
N2N: Network Derivative Mining
Jian Kang∗

University of Illinois at Urbana-Champaign
jiank2@illinois.edu

Hanghang Tong∗
University of Illinois at Urbana-Champaign

htong@illinois.edu

ABSTRACT

Network mining plays a pivotal role in many high-impact appli-
cation domains, including information retrieval, healthcare, social
network analysis, security and recommender systems. State-of-the-
art offers a wealth of sophisticated network mining algorithms,
many of which have been widely adopted in real-world with supe-
rior empirical performance. Nonetheless, they often lack effective
and efficient ways to characterize how the results of a given mining
task relate to the underlying network structure.

In this paper, we introduce network derivative mining prob-
lem. Given the input network and a specific mining algorithm,
network derivative mining finds a derivative network whose edges
measure the influence of the corresponding edges of the input net-
work on the mining results. We envision that network derivative
mining could be beneficial in a variety of scenarios, ranging from
explainable network mining, adversarial network mining, sensitiv-
ity analysis on network structure, active learning, learning with
side information to counterfactual learning on networks. We pro-
pose a generic framework for network derivative mining from the
optimization perspective and provide various instantiations for
three classic network mining tasks, including ranking, clustering,
and matrix completion. For each mining task, we develop effective
algorithm for constructing the derivative network based on influ-
ence function analysis, with numerous optimizations to ensure a
linear complexity in both time and space. Extensive experimental
evaluation on real-world datasets demonstrates the efficacy of the
proposed framework and algorithms.

CCS CONCEPTS

• Information systems→ Data mining; Link and co-citation

analysis;Clustering;Collaborative filtering; •Discretemath-

ematics → Graph algorithms; • Theory of computation →
Adversarial learning;

KEYWORDS

Network mining; network intervention; framework
ACM Reference Format:

Jian Kang and Hanghang Tong. 2019. N2N: Network Derivative Mining.
In The 28th ACM International Conference on Information and Knowledge

∗This work was partly done while the authors were at Arizona State University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357910

Management (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3357384.3357910

1 INTRODUCTION

Network mining plays a pivotal role in many important real-world
applications, including information retrieval [23, 36], healthcare
[39], social network analysis [41], security [45], and recommender
systems [15]. Throughout the years, researchers have developed
many networkmining algorithms for variousmining tasks. To name
a few, HITS [23] is a well-known andwidely used ranking algorithm
to measure node importance by considering the network structure;
spectral clustering [34] is a popular technique for community de-
tection and image segmentation; and matrix factorization-based
completion [26] on a bipartite network is a key enabling technology
for modern recommender systems.

State-of-the-art network mining algorithms have been widely
adopted in various real-world applications, which often deliver a
strong empirical performance in finding interesting patterns, e.g.,
which webpages are the most important, who are grouped into the
same online community and which movies best suit users’ tastes,
etc. Despite the tremendous progress, it remains opaque on how the

results of a given mining algorithm relate to the underlying network

structure. Consequently, it is often hard to answer questions like how
the ranking results for webpagesmight bemanipulated bymalicious
link farms; why two seemingly different users are grouped into the
same online community; how sensitive the recommendation results
are due to the random noisy or fake ratings; what would have
happened to the epidemic dynamics if we had distributed vaccines
in a different way, etc.

To tackle this issue, we propose a paradigm shift of network
mining and introduce network derivative mining (N2N) problem.
To be specific, given an input network and a mining algorithm, it
aims to find a derivative network, each of whose edges provides
a quantitative measurement of the influence of the corresponding
edge of the input network on the given mining algorithm. In detail,
we define the influence of edges as the rate of change of a function
over the mining results induced by the given mining algorithm. We
envision that network derivative mining will benefit a variety of
aspects. First, it is directly applicable to adversarial network mining,
where users can identify potential edges which, if attacked, will
drastically affect network mining results. Second, it will render the
crucial explainability of the network mining model, by identifying
the most responsible/relevant edges for the mining results. It can
further help answer questions like why a node belongs or does not
belong to a certain cluster. Third, the derivative network can be
used as a quantitative reference for sensitivity analysis on network
structure. Fourth, the network derivative mining has great potential
in active learning where edges with the high influence act as the
most valuable data points to query the oracle. Fifth, it will offer an
effective way to encode side information to boost some network

https://doi.org/10.1145/3357384.3357910
https://doi.org/10.1145/3357384.3357910

mining tasks, e.g., to learn an optimal network based on user feed-
back [31]. Finally, it allows the end users to quickly examine how
the mining results would differ should the underlying network have
changed, and thus it naturally fits for counterfactual learning on
networks.

Besides the problem definition, the main contributions of this
paper are summarized as follows.

• Algorithmic Framework. We formulate network deriva-
tive problem as an optimization problem, and propose a
generic algorithmic framework. Its key idea is to measure
the influence as the rate of change of a scalar valued function
over the given network mining task.

• Instantiations and Computation. We instantiate the pro-
posed framework by three classic network mining tasks,
including ranking, clustering and completion. For each task,
we propose effective and efficient algorithm to construct the
corresponding derivative network with a linear complexity
in both time and space.

• Empirical Evaluations.We perform extensive experiments
on diverse, real-world datasets. The experimental results
demonstrate that our proposed method (a) is effective in
adversarial network mining for different instantiations and
(b) scales linearly with respect to the number of nodes and
edges in the network.

The rest of the paper is organized as follows. Section 2 formally
defines the network derivative mining problem. Section 3 proposes
a generic framework for network derivative mining problem. We
provide three examples of network derivative mining in Section 4.
Experimental evaluations are shown in Section 5. After reviewing
related work in Section 6, we conclude the paper in Section 7.
2 PROBLEM DEFINITION

In this section, we first present a table of symbols used throughout
the paper (Table 1). Then we review the general procedure of classic
network mining tasks. Finally, we formally define the network
derivative mining problem.

Table 1: Table of Symbols

Symbols Definitions and Descriptions

G = (V, E) the input network
(i, j) edge from node i to node j
A a matrix

A(i, j) the element at the ith row and the jth column
A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A′ transpose of the matrix A
A−1 inverse of the matrix A
u a vector
u(i) the ith element of vector u
I(i, j) the influence of edge (i, j)
L(·) the loss function for a mining task
Y∗ the optimal model output
θ a set of parameters

f (Y∗) a scalar function over the mining results
n number of nodes
m number of edges

In this paper, we denote matrices with bold upper-case letters
(e.g., A), vectors with bold lower-case letters (e.g., x), sets with
calligraphic fonts (e.g., S), and scalars with lower-case letters (e.g.,
c). For matrix indexing conventions, we use the rules similar to
Matlab as follows. We use A(i, j) to denote the entry of matrix A
at the ith row and the jth column, A(i, :) to denote the ith row of
matrix A, and A(:, j) to denote the jth column of matrix A. We use
prime to denote the transpose of matrix (i.e., A′ is the transpose of
matrix A).

