
MET: A Fast Algorithm for Minimizing Propagation in Large Graphs

with Small Eigen-Gaps∗

Long T. Le

Rutgers University

longtle@cs.rutgers.edu

Tina Eliassi-Rad

Rutgers University

eliassi@cs.rutgers.edu

Hanghang Tong

Arizona State University

hanghang.tong@asu.edu

Abstract

Given the topology of a graph G and a budget k, how can we

quickly find the best k edges to delete that minimize dissem-

ination in G? Stopping dissemination in a graph is important

in a variety of fields from epidemiology to cyber security.

The spread of an entity (e.g., a virus) on an arbitrary graph

depends on two properties: (1) the topology of the graph

and (2) the characteristics of the entity. In many settings,

we cannot manipulate the latter, such as the entity’s strength.

That leaves us with modifying the former (e.g., by remov-

ing nodes and/or edges from the graph in order to reduce the

graph’s connectivity). In this work, we address the problem

of removing edges. We know that the largest eigenvalue of

the graph’s adjacency matrix is a good indicator for its con-

nectivity (a.k.a. path capacity). Thus, algorithms that are

able to quickly reduce the largest eigenvalue of a graph often

minimize dissemination on that graph. However, a problem

arises when the differences between the largest eigenvalues

of a graph are small. This problem, known as the small

eigen-gap problem, occurs often in social graphs such as

Facebook postings or instant messaging (IM) networks. We

introduce a scalable algorithm called MET (short for Multi-

ple Eigenvalues Tracking), which efficiently and effectively

solves the small eigen-gap problem. Our extensive exper-

iments on different graphs from various domains show the

efficacy and efficiency of our approach.

1 Introduction

In recent years, algorithms that minimize the spread of

entities (such as viruses) on graphs have attracted significant

attention [7, 13, 10, 12]. From the literature, we know that

the tipping point for an entity’s spread is a function of (1) the

connectivity of the graph and (2) the strength of the entity.

The former is often approximated by the largest eigenvalue

of the adjacency matrix. The latter is exogenous to the

network and is frequently measured by the birth and death

rates of the entity. In this work, we assume that we cannot

∗This work was funded in part by LLNL under Contract DE-AC52-

07NA27344, by NSF CNS-1314603, by DTRA HDTRA1-10-1-0120, and

by DAPRA under SMISC Program Agreement No. W911NF-12-C-0028.

manipulate the strength of the entity. Thus, to minimize

dissemination on a given graph, we focus on selecting the

best k edges to delete. Removing edges (e.g., un-friending

two users) is more palatable than removing nodes (e.g.,

deleting a user’s account). The formal definition of our

problem is as follows: Given a budget k and a graph G

represented by its adjacency matrix A, identify the k edges in

A whose deletions will create the largest drop in the leading

eigenvalue of A.1 This problem is NP-hard [12].

In our work, we observed that existing algorithms per-

form poorly on graphs with small eigen-gaps.2 The rea-

son for this poor performance is because existing methods

only track the largest eigenvalue, while removing an edge

affects all eigenvalues. In cases where the eigen-gap is small

(which covers most social graphs, see Figure 2), the largest

eigenvalue drops quickly while the second largest eigenvalue

drops slowly. This may lead to their values being inverted as

more edges are removed. We address this shortcoming by

introducing MET (short for Multiple Eigenvalues Tracking).

MET is a scalable algorithm that tracks multiple eigenvalues

while deleting edges. MET automatically determines how

many eigenvalues should be tracked and has linear runtime

in the number of edges of the graph.

In our extensive experiments, we compare MET with

seven competing methods on various social and technologi-

cal graphs. We observe that MET is able to strike the best

balance between efficacy (as measured by the percentage

drop in the leading eigenvalue) and efficiency (as measured

by runtime). In particular, when compared with NetMelt+,

the strongest competing method that does eigen-computation

after each edge deletion, MET is at least 12× faster while

preserving at least 96% of NetMelt+’s efficacy.

