks,
which, if harnessed appropriately, will actually accelerate the
alignment process as we will show in the paper.

Armed with these hypotheses, we propose to jointly address
network alignment and network completion problems, so that
the two tasks could mutually benefit from each other. In
detail, we formulate it as an optimization problem with the
following two key ideas. First, in order to leverage alignment
for the completion task, we impose the low-rank structure
on the underlying (true) network, which matches not only
the observed links of the corresponding network, but also
the auxiliary observations from the other network via the
alignment matrix. Second, in order to leverage the network

! Although the empirical runtime of some existing methods (e.g., BigAlign
[2]) is near-linear, the big-O time complexity of these methods is still super-
linear.



completion for the alignment, we recast the network alignment
problem via the low-rank structures of the complete networks,
which not only improves the alignment accuracy, but also
speeds up the alignment process.

The main contributions of the paper are summarized as:

o Problem Definition. To our best knowledge, we are the
first to jointly address the network alignment and network
completion tasks in an optimization framework.

o Algorithm and Analysis. We propose an effective algo-
rithm (INEAT) based on multiplicative update to solve
the optimization, and analyze its optimality, convergence
and complexity. In particular, we prove that the low-rank
structure of the complete networks guarantees a low-rank
structure of the alignment matrix, which in turn reduces
the time complexity to be linear. To our best knowledge,
this is the first known network alignment algorithm with
a provable linear time complexity.

« Experiments. We evaluate the effectiveness and effi-
ciency of the proposed algorithm by extensive exper-
iments. The experimental results demonstrate that (1)
network alignment and network completion can indeed
benefit from each other in terms of alignment accuracy
and missing edges recovery rate, (2) our algorithm INEAT
achieves a better alignment and completion quality, in the
meanwhile is faster than most of the baseline methods,
and (3) our algorithm is only linear w.r.t the number of
nodes in the networks.

The rest of the paper is organized as follows. Section
2 defines the incomplete network alignment problem and
provides the preliminaries of the paper. Section 3 presents
the proposed formulation of INEAT and Section 4 gives its
optimization algorithm, followed by some analyses. Section 5
presents the experimental results. Related work and conclusion
are given in Section 6 and Section 7.

II. PROBLEM DEFINITION
A. Problem Definition

Table I summarizes the main symbols and notations used
throughout the paper. We use bold uppercase letters for ma-
trices (e.g., A), bold lowercase letters for vectors (e.g., s),
and lowercase letters (e.g., «) for scalars. We use A(3,j) to
denote the entry at the intersection of the ¢-th row and j-
th column of the matrix A. We denote the transpose of a
matrix by a superscript 7' (e.g., AT is the transpose of A).
The vectorization of a matrix (in the column order) is denoted
by vec(+), and the result vector is denoted by the corresponding
bold lowercase letter (e.g., s = vec(S)). Equivalently, the
transformation of a vector to its corresponding matrix is de-
noted by a de-vectorization operator mat(-) (e.g., S = mat(s)).
The trace of a matrix is denoted by Tr(-), and the diagonal
matrix of a vector is denoted by diag(-).

Many real-world networks are incomplete. That is, we only
have the knowledge about the existence (i.e., a value of 1) or
the absence (i.e., a value of 0) of certain entries (denoted by
the set §2) of its adjacency matrix. For the rest entries in the

TABLE I: Symbols and Notations

Symbols Definition
G1, G incomplete networks
AL A, two adjacency matrices of G; and Go
ni, No # of nodes in A; and Ay
S an ny X n; alignment matrix between Ay and A,
Po(), Pa(+) an operator to project only to observed (unobserved) entries
Uy, V1,U,, Vo | low rank factorizations of A; and Ag
Pq,,Pq, projection matrix, all 1s at all observed entries
11,1, 1s vectors of length ny and no respectively
Ay, B parameters
Tr[] trace operator
diag(+) diagonal matrix of a vector
vec(-), mat(-) | vectorization and de-vectorization operator
rank(-) the rank of a matrix
eig(-) eigenvalues of a matrix

adjacency matrix, we do not know if the corresponding links
exist or not, and hence are represented as the question mark
?. Figure 1 presents an illustrative example. All solid lines
represent the observed existing edges. As we can see in Figure
1(a), the set of nodes (1, 2, 3, 4) in the first incomplete network
have similar topology to the nodes (6’,7',8,9"), possibly
leading to a wrong alignment result that these two sets of
nodes are aligned within each other. However, the complete
networks in Figure 1(b) (by filling all the red lines) are
identical, such as the cliques formed by nodes (1,2,3,4) and
(1',2',3',4"). Thus, the set of nodes (1,2,3,4) can be aligned
to nodes (1’,2',3',4") respectively, so can the rest of nodes.
On the other hand, by completing two networks separately,
noisy edges might be incorrectly added (e.g., edge (4,6))
and the true network structure would fail to be recovered.
The incorrectly recovered networks may further mislead the
alignment results. Therefore, how to align the incomplete
networks while completing them is the key challenge this
paper aims to address.