Generally speaking, given a networkAwithn nodes andm edges,
a network mining algorithm aims to learn mining resultsY∗ by op-
timizing a loss function L(A,Y,θ), whereY∗ = argminYL(A,Y,θ)
is the optimal model output, and θ is a set of additional parameters
that corresponds to a specific mining task. Let us illustrate this
using three classic examples. Table 2 presents a summary.

The first example is HITS [23], which is a widely-used ranking
algorithm that measures the importance of nodes with hub scores u
and authority scores v for network structure analysis. It solves the
linear system u = Av, v = A′u, which can be naturally formulated
as the following optimization problem,

min
u,v

| |A − uv′ | |2F (1)

The second example is spectral clustering, which aims to find
a matrix U with r orthonormal column vectors by the following
optimization problem,

min
U

Tr(U′LU)

s.t. U′U = I
(2)

where L is the Laplacian matrix of adjacency matrix A, and r is the
number of clusters. It is well-known that U′LU is essentially the
diagonal matrix of the r smallest eigenvalues of L, and columns in
U are the associated eigenvectors.

The third example is matrix-factorization based completion,
where we are given a bipartite network A with n1 users, n2 items
and m observations. We denote A(i, j) as the rating of the jth

item made by the ith user. With the low-rank assumption, ma-
trix factorization-based completion finds two low-rank matrices
with r latent factors, namely U and V, such that

min
U,V

| |projΩ(A − UV′)| |2F + λu | |U| |
2
F + λv | |V| |

2
F (3)

where Ω = {(i, j) : A(i, j) is observed}, λu and λv are two hyperpa-
rameters for regularization. Each row of the factorized n1×r matrix
U andn2×r matrixV represent a latent vector for the corresponding
user and item, respectively.

Though these network mining algorithms have achieved a re-
markable empirical performance in finding various patterns for
the corresponding network mining tasks, they often lack effective
and efficient ways to characterize how such results relate to the
input network’s structure. Following an overarching principle laid
in [20, 24], we adopt influence functions to quantify the impact of
network structure (e.g., edges) when perturbed. Based on that, we
propose to go the extra mile to further construct a derivative net-
work, where each edge measures the influence of the corresponding
edge of the input network on the given mining algorithm. Formally,
we define the network derivative mining problem as follows.

Problem 1. Network Derivative Mining Problem (N2N).

Input: (1) an input network with adjacency matrix A; and (2)
a network mining algorithm represented as L(A,Y,θ), where L(·)
is the loss function, Y∗ = argminYL(A,Y,θ) is the model output,
and θ contains all the additional parameters.

Output: a derivative network B, which has the same node set as
the input network A, where B(i, j) measures the influence of edge
A(i, j) on Y∗, and B(i, j) = 0 if A(i, j) does not exist.

Remarks. In this paper, we focus on the derivatives of existing
edges (i.e., A(i, j) = 1). Nonetheless, the proposed technique for
computing the influence B(i, j) naturally applies to non-existing
edges (i.e., A(i, j) = 0).
3 N2N ALGORITHMIC FRAMEWORK

In this section, we present a generic algorithmic framework for
network derivative mining problem. We first define the influence of
edges, and then formulate the network derivative mining problem
from the optimization perspective, followed by a generic algorith-
mic framework to solve it. Formally, we define the influence as the
rate of change in f (Y∗) for different edges.

Definition 1. (Edge Influence). Let B be the derivative network,

Y∗
be the optimal result of a network mining task, and f (·) be a

scalar function defined over the mining result Y∗
, the influence of

an edge (i, j) is defined as the derivative of f (Y∗) with respect to

the corresponding edge in the input network A, i.e., I(i, j) = B(i, j) =
df (Y∗)

dA(i, j) .

Based on Definition. 1, the network derivative mining problem
can be naturally formulated as the following optimization problem,

B =
df (Y∗)

dA
s.t. Y∗ ∈ argmin

Y

L(A,Y,θ)
(4)

where L(·) is the loss function of a network mining task with θ
being the additional parameters from Table 2. To be specific, we
have that

B =
df (Y∗)

dA
=

{
∂f (Y∗)

∂A + (
∂f (Y∗)

∂A)′ − diag(∂f (Y
∗)

∂A), if undirected
∂f (Y∗)

∂A , if directed
(5)

We can see that for both directed and undirected networks, the
key to constructing the derivative network B is ∂f (Y∗)

∂A . Therefore,
in the remaining of this paper, we will mainly focus on effective and
efficient computation of this quantity (i.e. ∂f (Y

∗)

∂A). Based on Eq. (5),
we propose a generic algorithmic framework to solve Problem 1,
which is summarized in Algorithm 1. The key idea is to generate the
derivative network by applying Eq. (4) and (5). In Algorithm 1, it
first runs the network mining algorithm and get the optimal model
output Y∗ (step 1). Based on the output Y∗ and the corresponding
scalar function f , it calculates the partial derivatives of f (Y∗) with
respect to the network adjacency matrix A (step 2), and then uses
it to generate the derivative network finally (step 3).

There are two key challenges remained in Algorithm 1,
• (C1) How to compute Eq. (4) to generate the derivative

network? The key step to compute Eq. (4) requires the par-
tial derivative of the optimal mining result Y∗ with respect

Algorithm 1: N2N Algorithm Framework
Input :The adjacency matrix A, a mining algorithm

L(A,Y,θ), and a scalar function f (·).
Output :The derivative network B.

1 calculate Y∗ = argmin
Y

L(A,Y,θ) ;

2 calculate partial derivative ∂f (Y∗)

∂A ;
3 generate derivative network B = df (Y∗)

dA by Eq. (5) ;
4 return B;

to the entire input network A, and the optimal mining result
Y∗ itself involves a potentially complicated optimization
problem.

• (C2)How to scale up the computation to large networks?

Even if we can compute the influence of each edge with a
reasonable time complexity (e.g. linear complexity w.r.t. the
input network size), the entire Algorithm 1 (which iterates
over every edge and calculates the corresponding influence)
could still bear a superlinear complexity in both time and
space, which makes it hard to scale up to large networks.

In the next section, we instantiate the proposed framework us-
ing three classic network mining tasks with effective and efficient
algorithms to address these two challenges.

4 N2N INSTANTIATION AND COMPUTATION

In this section, we provide the instantiations of the proposed frame-
work for three classic network mining tasks shown in Table 2. For
each mining task, we start with the specific choice of f (·) function,
then present the mathematical details on how to compute the de-
rivative network B (i.e., C1 challenge), and finally design efficient
ways to scale-up the computation (i.e., C2 challenge).
4.1 Instantiation #1: Ranking by HITS

A. Choice of f (·) function. Given an input network G = (V, E)

with A being the adjacency matrix, and let u and v be its associated
hub vector and authority vector, respectively, HITS algorithm iter-
atively solves the linear equations u = Av, v = A′u until converge
to find the final hub and authority vectors. It is well-known that the
hub vector u is the principal eigenvector associated with the leading
eigenvalue of AA′, while the authority vector v is the principal
eigenvector associated with the leading eigenvalue of A′A.