Our contributions are as follows: (1) Existing ap-

proaches that approximate the decrease in the leading eigen-

value after k edge deletions perform poorly in graphs with

small eigen-gaps. This covers most social graphs. (2) We

introduce a novel algorithm, called MET, which tracks mul-

1Both the ‘largest eigenvalue’ and the ‘leading eigenvalue’ refer to the

biggest eigenvalue in magnitude.
2Eigen-gap is the difference between two consecutive eigenvalues (e.g.,

the difference between the largest and the second largest eigenvalues).

694 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

tiple eigenvalues. MET automatically chooses how many

eigenvalues to track; it is scalable; and it performs well on

different types of graphs with a wide range of eigen-gaps:

from small to large. (3) Experiments on various real graphs

highlight the efficacy and efficiency of our method MET.

The rest of the paper is organized as follows. We

cover some background information in Section 2. Sections 3

and 4 describe our proposed method and our experiments,

respectively. Section 5 presents the related work. We

conclude the paper in Section 6.

2 Background

Table 1 lists the notations used in this paper. We represent

a graph by its adjacency matrix, which is in bold upper-case

letter. We use λ1 ≥ λ2 ≥ λ3 ≥ ... to represent the largest

(in magnitude) eigenvalues of an adjacency matrix. The left

and right eigenvectors of the adjacency matrix are denoted

by ui and vi, respectively.

Symbol Definition

A, B, . . . matrices (capital letters in boldface)

A(i, j) the (i, j)th element of matrix A

A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A

n the number of nodes in graph

m the number of edges in graph

k the budget (in terms of the number

of edges that we can delete)

λ1, λ2, λ3, ... eigenvalues of adjacency matrix:

λ1 ≥ λ2 ≥ λ3 ≥ ..

ui,vi the left and right eigenvector

corresponding to λi

Table 1: Notations used in the paper.

Chakrabarti et al. [3] prove that an entity will “die out”

on an undirected graph if the strength of that entity (as

measured by the ratio of its birth rate β over its death rate δ)

is less than one over the largest eigenvalue λ1 of the graph’s

adjacency matrix−i.e., if β
δ
< 1

λ1

. Subsequent literature [10]

generalizes this result to 25 different virus models; and found

that for all of these models, the larger the λ1, the smaller

the epidemic threshold. Thus, minimizing λ1 is crucial to

minimizing dissemination in graphs.

Our proposed method, MET, utilizes eigenscores to

estimate the effects of removing edges on eigenvalues [12].

Given an eigenvalue and its corresponding left and right

eigenvectors, the eigenscore of an edge e from node i to node

j is the product of the ith and jth elements of the left and

right eigenvectors. That is, getEigenscore(e : i → j, λ, u,

v) = u(i) × v(j).
Using the Power Iteration Method [12], we compute the

eigenscores for the leading eigenvalue in O(n + m), where

n and m are the number of nodes and edges in the graph, re-

spectively. To compute the top-T eigenscores (correspond-

ing to the top-T eigenvalues), we use the Iterative Approxi-

mate Method by Lanczos [9], which takes O(mT + nT 2).

3 Proposed Method: MET

All eigenvalues are affected when an edge is removed from a

graph. When the graph has small eigen-gaps,3 algorithms

that only estimate the leading eigenvalue can exhibit sig-

nificant performance degradations. One can alleviate these

shortcomings in two ways: (1) track/estimate more than one

eigenvalue, and (2) re-compute eigenscores of the remaining

edges periodically. In the former, the question becomes how

many eigenvalues should one track. In the latter, the ques-

tion becomes how often should one re-compute eigenscores.

Bad answers to these questions can adversely affect the ef-

ficiency and efficacy of one’s algorithm. MET, described in

Algorithm 1, provides satisfactory answers to both of these

questions.

Tracking more than one eigenvalue. MET adaptively

determines the number of eigenvalues T to track. It starts by

tracking the top-2 eigenvalues (i.e., T = 2) and modifies

T only when the gap between λ1 and λT changes. If

the gap decreases, then MET increases T by 1; if the gap

increases, then MET decreases T by 1; otherwise, T does

not change. In MET, the minimum value for T is 2. Note

that a large T value can cause unnecessary tracking of too

many eigenvalues and lead to increased runtime.