Problem 1. INCOMPLETE NETWORK ALIGNMENT.

Given: (1) Incomplete adjacency matrices Ay, Ay of two
networks Gy,Go, and (2-optional) a prior node similarity
matrix H across networks.

Output: (1) the na X ny alignment matrix S, where S(z, a)
represents to what extent node-a in Gy is aligned with node-x
in Ga, and (2) complete adjacency matrices A7, and A,

B. Preliminaries

A - Network Alignment. Most existing network alignment
algorithms (such as IsoRank [6] and FINAL [5]), explicitly
or implicitly, are based on the topology consistency principle.
Take FINAL as an example, the topology consistency principle
can be stated as follows”. Given two pairs of nodes, say (1)
node-a in G; and node-x in G5 and (2) node-b in G; and node-
y in Ga, if nodes a and b are close neighbors and nodes x and
y are also close neighbors, the fopology consistency principle
assumes the similarity between a and x, and that between their
respective close neighbors b and y to be consistent, i.e., small
[S(a, z)—S(b,y)]?A1(a, b)As(z,y), where S is the similarity

2In [5], the authors generalize the topology consistency principle to further
accommodate the additional node/edge attribute information, which is outside
the scope of this paper
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Fig. 1: An illustrative example. Figure 1(a) shows the input
incomplete networks and Figure 1(b) shows part of the align-
ment across two complete networks.

matrix. Mathematically, this naturally leads to the following
optimization problem.

min a8”(D - A; ® Ay)$+ (1 —a)||D$ —h|% (1)
S

where §, h are the vectorization of the similarity matrix S and
the prior similarity matrix H respectively. D = D; ® Dy and

D, D5 are the diagonal degree matrix of A, A5 respectively.
Note that instead of using S to infer the alignment as in
[5], we use the scaled similarity matrix S as the alignment
matrix throughout our paper where S is the matrix form of
s = D§ (ie., S = mat(D8§)). In other words, the entries
in the alignment matrix S measure to what extent the two
corresponding nodes are aligned together. Besides, the second
regularization term is to avoid trivial solutions.

In order to solve the network alignment problem in Eq. (1),
we can either use an iterative algorithm with a time complexity
of O(nm) and a space complexity O(n?), or resort to its
closed-form solution whose time complexity could be as high
as O(n®). In [5], the authors proposed to approximate the
closed-form solution via eigenvalue decomposition. But it is
still quadratic in both time and space.

B - Network Completion. As mentioned earlier, incomplete
networks might have many unobserved missing edges, which
could significantly change the true network structure and
hence mislead the topology-based network alignment. One
straightforward way to address this issue is by using matrix
completion. Most of the existing matrix completion methods
are centered around minimizing the nuclear norm of the matrix
[7]. However, since real-world networks are usually very large,
it is very costly to directly minimize the nuclear norm of
the adjacency matrices. In [8], the authors show that the
nuclear norm ||A4|, = Jmin $(1UL]|% + [[V1]|%) where
1,V1

A; = U; VT, which allows the factorization-based comple-
tion methods. To be specific, we can recover the complete
networks by minimizing the following objective function:

J1(U1,V1,U2, Vo)
1 A
= 5l1Po, (Ar = U VD) [+ (MU + [Vallz)

network completion on A 1 (2)

1 A
+ 511Poy (A2 = U2VI)[[E + S(1Us)E + [Va]F)

network completion on Ao

where the operator Pp, projects the value to the observed set
Ql of Al’ c.g., PQ1((U1V,{>(’L)])) = (Ulv?)(luj) for any
(,7) € 4, otherwise 0; and operator P, is defined similarly.

III. PROPOSED OPTIMIZATION FORMULATION

In this section, we present the proposed optimization formu-
lation to solve Problem 1. First, we present how to formulate
the alignment task in the form of two complete networks.
A key contribution here is that we prove that the low-rank
structure of the complete networks guarantees a low-rank
structure of the alignment matrix. Then we present how to
leverage the alignment matrix to infer missing edges across
networks, followed by the overall optimization formulation.

A. Network Completion Helps Network Alignment

By performing the network completion on both incomplete
networks, the structure of the underlying networks could be
recovered so that we can perform the alignment task in higher-
quality networks. We use the factorization-based network
completion (i.e., Eq (2)) and denote these two complete
networks by A} = UlVlT and A% = UQVQT, where U; and
V, (i = 1,2) are the factorization matrices of rank-r. We
adopt Eq. (1) to perform the network alignment task. Note
that in general, we cannot guarantee the recovered adjacency
matrices (A} and A3) to be symmetric because V; (V3)
may not be identical to U; (Us;). This leads to a slightly
different objective function from Eq. (1) to align directed
networks. Specifically, based on the fopology consistency (i.e.,
small [S(a,z) — S(b,y)]>A1(a,b)As(z,y) in two directed
networks), the optimization problem is formulated as follows.

min a87(D - A} ® A5)$+ (1—a)|Ds—h|Z  (3)
S

where D = D16D>4Di9D2 Ty, = diag(U; V1 1;) and D, =
diag(17 U, VT) are the outdegree matrix and indegree matrix
of Aj, respectively. D5 and D, are defined in a similar way.