Our choice of f (·) function for HITS is inspired by [35], which
proves that hubs and authorities are actually sensitive to the eigen-
gap of AA′ and A′A. Furthermore, it is known that the eigenvalues
of AA′ and A′A are the same. Therefore, we choose the scalar func-
tion over the mining results f (·) to be the eigengap between first
and second largest eigenvalues to reflect the stability of the ranking
results. That is, f (Y∗) = λ1 − λ2, where λ1 and λ2 are the first and
second largest eigenvalues of AA′ and A′A.
B. Calculating the derivative network B. A key step in gener-
ating the derivative network B is to calculate the partial derivative
∂f (Y∗)

∂A =
∂λ1
∂A −

∂λ2
∂A , which is summarized in Lemma 1.

Lemma 1. For a given input network with adjacency matrix A, the
partial derivative of eigengap with respect to the adjacency matrix is

∂f (Y∗)

∂A = 2(u1u′1A − u2u′2A), where u1 and u2 are the eigenvectors
associated with λ1 and λ2, respectively.

Table 2: Examples of Network Mining Algorithms

Mining Tasks Loss Function L Mining Results Y Additional Parameters θ 1
Scalar Function f (·)

Ranking by HITS min
u,v

| |A − uv′ | |2F
hub vector u none f (Y∗) = λ1 − λ2authority vector v

Spectral Clustering min
U

Tr(U′LU) matrix U number of clusters r f (Y∗) =
r∑
i=1

λi
s.t. U′U = I

Matrix Completion min
U,V

| |projΩ(A − UV′)| |2F user matrix U latent dimensions r
f (Y∗) = | |UV′ | |2F

+λu | |U| |2F + λv | |V| |
2
F item matrix V regularization parameters λu , λv

Proof. We mainly show how to calculate ∂λ1
∂A since ∂λ2

∂A can be
calculated in a very similar way. The key idea is to obtain the repre-
sentation of ∂λ1

∂A(i, j) , which is the partial derivative with respect to
each element in A. By the chain rule of matrix derivative, we have
that ∂λ1

∂A(i, j) = Tr[(∂λ1
∂AA′)

′ ∂AA′

∂A(i, j)].
We follow a similar strategy to calculate the first term in the

chain rule by computing ∂λ1
∂(AA′)(i, j) . Since AA

′ is a real symmetric
matrix, the partial derivative of its eigenvalue can be written as

∂λ1
∂(AA′)(i, j)

= u′1
∂AA′

∂(AA′)(i, j)
u1 = u′1(i)u1(j) (6)

where u1 is the eigenvector associated with λ1. By Eq. (6), we
can write out its matrix form solution where each element is the
derivative of eigenvalue with respect to the corresponding element
in AA′ as follows

∂λ1
∂AA′

= u1u′1 (7)

Then we show how to calculate the second term in chain rule
∂AA′

∂A(i, j) . By property of derivative of matrix multiplication, we have
that

∂AA′

∂A(i, j)
=
∂A

A(i, j)
A′ + A

∂A′

A(i, j)
= Si jA′ + ASji (8)

where Si j is a single-entry matrix with 1 at the ith row and the jth
column and 0 elsewhere. Putting Eq. (7) and Eq. (8) together, we
have that ∂λ1

∂A(i, j) = 2[u1(i)(u′1A)(j)]. With that in mind, we obtain
its matrix form solution as

∂λ1
∂A
= 2u1u′1A (9)

Following the same strategy for the second largest eigenvalue λ2,
we can write out ∂λ2

∂A(i, j) = 2[u2(i)(u′2A)(j)] with the matrix form
solution to be

∂λ2
∂A
= 2u2u′2A (10)

Combining Eq. (9) and Eq. (10) together, we obtain the matrix
form solution to complete the proof, i.e.,

∂ f (Y∗)

∂A
=
∂λ1
∂A

−
∂λ2
∂A
= 2(u1u′1A − u2u′2A) (11)

where each element in the matrix is its partial derivative with
respect to corresponding element in the adjacency matrix A. □

Based on Lemma 1, the derivative network B can be calculated
by applying Eq. (11) and Eq. (5).
1It is worth mentioning that our proposed N2N framework is applicable to other
choices of loss function f (·) as long as it is a differentiable or subdifferentiable scalar
valued function, e.g., Lp norm of a vector, L1/L2 norm of a matrix, soft maximum

to approximate the largest entry value in the vector, etc. It would be an interesting
future direction to study (1) how to automatically choose the ‘best’ loss function for

C. Scale-up Computation. We have shown in Lemma 1 how to
calculate B. However, directly calculating u1u′1A and u2u′2A in
Eq. (11) requires matrix-matrix multiplication for n × n matrices,
which would impose an Ω(n2) lower-bound on the complexity. To
address this issue, we explore the low-rank structure of Eq. (11),
where u1 is the n × 1 eigenvector and u′1A is a 1 × n row vector.
Similar properties also hold for u2 and u′2A. Furthermore, since u1
is the eigenvector of AA′ which is actually the first left singular
vector associated with the largest singular value of A, we can show
in Lemma 2 that u1u′1A can be computed by truncated singular
value decomposition (SVD) on A in a much more compact way.

Lemma 2. For a given input network with adjacency matrix A, the
partial derivative

∂f (Y∗)

∂A = 2(u1u′1A − u2u′2A) can be calculated by

a rank-2 truncated SVD on A.

Proof. Let δ1 and δ2 be the first and second largest singular
values associated with the left singular vectors u1 and u2, and let
v1 and v2 be the corresponding right singular vectors. By truncated
SVD on A, we have

A = [u1 u2]
[
δ1

δ2

] [
v′1
v′2

]
+ ∆ (12)

where ∆ =
∑

3≤i≤n
uiδiv′i is defined as the residual matrix. Note that

the left singular vectors are unitary, i.e. u′iuj = 0 if i , j, then

u1u′1A = u1u′1u1δ1v
′
1 + u1u

′
1u2δ2v

′
2 + u1u

′
1∆ = u1δ1v′1 (13)

Similarly, for u2u′2A, we have u2u
′
2A = u2δ2v′2. Combining it with

Eq. (13), we have that

∂ f (Y∗)

∂A
= 2u1u′1A − u2u′2A = 2u1δ1v′1 − u2δ2v′2

= 2[u1 u2]
[
δ1

−δ2

] [
v′1
v′2

] (14)

which is equivalent to truncated SVD on the adjacency matrix A
after reversing the second largest singular value δ2. □

To be specific, based on Lemma 2, for each edge A(i, j), we com-
pute the corresponding edge weight in the derivative network B
as B(i, j) = 2δ1u1(i)v1(j) − 2δ2u2(i)v2(j). Then, the derivative net-
work B can be easily computed by applying Eq. (5) with a linear
complexity in both time and space.