However, directly solving the above problem requires at
least O(n?) time complexity, even with approximation. To
address this issue, we give the following lemma, which states
the alignment matrix S under the fopology consistency (i.e.,
Eq. (3)) intrinsically consists of a low-rank structure, thanks
to the low-rank structure of two complete adjacency matrices.

Lemma 1. Low-Rank Structure of the Alignment Matrix
S. Let 8 be the solution of Eq. (3) where A} = U, VT and

5 = Uy VT are two complete rank-r adjacency matrices. Let
the alignment matrix S be the scaled similarity matrix S =
mat(f)é) and H be the prior similarity matrix, then if o« < 0.5,
the alignment matrix can be expressed as S = aU;MU; +
(1 — «)H where M is an ro X 71 matrix and r1, ro are the
ranks of A5 and A3, respectively.

Proof. Followed by Egq. (3), the closed-form solution of sim-
ilarity matrix S can be computed by

s§=(1-a)D'h+a(l-—a)D'UAIVID'h 4
where U=U; @ Uy, V=V;®Vy, A=1-aVID!U.



First, we rewrite A~ as follows. Since for any two matrices
X,Y, the eigenvalues of their product satisfies eig(XY) =
eig(YX) [9], we obtain

leig(aVTD™1U)| = |eig(aUVTD™)|
< leig(2aUVT (D) @ Do) ™Y
= 2a|eig((U1VTD_1) ® (U, VIDSh)

Here, the term U; VI D ! represents a weighted directed net-
work whose adjacency matnx has eigenvalues within (—1,1),
so as the term U2V2TD2_1. Thus, if a < 0.5, according to the
spectrum property of Kronecker product, we have

2aleig((U, VIDT) @ (U, VID; L) < 1

Then, we can use Taylor expansion on A~}
AT =)o)k VT (2D) U )
k=0
Next, we rewrite (2f))_ as follows. Denote D; = D;+D;
and Dy = Dy + D2, we have
(2D)' =(D;®D, +D; ®Dy) !
= {(D1@Dy)[I- (D' @D;")(Dy ® Dy + Dy ®Dy)]}
-~ [I — (D' ®D;") (D1 @Dz + Dy @Dy)] (Dt @Dy )

D;'D;) ® (D;'Dy) + (D;'D1) ® (D' Dy))!

1 HM

Z() (D 1D, (D5 Dy )] @ (D 'Dy)i (D3 D)

=0

Il
<]

J

Thus, by substituting the Kronecker product form of
—!into Eq. (5), the matrix A~! can be derived as

co oo J
=220 )
k=0 j=0 i=0
® [V3 (D3 'D2)"(D; 'D2)’ ~'Uy)* (6)
Denote s = D§ and h = D 'h. Armed with the
Kronecker product property vec(ABC) = (CT @ A)vec(B),

by substituting Eg. (6) into Eq. (4), we obtain the alignment
matrix S = mat(Ds) as

S = aU,MUT +

)
—
\_/B‘

<]> VI (DD (D "Dy Uy

(1-a)H 7

where M is an ro X r; matrix and is computed by

co oo J AN

x (1—a)VIAV,[UT(D'D) (DD " Vi)F (8)

O
Remarks. Eq. (7) suggests that the alignment matrix S
consists of two parts, including a low-rank structure and an
additive term H to reflect the prior knowledge. In practice,
the prior knowledge matrix H is either low-rank (e.g., a rank-
one uniform matrix) or very sparse. Having this in mind, we
will mainly focus on how to learn the low-rank structure part
of S (i.e., UsMU;) from the input networks. This naturally
leads to the following effective strategy. First, we temporarily

Gy ?\‘ \?/?
Ly®

A

(o o /’f

Gy Do

9

\?

p

G \ -

— : Observed edges
: Recovered edges
— — : Alignment

Fig. 2: Network completion via the alignment.

treat the low-rank structure part as the alignment matrix to be
solved in the optimization problems (i.e., S = UsMU;). We
then can calibrate the result by averaging between the learned
S and the prior knowledge H, i.e., S + (1—a)H+aS. As we
will show in the next section, a direct benefit of this strategy
is that we can reduce the overall complexity (for both space
and time cost) to be linear.