Lemma 3. (Time and space complexities). It takesO(m+n) in time

and O(m + n) in space to generate the derivative network B for HITS

on the input network A, where n is the number of nodes andm is the

number of edges.

a specific mining task, and (2) how to generalize the proposed N2N framework for
non-differentiable loss function.

Proof. It takes O(r (m + n) + r2n) time complexity to perform
the rank-r truncated SVD. Here we strictly let r = 2, which reveals
aO(m+n) time complexity. Computing the partial derivatives of all
edges takes O(m) time in total. And it takes O(m) time to calculate
the influence of all edges and generate the derivative network B.
Thus, the overall time complexity isO(m+n). For space complexity,
it takes O(m) space complexity to save the adjacency matrix A and
the derivative network B in sparse format. It also takes O(n) space
to save the rank-2 SVD results. Therefore it has O(m + n) space
complexity. □

4.2 Instantiation #2: Spectral Clustering

A. Choice of f (·) function. Here, we have an undirected net-
work G = (V, E) with A being the adjacency matrix. We have the
Laplacian matrix L = D−A, where D is the diagonal degree matrix
of A. Spectral clustering aims to find a matrix U by solving the
optimization problem in Eq. (2), that maximizes the intra-cluster
connectivity while minimizing the inter-cluster connectivity. Natu-
rally, we have Y∗ = U and define f (Y∗) = Tr(U′LU), which aligns
with the objective function of the spectral clustering.
B. Calculating the derivative network B. With our choice of
f (·) function shown above, key steps to calculate the partial deriv-
ative ∂f (Y∗)

∂A are summarized in Lemma 4.

Lemma 4. For a given input undirected network with adjacency

matrixA, the partial derivative of the sum of the r smallest eigenvalues

with respect to the adjacency matrix is
∂f (Y∗)

∂A = diag(UU′)1n×n −

UU′
, where columns in U are the associated eigenvectors, 1n×n is an

n × n matrix with all 1 as entries.

Proof. SinceU is the eigenvectors associated with the r smallest
eigenvalues, we let λi be the ith smallest eigenvalue and re-write

the objective as f (Y∗) = Tr(U′LU) =
r∑
i=1

λi . We first apply chain

rule to get the influence of each edge (i, j) as
∂ f (Y∗)

∂A(i, j)
= Tr[(

∂ f (Y∗)

∂L
)′
∂L
∂A(i, j)

] (15)

To calculate ∂f (Y∗)

∂L , we have the following,
∂ f (Y∗)

∂L(i, j)
=

r∑
l=1

(
∂λl
∂L(i, j)

) =

r∑
l=1

U(:, l)′Si jU(:, l) (16)

where Si j is a single-entry matrix with 1 at the ith row and the jth
column, and 0 elsewhere. With this, the matrix form solution of
∂f (Y∗)

∂L can be written as,
∂ f (Y∗)

∂L
= [

r∑
l=1

U(:, l)′Si jU(:, l)]1≤i≤n,1≤j≤n = UU′ (17)

Since L = D − A, we can calculate ∂L
∂A(i, j) as

∂L
∂A(i, j) = Sii − Si j .

Putting everything together, we have the partial derivative of
f (Y∗) with respect to A as follows,

∂ f (Y∗)

∂A
= diag(UU′)1n×n − UU′ (18)

where 1n×n is an n × n matrix with all 1 as entries. □
Then we can apply Eq. (5) to calculate its corresponding deriva-

tive network B.
C. Scale-up computation. Major computational challenges in
Eq. (18) lie in the matrix multiplication of diag(UU′)1n×n and UU′,
which, if computed in a straight-forward way, would requireO(n3)

complexity in time and O(n2) in space. We propose to address the
computational challenges by exploring the low-rank structure of
diag(UU′)1n×n − UU′.

Let us denote the ith row of U by u′i and use 1n×1 to denote
the n × 1 column vector filled by 1s and 11×n to denote the 1 × n
row vector filled by 1s , then diag(UU′)1n×n can be re-written as
follows,

diag(UU′)1n×n = diag(UU′)1n×111×n =

u′1u1
u′2u2
...

u′nun

 11×n (19)

such that the column vector is of size n × 1 and 11×n is a 1 × n row
vector. Then ∂f (Y∗)

∂A can be represented in the following low-rank
form,

∂ f (Y∗)

∂A
=

u′1u1
u′2u2
...

u′nun

 11×n −

u′1
u′2
...

u′n

 [u1 u2 ... un] (20)

With the low-rank structure, to get the partial derivative of edge
(i, j) (i.e. element at the ith row and the jth column in ∂f (Y∗)

∂A), we
can simply calculate it as u′iui −u′iuj . Then the influence of an edge
(i, j) can be calculated as B(i, j) = u′iui +u

′
juj −u′iuj −u′jui , which

takes O(r) in time. In this way, we achieve a linear time and space
complexity w.r.t. the input network size, as stated in the following
lemma.

Lemma 5. (Time and space complexities). It takesO(r (m+n)+r2n)
complexity in time and O(rn +m) in space to generate the derivative

network B for the task of spectral clustering, where n andm are the

numbers of nodes and edges of the input network respectively, and r
is the number of clusters.

Proof. It takes O(n) time to get the Laplacian matrix L and
O(r (m + n) + r2n) to perform a rank-r eigen-decomposition on L.
Precomputing u′iui for 1 ≤ i ≤ n in Eq. (20) takes O(rn) time com-
plexity. Then it takesO(rm) time to calculate the partial derivatives
and the influence of all edges in the derivative network. Thus the
overall time complexity to calculate the derivative network B is
O(r (m + n) + r2n). Regarding the space complexity, it takes O(m)

space to save the adjacency matrix A and the derivative network
B in sparse format. Also, it takes O(n) space to store the low-rank
form of diag(UU′)1 and O(rn) space to save the matrix U. Hence,
the space complexity is O(rn +m). □

4.3 Instantiation #3: Matrix Completion

A. Choice of f (·) function. For matrix factorization-based com-
pletion, it solves the optimization problem in Eq. (3) to find two
low-rank matrices, U and V with r latent factors. Here, the input is
a user-item bipartite network A with n1 users, n2 items andm ob-
servations, where A(i, j) is the rating of the jth item made by the ith
user. Since Â = UV′ is often used to complete/infer the missing en-
tries in the observed rating matrix A, we choose f (Y∗) = | |UV′ | |2F .
B. Calculating the derivative network B. Since the bipartite
network A is often represented as an asymmetric n1 × n2 matrix,
we have B = df (Y∗)

dA =
∂f (Y∗)

∂A by Eq. (5). Similar to the previous
two instantiations, we aim to get the representation of ∂f (Y∗)

∂A(i, j) and

then write out the matrix form solution. We first denote X = UV′

and then apply chain rule to get

∂ f (Y∗)

∂A(i, j)
=

n1∑
l=1

n2∑
t=1

∂ f (Y∗)

∂X(l , t)
∂X(l , t)
∂A(i, j)

(21)

However, it is non-trivial to calculate Eq. (21). We present an ac-
curate and efficient solution to calculate ∂f (Y∗)

∂X(l,t) and ∂X(l,t)
∂A(i, j) in

Lemma 6.

Lemma 6. For a given bipartite network A, with U and V being

the optimal model output of Eq. (3), the influence of (i, j) rating is

I(i, j) = 2U(i, :)V′VC−1
i V(j, :)′ + 2V(j, :)U′UD−1

j U(i, :)′, where Ci =
λu I+

∑
k ∈Ωi

V(k, :)′V(k, :), Dj = λv I+
∑

k ∈Ωj

U(k, :)′U(k, :), Ωi and Ωj

are sets of indices for non-zero entries of user i and item j.

Proof. We solve the two terms in Eq. (21) one by one. First,
we show how to compute ∂f (Y∗)

∂X(l,t) . Recall that we define f (Y∗) =

| |UV′ | |2F and X = UV′. By the derivative of matrix norm, we have
∂f (Y∗)

∂X = 2X = 2UV′. Thus, the partial derivative ∂f (Y∗)

∂X(l,t) can be
denoted as

∂ f (Y∗)

∂X(l , t)
= 2X(l , t) (22)

This completes the calculation of the first term ∂f (Y∗)

∂X(l,t) in Eq. (21).

Next, we show how to compute ∂X(l,t)
∂A(i, j) . Since X = UV′, we have

X(l , t) = U(l , :)V(t , :)′. Then the second term in Eq. (21) ∂X(l,t)
∂A(i, j) can

be re-written as ∂X(l,t)
∂A(i, j) =

∂U(l, :)
∂A(i, j)V(t , :)

′ + U(l , :)(∂V(t, :)
∂A(i, j))

′. How-

ever, it is hard to directly calculate ∂U(l, :)
∂A(i, j) and

∂V(t, :)
∂A(i, j) since there is

no straightforward closed-form solution for U and V with respect
to A(i, j). To solve this problem, we follow [30, 33] and consider the
KKT conditions of Alternating Least Square (ALS) method, which
are shown as follows,

λuU(l , :) =
∑
k ∈Ωl

(A(l ,k) − U(l , :)V(k, :)′)V(k, :)

λvV(t , :) =
∑
k ∈Ωt

(A(k, t) − U(k, :)V(t , :)′)U(k, :)
(23)

where Ωl and Ωt are sets of indices for non-zero entries of user
l and item t , respectively. Following the equations in Eq. (23), we
obtain the following partial derivatives,

∂U(l , :)
∂A(i, j)

=

V(j, :)[λu I +

∑
k ∈Ωl

V(k, :)′V(k, :)]−1, if i = l

0, otherwise

∂V(t , :)
∂A(i, j)

=

U(i, :)[λv I +

∑
k ∈Ωt

U(k, :)′U(k, :)]−1, if j = t

0, otherwise
(24)

Since Cl = λu I+
∑

k ∈Ωl
V(k, :)′V(k, :),Dt = λv I+

∑
k ∈Ωt

U(k, :)′U(k, :),

we have the following equation

∂X(l , t)
∂A(i, j)

= V(j, :)C−1
i V(t , :)′ + U(l , :)D−1

j U(i, :)′ (25)

Combining Eq. (22) and Eq. (25), we re-write Eq. (21) as

∂ f (Y∗)

∂A(i, j)
= 2

m∑
t=1

U(i, :)V(t , :)′
∂U(i, :)
∂A(i, j)

V(t , :)′

+ 2
n∑
l=1

U(l , :)V(j, :)′U(l , :)(
∂V(j, :)
∂A(i, j)

)′

= 2
m∑
t=1

U(i, :)V(t , :)′V(j, :)C−1
i V(t , :)′

+ 2
n∑
l=1

U(l , :)V(j, :)′U(l , :)D−1
j U(i, :)′

= 2U(i, :)V′VC−1
i V(j, :)′ + 2V(j, :)U′UD−1

j U(i, :)′

(26)

which completes the proof. □
C. Scale-up computation. Simply calculating the influence by
Eq. (26) will take O(r2(n1 + n2)) time complexity for each rating.
Therefore, the amortized time complexity will still be superlinear
w.r.t. the network size (O(r2(n1+n2)m)), whichmakes it not scalable
to large networks. However, if we take one more look at Eq. (26),
we can find out that C−1

i for each user i , D−1
j for each item j, U′U

and V′V are globally shared by all elements in A. Thus, we can
precompute them for all users and items once we have trained the
optimal model outputU andV. With the help of precomputation, for
each edge A(i, j) in the input bipartite network A, we can calculate
its influence asB(i, j) = 2U(i, :)V′VC−1

i V(j, :)′+2V(j, :)U′UD−1
j U(i, :

)′ in O(r) time. Since we only compute B(i, j) for observed rating
A(i, j), we efficiently reduce the overall time complexity to be linear
w.r.t. the input network size.

Lemma 7. (Time and space complexities). The amortized time com-

plexity to generate the derivative network B is O(r3(n1 + n2) + r2m),

where n1 and n2 are numbers of users and items, r is the dimension of

latent factors, andm is the total number of observed ratings. It takes

O(r2(n1 + n2) +m) complexity in space.

Proof. It takesO(r3(n1+n2)+r2m) to train the model by ALS. It
takesO(r2 |Ωi |) andO(r2 |Ωj |) to precomputeCi andDj , where |Ωi |

and |Ωj | are the number of observed feedback for user i and item j ,
respectively. And it takes O(r3) complexity to inverse each Ci and
Dj for all 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. Thus, the amortized complex-
ity in precomputation stage is O(r3(n1 + n2) + r2m). And the time
complexities to precompute U′U and V′V are O(r2n) and O(r2m)

respectively. Then, to calculate the influence for one element A(i, j),
it takes O(r2) time complexity. Thus, the overall amortized time
complexity to calculate the influence for all observed element in
A is O(r3(n1 + n2) + r2m). Regarding space complexity, it takes
O(m) space to save the bipartite network A. Each Ci and Dj for all
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 takes O(r2) space. And we also need
to save the precomputed U′U and V′V which also requires O(r2)
space. Thus, it takes O(r2(n1 + n2) +m) complexity in space. □

5 EXPERIMENTS

In this section, we perform empirical evaluations on the proposed
N2N framework. All experiments are designed to answer the fol-
lowing questions:

• Effectiveness. How effective is the proposed N2N frame-
work with respect to the corresponding mining task?

• Efficiency. How efficient and scalable is the proposed N2N
framework to generate the derivative network?

5.1 Setup

A - Datasets. We test our algorithms on a diverse set of real-
world datasets, all of which are publicly available. The statistics of
these datasets is summarized in Table 3.