To take advantages of the low-rank structure of S under the
above strategy, instead of minimizing Eq. (3) regarding the
similarity matrix S, we alternatively optimize the topology
consistency on the low-rank structure of alignment matrix
S = U,MU; without the second regularization term, i.e.,
minimizing s (D — A% ® Aj)s. Given A* = U, VT, A} =
U, V7, by using the properties vec(A)Tvec(B) = Tr(ATB)
and vec(ABC) = (CT ® A)vec(B), network alignment
across the complete networks can be formulated as minimizing
the following objective function:

J2(U1,V1,Uz, Vo, M)
= %STVeC(DQSDl + 1525151) + WSTVGC(UQVgsleT)

= %Tr(DgUQMU{DlUlMTUQT +D,U,MUT D, UM UY)

alignment across complete networks

— AT(U,VIU,MUTV, UT U, MTUY) ©

alignment across complete networks

B. Network Alignment Helps Network Completion.

Despite the effectiveness of the factorization-based network
completion methods (i.e., Eq. (2)), in some applications, the
information of a single network alone might be insufficient to
correctly infer the missing edges. Meanwhile, the alignment
across the two networks may provide extra hints of how to
infer the missing edges. To be specific, since the aligned nodes
are likely to share similar connectivity patterns, the observed
existing edges in one network could potentially help recover
the missing edges in the other network via the alignment
matrix. Figure 2 presents an illustrative example. Here, node-a
in G; and node-z in G are aligned together, and the neighbor
of x (say node-y) is aligned with the neighbor of a (e.g., node-
b), which is not observed to connect with a. If we perform the
completion solely based on the observed information of Gy,
we might probably conclude that the edge between a and b
does not exist. However, the facts that (1) a and x are aligned,
(2) b and y are aligned, and (3) there is an edge between x and
y might provide an auxiliary confidence about the existence
of the edge between a and b. In general, we can estimate such
auxiliary confidence of the existence of the edge between a
and b in Gy as
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where S = U,MUT is the alignment matrix learned from
the topology consistency.

In our experiments, we find that such auxiliary confidence
is most powerful to estimate the existence/absence of an
edge (a,b) when such an edge itself is not observed in G;
(ie.,(a,b) € Q1). Mathematically, this can be formulated as
the following objective function.

J3(U1,V1,Uz, Vo, M)

Aj(a,b) (b,y)As(z,y) = (STA2S)(a,b) (10)

= 2 )Pa, (U VT~ UMTUT A UMUT)

(11

completion of G based on the observed edges in Go

+§ | Pq,(U2V; — U:MUT A1UM"UJ) |3

completion of Go based on the observed edges in G1

where Q; and Q. are the unobserved set of A; and As.

C. Overall Objective Function

We impose the nonnegativity constraints on all the vari-
ables Up,V1,Us, Vo, M to guarantee that all the entries in
matrices A}, A%, S to be nonnegative. Combining Eq. (2), Eq.
(9) and Eq. (11) together, the overall optimization problem is
formulated as

min

U,,V1,U2, VoM

s.t U17U27V17V23M20

J(U1,V1,U, Vo, M) = J; + Jo+ J3

(12)

IV. PROPOSED OPTIMIZATION ALGORITHM

In this section, we first present the proposed algorithm
to solve the optimization problem in Eq. (12). Then, we
analyze the proposed algorithm in terms of the optimality, the
convergence and the complexity .

A. Optimization Algorithm

Since the overall objective function Eq. (12) is not jointly
convex, we optimize it by block coordinate descent. That is,
the objective function is alternatively minimized with respect
to one variable group (e.g., U;y) while fixing the others until
convergence. Due to the space limitation, we only show the
minimization procedures over U; and M. Other variables such
as V1, Us, V5 can be solved in a similar way as Uj. First, we
show the update algorithm over U;. The gradient of Eq. (2)
with respect to U; is computed by

0J;
ouU,

=X;1-Y, (13)

where
X = [PQl ® (U1V?)]V1 + U,
Y:=(Pg, ©A1)V;

and Pg, (4,5) = 1 for (4,j) € 4, otherwise Pgq, (i,7) = 0.

As for Eq. (9), note that D; = diag(U;V71,) and D; =
diag(17U, VT) are in terms of Uy, thus the partial gradient

is computed by iy
2

ouU,

=X2-Y> (14)

where
Xy = %[(U1MTU2TD2U2M) © Ui]l,, 1?V1

+ 5 L1 [(MTUSD,U.MUT) 0 UTV,

+ (D, U;MTUI D, UsM + D, UM U D, U M)
Y, =V UTU M U U, VIUM

+~U; MU U VI UMUT V,

+~U; ViU MTUT V,UT UM

And the gradient of Eq. (11) over U; is

0J3
30, =X3-Y3

(15)
where
X3 = 28[Pg, ©® (UM" U] A, U,MUT)|U;M" U3 A, UM
+28A, UM US [Pg, © (U:MUT A, UM UD) UM
+ B[Pq, © (U VDV,
Y; = 8[Pg, © (UiM"UJ A, U,MUT)|V,
+ B[Pg, ® (U1 V] + V1U]) UM U A, UM
+BA,UMT UL [Py, © (UaV] + VoUJ) UM

and matrix P, (4,7) = 1 for any (7,7) ¢ (.
A fixed-point solution of d%’ = 0 under the nonnegativity

constraint of U; leads to the f0110w1ng multiplicative update
rule

1/ Yi(u,v) + Ya(u,v) + Ys(u,v)
Ui (u,v) < Ui (u,v) \/Xl(u, )+ X (w, 0) + X (w,0)