Table 3: Statistics of Datasets

Task Domain Type Dataset

Nodes

Edges

(Users/Items)

HITS

Cit

D cit-hepth 27,770 352,807
D cit-dblp 12,590 49,759
D cora 23,166 91,500
D patent 3,774,768 16,518,948

Social D gplus 23,628 39,242
D epinions 75,879 508,837

Infra D gnutella 8,114 26,013

CA

U astroph 18,772 198,110
U condmat 23,133 93,497

Spectral U grqc 5,242 14,496
Clustering U ca-hepph 12,008 118,521

Social U hamster 1,858 12,534
U douban 154,908 327,162

Infra U twin 14,274 20,573

Rating

B lastfm 1,892/17,632 92,834
Matrix B delicious 1,867/69,223 437,593

Completion B movielens 610/9,724 100,836
B ml-20m 138,493/26,744 20,000,264

(In Type, D: directed; U: undirected; B: bipartite.)
There are three types of datasets, including directed uni-partite

networks (‘D’) for the ranking task, undirected uni-partite networks
(‘U’) for the spectral clustering task, and bipartite networks (‘B’) for
the matrix completion task. Among them, the three largest ones (i.e.,
patent, douban and ml-20m) are used for scalability experiments.
These datasets come from a variety of application domains, includ-
ing social networks (Social), citation networks (Cit), collaboration
networks (CA), physical infrastructure networks (Infra) and rating
networks (Rating). The detailed descriptions of these datasets are
as follows.

• Social Networks. Here, nodes are users and edges indicate
social relationships. Among them, gplus [27] is a directed
network of Google+ user-user links, which is a social net-
work by Google. A directed edge indicates that one user has
the other user in his/her circle. epinions [29] is a directed
who-trust-whom network from consumer reviews website
Epinions2. hamster [27] is a directed network of friendship
among users of the website hamsterster.com. douban [27] is
the social network of a Chinese online recommendation site
Douban3.

• Citation Networks. Here, each node is a research paper. If
a paper i cites paper j, there is a directed edge from node i
to node j. cit-hepph [29] is an ArXiv HEP-PH (High Energy
Physics - Phenomenology) citation network. The data covers
papers from January 1993 to April 2003. cit-dblp [27] is a
directed network of citation data on DBLP4, a database of
computer science bibliography. cora [27] is the CORA cita-
tion network. patent [29] is a directed network of all the
utility patents granted from 1963 to 1999.

2http://www.epinions.com/
3https://www.douban.com
4http://dblp.uni-trier.de/

• Collaboration Networks. Here, nodes are researchers
and two individuals are connected if they have collaborated
together. We use four collaboration networks in the field of
Physics from arXiv preprint archive5: Astro Physics (astroph),
Condense Matter Physics (condmat), General Relativity and
Quantum Cosmology (grqc), and High Energy Physics - Phe-
nomenology (ca-hepph).

• Physical Infrastructure Networks. This domain refers
to the networks of physical infrastructure entities. Nodes
correspond to physical infrastructure, and edges are connec-
tions. gnutella [29] is a snapshots of Gnutella peer-to-peer
file sharing network collected on August 9, 2002. twin [27]
is an undirected network of cities connected by sister city
relationships. The dataset is extracted from WikiData6.

• Rating Networks. It is a collection of bipartite networks
that consist of feedback given to items by users, weighted
by a rating value. Four different rating networks are used.
Among them, lastfm is extracted from the music streaming
service Last.fm7. If a user i listened to a song by artist j, its
corresponding feedback A(i, j) = 1, otherwise it is 0. deli-
cious is extracted from the social bookmark sharing service
website Delicious8. If a user i bookmarked a particular URL
j, the feedback A(i, j) = 1, otherwise it is 0. movielens and
ml-20m are two rating networks of users to movies provided
by GroupLens Research9. An edge between a user and a
movie represents a rating of the movie by the user. Each
rating ranges from 0.5 to 5.0.

B - Baseline Methods. We compare the proposed method N2N
(Algorithm 1) with several baseline methods. We briefly summarize
the baseline methods as below.

• Top Degrees (Degree). We define the degree score of an edge
(u,v) as follows.

d(u,v) =

{
d(u) + d(v), if undirected
(d(u) + d(v)) × d(u), if directed

(27)

where d(u) represents the degree of node u.
• Top Eigenvector Centrality (EigenCentrality). We define the
eigenvector centrality score of an edge (u,v) as follows.

eiд(u,v) =

{
eiд(u) + eiд(v), if undirected
(eiд(u) + eiд(v)) × eiд(u), if directed

(28)

where eiд(u) is the eigenvector centrality score of node u.
• HITS. We define HITS score of an edge (u,v) as follows.

HITS(u,v) = hub(u) + hub(v) + auth(u) + auth(v) (29)

where hub(u) and auth(u) represent the hub score and au-
thority score of node u, respectively.

• Contain. Contain is an algorithm proposed in [8] to optimize
the network connectivity. It iteratively selects a network
element (e.g. a node or an edge) with the highest impact
score on a user-defined connectivity measurement.

5https://arxiv.org/
6https://www.wikidata.org
7https://www.last.fm
8https://del.icio.us
9https://grouplens.org/datasets/movielens/

• Aurora. Aurora is an algorithm proposed in [20] for PageRank
auditing problem. It iteratively selects a network element
(e.g. a node or an edge) with the highest influence on the
PageRank ranking vector of a network.

Algorithm 2 describes the procedure to select edges for our
proposedN2Nmethod and baseline methods (including top degrees,
top eigenvector centrality and HITS). The edge scoring function
corresponds to the score we defined in Section 5. That is, C(u,v) =
I(u,v) for N2N,C(u,v) = d(u,v) for top degrees,C(u,v) = eiд(u,v)
for top eigenvector centrality and C(u,v) = HITS(u,v) for HITS.

Algorithm 2: Description of Comparison Methods
Input :The adjacency matrix A, an edge scoring function

C(·), integer budget k .
Output :A set of k edges S with highest edge scores.

1 initialize S = ∅ ;
2 let Ã = A ;
3 while |S| , k do

4 find edge u,v = argmax
(u,v)∈Ã

C(u,v) ;

5 add edge (u,v) to S ;
6 remove edge (u,v) from Ã ;
7 return S;

C - Metrics. Generally speaking, we want to measure how the
mining results would change if we perturb the network elements
(e.g., nodes, edges) for each mining task (i.e. HITS, spectral cluster-
ing, matrix completion).

More specifically, for HITS, we measure how the hub and au-
thority ranking change in total if we perturb the set of network
elements. We define the distortion error metric for HITS as

err = | |u − ũ| |2 + | |v − ṽ| |2 (30)

where u and v are original hub and authority vectors, while ũ and
ṽ are the hub and authority vectors after perturbation.

For spectral clustering, we measure changes in cluster assign-
ments after we perturb the set of network elements. We use the
normalized mutual information (NMI) to measure the agreement
between two cluster assignments before and after the perturbation.
We define the distortion error metric as

err = 1 − NMI (C, C̃) = 1 −
2MI (C, C̃)

H (C) + H (C̃)
(31)

where C and C̃ are the cluster assignments before and after per-
turbation, MI(C, C̃) is the mutual information between C and C̃,
and H (C) is the entropy of assignment C. Notice that a larger err
means a bigger difference between the clustering assignment before
and after perturbation, which implies more effective attacking on
clustering.

Regarding matrix completion, we measure how the model pre-
diction changes after we perturb the set of network elements. We
measure its change as follows,

RMSE =
√ ∑

(i, j)∈ΩC
(Â(i, j) − Ã(i, j))2/|ΩC | (32)

where Â(i, j) = U(i, :)V(j, :)′ is the prediction made by the origi-
nal model output, Ã(i, j) = Ũ(i, :)Ṽ(j, :)′ is the prediction made by

model after perturbation, and |ΩC | is the cardinality of the com-
plementary set of Ω. Notice that a larger RMSE means a bigger
difference in predicting a user’s preference, which implies more
effective attacking on the recommender system.

D - Machine Configuration and Reproducibility. All exper-
iments are performed on a Windows PC with 3.8GHz Intel Core
i7-9800X CPU and 64 GB RAM. All datasets are publicly available.
The methods are programmed in Python 3.6. We will release the
source code upon publication of this paper.

Regarding detailed parameter settings in the experimental eval-
uations, we set the budget size k = 50 for ranking and spectral
clustering, and k = 10 for matrix completion. For Contain method,
we use the leading eigenvalue as the connectivity measurement and
set its rank parameter to 80 (see details in [8]). For spectral cluster-
ing, the number of clusters is set to 5. Regarding matrix completion,
we set the latent dimension r = 10, the regularization parameters
λu = 0.5 and λv = 0.5, and the number of training iterations to 10.
Regarding the random initialization of cluster centroids in spectral
clustering and low-rank matrices U, V in matrix completion, the
random seed is uniformly selected from 1 to 50 for each dataset.
5.2 Effectiveness Results

We perform quantitative effectiveness comparison with baseline
methods. The experiments are designed to explore the potential of
the proposed N2N framework in attacking the corresponding net-
work mining task, i.e. the mining results could be distorted greatly
by removing a set of influential network edges in the derivative
network.

Quantitative Comparison Results. The quantitative compar-
ison results for HITS, spectral clustering and matrix completion
across 15 different datasets are shown from Figure 1 to Figure 3,
respectively. From those figures, we can see that the proposed N2N
framework (the leftmost red solid bar in Figures 1, 2 and 3) consis-
tently outperforms other baseline methods in all datasets, which
indicates that the derivative network generated by our proposed
N2N framework can indeed effectively attacking the network min-
ing tasks by a few edge deletion.

Effect of Budget Size k . We explore the power of N2N on differ-
ent budget size. Note that we only show the results of HITS ranking
here. We set the budget size k from 1 to 50. From the results shown
in Figure 5, we can observe that our proposedN2Nmethod (red solid
line in Figure 5) outperforms other baseline methods on different
budget size k .
5.3 Efficiency Results

We show the running time vs. the input network size for HITS,
spectral clustering and matrix completion in Figure 4. We can see
that the proposed N2N framework scales linearly with respect to
the input network sizem+n in all three instantiations. These results
are consistent with our complexity analysis in Lemma 3, 5 and 7,
which states that the derivative network B can be computed in
linear time with respect to the number of edgesm and the number
of nodes n.
6 RELATEDWORK

In this section, we review the related work from the following two
perspectives: (1) network mining and (2) network interventions.

Network mining aims to find interesting patterns from the
underlying network data. Classic network mining tasks include

Figure 1: HITS ranking attacking results. Higher is better (i.e., more effective attacking). Best viewed in color.

Figure 2: Spectral clustering attacking results. Higher is better (i.e., more effective attacking). Best viewed in color.

Figure 3: Matrix completion attacking results. Higher is bet-

ter (i.e., more effective attacking). Best viewed in color.

ranking, clustering, completion, and many more. Regarding rank-
ing on networks, PageRank [36] and HITS [23] are two most well-
known algorithms to measure the importance of nodes. Many vari-
ants have been developed in the literature, including personalized
PageRank [17], random walk with restart [42], randomized HITS
and subspace HITS [35]. As for clustering methods, spectral cluster-
ing [34] is one of the most well-known and widely-used algorithms.
Other representative clustering methods on networks include hi-
erarchical clustering [2, 13], cut and conductance based methods
[18, 38, 44], and online clustering method [4]. Matrix completion
is another important network mining task [3, 19, 25, 26]. To name
a few, Yao et. al. apply collaborative filtering to learn the hidden
relationships between nodes [43]. Another example is [37], which
uses the side information to help complete the network.

Network intervention has been attracting a lot of research
interests. Here, we review several research lines that are most rele-
vant to this work. First, finding influential nodes to maximize the
spread of influence in a social network (i.e. influence maximization)
is a very active research area [14, 16]. Kempe et. al. [21, 22] discover
its diminishing returns property. Another important line of re-
search lies in optimizing network structure. In [1], Backstrome and
Leskovec study the problem of learning the optimal edge weights
with node and edge attributes/features. In [41], the authors propose
a method to use side information to refine the network topology. In
[31], Li et. al. learn the query-specific optimal networks for random
walk with restart. Regarding network connectivity optimization,
Chen et. al. explore the diminishing returns property and propose
several methods to optimize the network connectivity with both

edge-level and node-level manipulations for various connectivity
measurements on plain networks [8–10] and multi-layered net-
works [7]. In [28, 32], the authors aim to optimize the network
connectivity by studying the triangle minimization problem. Chan
et. al. study the optimization problem for network robustness in
[5, 6]. As for adversarial network mining, several research work
has been proposed to study the adversarial attacks on networks for
different tasks, e.g. classification [12, 45], link prediction [11] and
node embeddings [40]. Li et. al. [30] propose a poisoning attack
strategy using gradients for collaborative filtering problem. The
proposed N2N framework bears subtle difference from this work
since we face different objective functions to calculate the gradients
and propose a much more efficient algorithm with a linear complex-
ity to speed up the computational process. In [20], Kang et. al. study
the problem of auditing PageRank, which can be conceptually seen
as an instantiation of the network derivative mining problem for
the task of PageRank.
7 CONCLUSION

In this paper, we introduce the network derivative mining problem.
It finds a derivative network which measures the influence of the
corresponding edges of the input network given a specific mining
algorithm. We formulate the network derivative network problem
as an optimization problem and measure the influence of edges as
the rate of change in a task-specific scalar function with respect to
the corresponding edges of the input network. We further instan-
tiate the proposed framework (N2N), with three classic network
mining tasks (i.e., HITS ranking, spectral clustering and matrix
completion). We propose effective and efficient ways to construct
the corresponding derivative network linearly w.r.t. the input net-
work size. The extensive experimental evaluations on more than
10 datasets demonstrate that our proposed N2N framework is ef-
fective in adversarial network mining, consistently outperforms
baseline methods, and scale linearly to large networks. In the future,
we would like to explore efficient ways to update the derivative
network in the dynamic setting.
ACKNOWLEDGEMENT

This work is supported by NSF (IIS-1651203, IIS-1715385), and DHS
(2017-ST-061-QA0001).