Second, the optimization algorithm over M is given as
below. The gradient of Eq. (9) w.r.t M can be derived as

0Js
Moo Y

(16)

a7

where
X, =yUID,U,MUTD, U, 4+ 74Ul D,U,MU?D, U,
Y, =1UlU,viu,mMmUTv,UTU,
+~Ulv,uTu,MmUTU, ViU,

And the gradient of Eq. (11) w.r.t M is computed by

d.J;
8 XY
M 5T

(18)
where
= 5U2TA2U21VIU1T[PQ1 ® (U, V] +V,UD)|U,
+ UL [Pg, © (U2V3 + VoU3)U:MU] UT A, U,
Ys = 26U5 A, UMUT [P, © (UM' U3 A,U,MU7 )|U;
+26U3 [Pg, ® (Us2MU7T A, UM" U3 )|U.MUT A, U,y



Algorithm 1 INEAT: Incomplete Network Alignment.

Input: (1) the adjacency matrices A, A of the incomplete net-
works G1, Ga, (2) the optional prior alignment preference H, (3)
the rank sizes 71,72, (3) the parameters «, A, y, 8. and (4) the
maximum iteration number fmax.

Qutput: (1) the alignment matrix S between G; and G», and (2) the

complete adjacency matrices A7, A3.

: Initialize U1, V1, U2, V3 as Eq. (20), M as Eq. (21),t =1;

: while not converge and ¢ < tmax do

Update U; by Eq. (16) until convergence;

Update V until its convergence;

Update U, until its convergence;

Update V3 until its convergence;

Update M by Eq. (19) until convergence;

Sett <+ t+41;

: end while

A7 =U,V{ and A5 = U, V3.

: S =aU,MUY + (1 — a)H.

A B R R

—_——

Consequently, the fixed-point solution of g—l\{[ = 0 under the
nonnegative constraint leads to the following update rule

Y4(u,v) + Ys(u,v)
Xa(u,v) + X (u, v)

M(u,v) « M(u,v)i‘/ (19)
Initialization. Since the optimization problem in Eq. (12) is not
a joint convex problem, a good initialization of each variable
group could play an important role of obtaining a good final
solution. For U; and U,, we initialize them by solving the
symmetric nonnegative matrix factorization of A; and Ao,
e.g., minimizing ||A; — U;UT|% over U; > 0. Same as
[10], we use the following multiplicative update rule to obtain
the solution

AUy
U, +-U 0l -+ e— 20
1 10 € eUl(U{Ul)] (20)
where ¢ is suggested to be set to 0.5 in practice. Then we
set Vi = U; due to the symmetry of A; and initialize

Uy, V, similarly. As for the variable M, given the initial
U; = V1,U; = V,, we can simplify the computation of
Eq. (8) and initialize M as
M= (1-a) Y5, o (UID; 'U,)"UY D, 'HD; 'U, (UTD; U, )F
2D
where the constant K can be set to a large number, e.g., 500.
Overall, the proposed algorithm is summarized in Algorithm
1. First, it initializes each variable as line 1. Then, the
algorithm alternatively updates each variable group one by one
(line 3-7) until it converges or the maximum iteration number
tmaz 18 reached. The algorithm finally outputs the complete
networks A7, A3 (line 10), and the alignment matrix S by
averaging between UQMUlT and H (line 11).

B. Proof and Analysis

In this subsection, we provide the theoretical analysis of
the updating rule of U;. We first prove that the fixed-
point solution of Eq. (16) satisfies the KKT condition. Then
we analyze its convergence, as well as its time and space
complexity. The analyses and proofs for other variables are
similar and are omitted here for brevity.

Theorem 1. Optimality of Eq. (16). At convergence, the fixed-
point solution of Eq. (16) satisfies the KKT condition.