(a) HITS Ranking (b) Spectral Clustering (c) Matrix Completion

Figure 4: The scalability of the proposed N2N on different network mining tasks.

Figure 5: HITS ranking attacking results on different bud-

get size. Higher is better (i.e., more effective attacking). Best

viewed in color.

REFERENCES

[1] Lars Backstrom and Jure Leskovec. 2011. Supervised random walks: predicting
and recommending links in social networks. In WSDM. ACM, 635–644.

[2] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. 2003. Experiments on
graph clustering algorithms. In ESA. Springer.

[3] Emmanuel J Candès and Benjamin Recht. 2009. Exact matrix completion via
convex optimization. FoCM 9, 6 (2009), 717.

[4] Deepayan Chakrabarti, Ravi Kumar, and Andrew Tomkins. 2006. Evolutionary
clustering. In KDD. ACM, 554–560.

[5] Hau Chan, Leman Akoglu, and Hanghang Tong. 2014. Make it or break it:
Manipulating robustness in large networks. In SDM. SIAM, 325–333.

[6] Hau Chan, Shuchu Han, and Leman Akoglu. 2015. Where graph topology matters:
the robust subgraph problem. In SDM. SIAM, 10–18.

[7] Chen Chen, Jingrui He, Nadya Bliss, and Hanghang Tong. 2017. Towards optimal
connectivity on multi-layered networks. TKDE 29, 10 (2017), 2332–2346.

[8] Chen Chen, Ruiyue Peng, Lei Ying, and Hanghang Tong. 2018. Network Con-
nectivity Optimization: Fundamental Limits and Effective Algorithms. In KDD.
ACM, 1167–1176.

[9] Chen Chen, Hanghang Tong, B Prakash, Charalampos Tsourakakis, Tina Eliassi-
Rad, Christos Faloutsos, and Duen Chau. 2016. Node immunization on large
graphs: Theory and algorithms. TKDE (2016).

[10] Chen Chen, Hanghang Tong, B Aditya Prakash, Tina Eliassi-Rad, Michalis Falout-
sos, and Christos Faloutsos. 2016. Eigen-optimization on large graphs by edge
manipulation. TKDD 10, 4 (2016), 49.

[11] Jinyin Chen, Ziqiang Shi, Yangyang Wu, Xuanheng Xu, and Haibin Zheng. 2018.
Link Prediction Adversarial Attack. arXiv preprint arXiv:1810.01110 (2018).

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial Attack on Graph Structured Data. arXiv preprint arXiv:1806.02371
(2018).

[13] Luca Donetti and Miguel A Munoz. 2004. Detecting network communities: a
new systematic and efficient algorithm. JSTAT 2004, 10 (2004), P10012.

[14] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. 2010. Inferring
networks of diffusion and influence. In KDD. ACM, 1019–1028.

[15] Marco Gori and Augusto Pucci. 2007. ItemRank: A Random-walk Based Scoring
Algorithm for Recommender Engines. In IJCAI. 2766–2771.

[16] Daniel Gruhl, Ramanathan Guha, David Liben-Nowell, and Andrew Tomkins.
2004. Information diffusion through blogspace. In WWW. ACM, 491–501.

[17] Taher H Haveliwala. 2002. Topic-sensitive pagerank. In WWW. ACM, 517–526.

[18] Xiaofeng He, Hongyuan Zha, Chris HQ Ding, and Horst D Simon. 2002. Web
document clustering using hyperlink structures. CSDA 41, 1 (2002), 19–45.

[19] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In ICDM. Ieee, 263–272.

[20] Jian Kang, Hanghang Tong, Yinglong Xia, and Wei Fan. 2018. AURORA: Auditing
PageRank on Large Graphs. In BigData. IEEE.

[21] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In KDD. ACM, 137–146.

[22] David Kempe, Jon M Kleinberg, and Éva Tardos. 2005. Influential Nodes in a
Diffusion Model for Social Networks. Springer.

[23] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM) 46, 5 (1999), 604–632.

[24] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via
influence functions. arXiv preprint arXiv:1703.04730 (2017).

[25] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD. ACM, 426–434.

[26] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[27] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In WWW. ACM.
[28] Long T Le, Tina Eliassi-Rad, and Hanghang Tong. 2015. MET: A fast algorithm for

minimizing propagation in large graphs with small eigen-gaps. In SDM. SIAM.
[29] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.
[30] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data poison-

ing attacks on factorization-based collaborative filtering. In Advances in neural

information processing systems. 1885–1893.
[31] Liangyue Li, Yuan Yao, Jie Tang, Wei Fan, and Hanghang Tong. 2016. QUINT: on

query-specific optimal networks. In KDD. ACM.
[32] Rong-Hua Li and Jeffrey Xu Yu. 2015. Triangle minimization in large networks.

KAIS 45, 3 (2015), 617–643.
[33] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal

Training-Set Attacks on Machine Learners.. In AAAI. 2871–2877.
[34] Andrew Y Ng, Michael I Jordan, and Yair Weiss. 2002. On spectral clustering:

Analysis and an algorithm. In NIPS. 849–856.
[35] Andrew Y Ng, Alice X Zheng, and Michael I Jordan. 2001. Link analysis, eigen-

vectors and stability. In IJCAI. 903–910.
[36] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[37] Natali Ruchansky, Mark Crovella, and Evimaria Terzi. 2015. Matrix completion
with queries. In KDD. ACM, 1025–1034.

[38] Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation.
TPAMI 22, 8 (2000), 888–905.

[39] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2007. Pairwise global alignment of
protein interaction networks by matching neighborhood topology. In RECOMB.
Springer, 16–31.

[40] Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn
Song. 2018. Data Poisoning Attack against Unsupervised Node Embedding
Methods. arXiv preprint arXiv:1810.12881 (2018).

[41] Lei Tang and Huan Liu. 2010. Graph mining applications to social network
analysis. In Managing and Mining Graph Data. Springer, 487–513.

[42] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk
with restart and its applications. In ICDM. IEEE, 613–622.

[43] Yuan Yao, Hanghang Tong, Guo Yan, Feng Xu, Xiang Zhang, Boleslaw K Szy-
manski, and Jian Lu. 2014. Dual-regularized one-class collaborative filtering. In
CIKM. ACM, 759–768.

[44] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong,
Hasan Davulcu, and Jingrui He. 2017. A local algorithm for structure-preserving
graph cut. In KDD. ACM, 655–664.

[45] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD. ACM, 2847–2856.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Problem Definition
	3 N2N Algorithmic Framework
	4 N2N Instantiation and Computation
	4.1 Instantiation #1: Ranking by HITS
	4.2 Instantiation #2: Spectral Clustering
	4.3 Instantiation #3: Matrix Completion

	5 Experiments
	5.1 Setup
	5.2 Effectiveness Results
	5.3 Efficiency Results

	6 Related Work
	7 Conclusion
	References