Proof. Let ¥ € R™*" be the Lagrangian multiplier. Define
the Lagrangian function w.r.t U; of Eq. (12) as

L(Uy) = J(Up) - Te(E7UY)
By setting the gradient of L w.r.t U; to 0, we obtain
=X +Xo+X3-Y1 -Y>2-Y3 (22)

The KKT complementary condition for the nonnegativity of
U; gives

X1 +Xe+X3-Y;-Y,-Y3)0U; =0 (23)

According to the updating rule Eq. (16), at convergence, we

have
Y +Y2:+Y; 1

U, =U,06 24
' ' (Xl + X2 + X3 &9

which is equivalent to
(X1 +X+X3-Y1 - Y, - Y3)0(Uy)* =0 (25

Eq. (23) and Eq. (25) are equivalent, so we can see that
at convergence, Eq. (16) satisfies the KKT condition, which
guarantees a local optimum. O

Then, we show the convergence of updating U; under
Eq. (16). First, the following lemma gives the auxiliary func-
tion for the objective function Eq. (12) w.r.t Uj.

Lemma 2. Auxiliary function of J(U1). Let J(Uy) denote
all the terms in Eq. (12) that contains Uy, then the following

Sfunction Z(Uy,Uy)

Z(U1,ﬂ1) = —’YTl - BTQ - ﬁTS
1 o T Ui(p.9) + Ui(p,9)

= > _[(Pa, © A1) V1](p, @) Ui(p, g)(1 + log Eigz Z;)

3U1(p,q) + Ul(p,q)

+ Z(%fh(p, q) + 15 Xa(p. 9)) o a)

p,q

P,q
B < Ui(p, q)
2 pzq: Ui(p, q)

where Xg is same as Xgo except that Xg is in terms of le,
while Xg is w.r.t Uy. X3 is defined similarly. And

Ti= Y (M'U3U5V;UxM)(0,q)Vi(p,m)Ui(s,7)Ui(s,0)
o0,p,q,7,8

O o G G,

T = Z P, (p,0)Vi(o,q)(M" U3 Ay UsM)(s,7) U1 (o, 5)

0,0,4,7,8

N - Ui(p,q)Ui(o,s)Ui(p,r)
U1 , T Ul 9 10 i - -
x Ui(p,r)Ur(p,q)(1 + gUl(p’q)Ul(()’S)Ul(p’r)
Ty = ) [M'U](Pg, ©(V2U3))U2M|(s, q) A1 (p,7)Us(r, s)

p,q,7,8
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Xﬁ1p7q 1+ log = =
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is an auxiliary function for J(Uy) such that Z(Uy, Uy) >
J(Uy) and Z(U1,Uy) = J(Uy). And it is also a convex
function w.rt Uj.

Proof. Omitted for brevity. O

Next, we show the convergence of updating U; by Eq. (16)
in the following theorem.

Theorem 2. Convergence of Eq. (16). When other variables
are fixed, under the updating rule Eq. (16), the objective
function w.r.t Uy monotonically non-increases.

Proof. Omitted for brevity. O

The time and space complexity of each updating iteration
in Algorithm 1 are summarized in Lemma 3. Note that by
exploring the low-rank structure of the alignment matrix, the
time complexity is reduced to linear.

Lemma 3. Complexity of INEAT. The time complexity of
Algorithm 1 is O(nr? + min{|Q|, |Q|}r), and the space com-
plexity is O(nr+min{|Q|, |Q|}) where n, 2, Q are the number
of nodes, the number of observed and unobserved entries in
two incomplete networks respectively. And r denotes the rank
of networks.

Proof. Omitted for brevity. O

We remark that the linear complexity is obtained in each
updating iteration of Algorithm 1. If we carry out line 10-11
in a straightforward way, it will incur an additional O(n?)
cost due to the multiplications between low-rank matrices
(e.g., U1V1T, U,;MUy,, etc.) as well as the need to store the
potentially dense matrices (e.g., A}, S, etc). To address this
issue, we can store the resulting A}, A3 and S in a compact
way by the corresponding low-rank matrices. Then when we
access a certain entry of the matrix (e.g. A}), we perform the
vector-vector inner product between the corresponding rows
of U; and V;.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
proposed algorithm INEAT. We evaluate our algorithm in the
following two aspects:

e Effectiveness: How accurate is our algorithm for aligning
incomplete networks? How effective is our algorithm to
recover missing edges by leveraging the alignment result?

o Efficiency: How fast and scalable is our algorithm?

A. Experimental Setup

Datasets. We evaluate the proposed algorithm on three types
of real-world networks, including the collaboration network,
infrastructure network and social networks. The statistics of
all the datasets are summarized in Table II.

o Collaboration Network: We use the collaboration network
in the general relativity and quantum cosmology (Gr-Qc)
area from the e-print arXiv [11]. In the network, each
node represents an author and there exists an edge if two
authors have co-authored at least one paper.

TABLE II: Statistics of Datasets.

Category Network | # of Nodes | # of Edges
Collaboration Gr-Qc 5,241 14,484
Infrastructure Oregon 7,352 15,665

Social Google+ 23,628 39,194
Social Youtube 1,134,890 2,987,624

e Infrastructure Network: This dataset is a network of
Autonomous Systems (AS) inferred from Oregon route-
view [11]. In the network, nodes are the routers, and
edges represent the peering information among routers.

e Social Networks: We use the social network collected
from Google+ [12]. In the network, nodes are the users
and an edge denotes that one user has the other user
in her circles. We also use the Youtube network [13]
where nodes are the Youtube users and edges represent
the friendship among users.

Based on these datasets, we construct four pairs of incom-
plete networks for alignment evaluations by the following
steps. For each dataset, we first generate a random permu-
tation matrix and use it to construct the second (permuted)
network. Then, in each of these two networks, we remove
0.1%,0.5%, 1%, 5%, 10%, 15%, 20% of the total number of
edges uniformly at random to generate the unobserved edges.
We run our algorithm and other comparison methods in all the
pairs of incomplete networks.

Comparison Methods.

o Alignment. To evaluate the alignment performance of
our proposed algorithm INEAT, we compare it with the
following existing network alignment algorithms, includ-
ing (1) NetAlign [14], (2) IsoRank [6], (3) FINAL-P+
[5]. Besides, in order to validate whether alignment and
imputation are mutually beneficial from each other, we
use the low-rank networks completed solely by Eq. (2) as
the input networks for FINAL-P+. We name this method
as FINAL-IMP. We also show the alignment results by
the degree similarity (DegSim), which is also used as the
prior knowledge matrix H of INEAT.

o Completion. To evaluate the completion performance, we
compare our algorithm with the existing matrix comple-
tion methods which are for the single network completion
task, including (1) a matrix factorization method based on
Eq. (2) (NMF-IMP), (2) an accelerated proximal gradient
based nuclear norm minimization method (NNLS) [15],
(3) a Riemannian trust-region based matrix completion
method (RTRMC) [16].

Machines and Repeatability. All experiments are performed
on a Windows machine with four 3.6GHz Intel Cores and 32G
RAM. The algorithms are programmed with MATLAB using
a single thread.

B. Effectiveness Analysis

We first evaluate the alignment accuracy with different
numbers of unobserved edges in the incomplete networks. We
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use a heuristic greedy matching algorithm as the post pro-
cessing step on the alignment matrix to obtain the one-to-one
mapping matrix between two input networks, then compute
the alignment accuracy with respect to the ground-truth (i.e.,
the permutation matrix). The results are summarized in Figure
3. We have the following observations. First, we observe
that INEAT outperforms the baseline methods with different
numbers of unobserved edges. To be specific, our method
achieves an up to 30% alignment accuracy improvement,
compared with the baseline methods that directly align across
two incomplete networks (i.e., NetAlign, IsoRank, FINAL-
P+). Second, the degree similarity (i.e., H) alone gives a
very poor performance on the alignment accuracy, whereas by
averaging H and U,MU}, the alignment matrix (i.e., results
of INEAT) provides a much better accuracy. This verifies
the effectiveness of our strategy combining the low-rank
structure of alignment matrix and prior knowledge H. Third,
the accuracy of INEAT is higher than that of FINAL-IMP,
which indicates that solving the alignment and imputation
tasks simultaneously indeed achieves a better performance
than the completion-then-alignment strategy. Specifically, as
Figure 3(a) and Figure 3(b) show, in some cases, the pure
completion may introduce too much noise in the incomplete
networks and hence lead to an even worse alignment result
than that of other alignment baseline methods (those without
performing network completion at all).

Second, to evaluate the effectiveness of INEAT for network
completion, we assume the missing edges are recovered if the
corresponding entries of the completed adjacency matrix are

larger than a certain threshold (e.g., set to be 0.3 in our paper).
Then, we calculate the recovery rate over the total number
of missing edges. The results are shown in Figure 4. As we
can see, INEAT has a higher recovery rate than other baseline
methods, indicating that the completion performance is indeed
improved by leveraging the alignment across two networks.

Third, we study how different parameters affect the align-
ment accuracy. In our experiments, we mainly study three
parameters, including (1) ~ which controls the importance
of alignment task, (2) S which controls the importance of
cross-network completion task, and (3) r which is the rank
of the complete network. The results are shown in Figure
5. As we can see, the alignment accuracy is stable within a
wide range of parameter settings. Besides, Figure 5(c) suggests
that a relatively small rank might be sufficient to achieve a
satisfactory alignment performance.

C. Efficiency Analysis

Quality-Speed Trade-off. In order to evaluate the trade-off
between the effectiveness and efficiency of our method, we
measure the quality from two aspects, including the quality
of alignment and that of network completion. Here, we show
the trade-off results on the collaboration network with 10%
unobserved edges in Figure 6. As we can see in Figure 6(a),
the running time of our method INEAT is slightly higher than
IsoRank and FINAL-P+, but it achieves a 15%-25% align-
ment accuracy improvement across the incomplete networks.
Meanwhile, our method is much faster than NetAlign.

On the other hand, to evaluate the quality of network
completion, note that the running time is the time for complet-
ing two incomplete networks. As Figure 6(b) shows, INEAT
obtains a better recovery rate and less running time. To be
specific, compared with NMF-IMP, INEAT can recover 10%
more missing edges with a similar running time. Besides,
INEAT achieves a slightly better recovery rate and a much
faster speed than NNLS and RTRMC.

Scalability. We use the largest dataset (Youtube) to study
the scalability of our proposed method INEAT (i.e., running
time vs. size of the network). Here, we use the same method
to extract and construct several pairs of incomplete subgraphs
with different sizes from the entire network. As we can see
from Figure 7, the running time of the algorithm is linear w.r.t
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the number of nodes in the networks which is consistent with
our time complexity analysis.

VI. RELATED WORK

Network Alignment. Network alignment is a fundamental
task in many real-world applications, including bioinformatics
[17], computer vision [18], database [19] and data mining [5].

Many network alignment algorithms are based on the
topology consistency. For example, one well-known method
IsoRank computes the cross-network pairwise topology simi-
larities by a weighted sum of the similarities of their neigh-

boring node pairs and it is shown that this can be formulated
as a random walk propagation procedure in the Kronecker
product graph [6]. In addition, IsoRankN extends the original
IsoRank algorithm by using PageRank-Nibble to align multiple
networks [17]. Koutra et al. propose BigAlign algorithm to
align across the bipartite networks which assumes that one
network is the noisy permutation of the other network and
infers the soft alignment by using alternative projected gradient
descent method [2]. Zhang et al. use the similar permutation
assumptions of the networks and introduce an additional
transitivity property to align multiple networks based on the
topology information [1]. From a different point of view,
NetAlign formulates the network alignment problem as an
integer programming problem to maximize the number of
"squares", i.e., the number of neighboring node pairs that are
aligned [14]. And it is solved by a message-passing approach.

More recently, there are alignment algorithms to align the
attributed networks. For instance, COSNET formulates the
local consistency among the attributes of each node and
the global topology consistency, as well as the transitivity
property into an energy-based model to find the alignment
across two attributed networks [20]. Zhang et al. propose an
attributed network alignment algorithm by adopting both the
topological and attribute consistency principles [S]. This work
formulates these consistency principles into a convex quadratic
problem and propose a fixed-point solution to solve it. For the
similar cross-site user identification problem, Zafarani et al.
[21] models the user behaviors based on human limitations,
exogenous and endogenous factors. However, most, if not
all, of the existing methods implicitly assume that the input
networks are complete without missing edges.

Network Completion. On the other side, since the real-
world networks are often incomplete, the network completion
task is often the very first step prior to many applications in
order to gain a better performance.

Kim et al. propose an Expectation Maximization (EM)
based method that fits the network structure under the Kro-
necker graph model and re-estimates the parameters using a
scalable Gibbs sampling approach iteratively [22]. Another
work proposed by Masrour et al. decouples the network
completion from transduction so that the node similarity



matrix can be efficiently leveraged as the side information
[3]. In addition, inferring the missing edges in the incomplete
network can be considered as an adjacency matrix completion
problem, and hence the network completion problem can
be naturally solved by many matrix completion approaches.
Among them, one well-known method is based on singular
value thresholding (SVT) which iteratively shrinkages the
singular values to minimize the nuclear norm [23]. In order
to speed up the completion process, Toh and Yun propose an
accelerated proximal gradient algorithm to solve the nuclear
norm regularized linear least squares problem [15]. Besides, by
exploiting the geometry of the low-rank structure constraint, a
first-order and second-order Riemannian trust-region approach
is proposed to solve the formulated optimization problem on
the Grassmann manifold [16]. In addition, there are some
recent work to complete multiple aligned networks by tensor
completion [24], [4]. Nonetheless, how these input networks
are aligned at the first place was not answered in these work.

VII. CONCLUSION

In the era of big data, the multi-sourced and incomplete
characteristics often co-exist in many real networks. Nonethe-
less, the state-of-the-arts has been largely addressing them in
parallel. In this paper, we propose to jointly address network
alignment and network completion so that the two tasks can
mutually benefit from each other. We formulate incomplete
network alignment problem as an optimization problem and
propose a multiplicative update algorithm (INEAT) to solve
it. The proposed algorithm is proved to converge to the KKT
fixed point with a linear complexity in both time and space. To
our best knowledge, the proposed INEAT algorithm is the first
network alignment algorithm with a provable linear complex-
ity. The empirical evaluations demonstrate the effectiveness
and efficiency of the proposed INEAT algorithm. Specially, it
(1) improves the alignment accuracy by up to 30% over the
existing network alignment methods, in the meanwhile leads
a better imputation outcome; and (2) achieves a good quality-
speed balance and scales linearly w.r.t the number of nodes in
the networks. Future work includes extending our algorithm
to handle attributed networks.
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