Recomputing eigenscores periodically. MET uses λT

as a threshold for deciding when to re-compute eigenscores.

Specifically, when all estimated λ values (i.e., λ1, . . . , λT−1)

fall below the threshold λT , then MET re-computes the

eigenscores. Since a small T value can cause unnecessary

re-computation of eigenscores (leading to a longer runtime),

MET uses a slack variable ✏, whereby MET re-computes the

eigenscores only if all estimated λ values are less than λT−✏.

A nonzero ✏ is useful when all the top T eigenvalues are

very close to each other. We evaluate the effects of various ✏

values in Section 4.

LEMMA 3.1. The runtime complexity for MET is O(k1T̄ ×
(m + nT̄) + k × (m + T̄)). The space cost for MET is

O(m×(1+T̄)). n and m are the number of nodes and edges

in the graph, respectively; k is the budget for edge deletions;

k1 is the number of times that MET re-computes eigenvalues

(k1 < k); and T̄ is the average number of eigenvalues that

MET tracks.

Proof. In Algorithm 1, the following lines do not take O(1).
The while loop on Line 4 is executed on average k1 times,

which is also the number of times that MET re-computes

3Figure 2 shows that the eigen-gap between the top-21 eigenvalues can

be as small as 0.05 in a social graph (such as Facebook user-postings).

695 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm 1 MET Algorithm

Input:

• A graph represented by its adjacency matrix A

• Budget k

Output: The list of k edges to be deleted from A

1: E ← {}
2: T ← 2

3: previousGap ← ∞
4: while (|E| < k) do

5: Compute the top-T eigenvalues λ1, λ2, . . . , λT ;

and the corresponding left ui and right vi
eigenvectors for i = 1, 2, . . . , T − 1.

6: Eigenscores[e, i] ← getEigenscore(e, λi, ui, vi),
for each edge e and for i = 1, 2, . . . , T − 1;

see Section 2.

7: currentGap ← λ1 − λT

8: threshold ← λT − ✏

9: λmax ← max{λ1, λ2, . . . , λT−1}
10: while (λmax > threshold and |E| < k) do

11: emax ← edge with the maximum eigenscore

under λmax and its corresponding left and

right eigenvectors.

12: E ← E ∪ emax; and remove emax from A.

13: for i = 1, 2, . . . , T − 1 do

14: λi ← λi − Eigenscores[emax, i] // Update λi

15: Eigenscores[emax, i] ← −1 // Mark emax

as deleted

16: end for

17: λmax ← max{λ1, λ2, . . . , λT−1}
18: end while

19: if (currentGap < previousGap) then

20: T ← T + 1

21: else if (currentGap > previousGap and T > 2)

then

22: T ← T − 1

23: else

24: // T does not change.

25: end if

26: previousGap← currentGap

27: end while

28: return E

eigenvalues and eigenscores. Line 5 computes the average T̄

eigenvalues and eigenvectors using Lanczos algorithm [9];

this takes O(mT̄ + nT̄ 2). Line 6 computes eigenscores,

which takes O(mT̄). Line 9 takes O(T̄) to find the maxi-

mum λ in the estimated eigenvalues {λ1, λ2, . . . , λT̄ }. Let

k2 denote the average number of iterations of the while loop

on Line 10. (Note that the edge-deletion budget k is equal

to k1 × k2.) Line 11 takes O(m) to find the edge with the

highest eigenscore. The for loop on Lines 13 through 16

takes O(T̄). Similar to Line 9, Line 17 takes O(T̄) to find

the maximum λ. Thus, the while loop covering Lines 10

through 18 takes O(k2× (m+ T̄ + T̄)) ≈ O(k2× (m+ T̄)).
Putting all of this together, we get that the total runtime of

MET is:

O(k1 × (mT̄ + nT̄ 2 +mT̄ + T̄ + k2 × (m+ T̄))) ≈
O(k1mT̄ + k1nT̄

2 + k1mT̄ + k1T̄ + k × (m+ T̄)) ≈
O(k1T̄ × (m+ nT̄ +m+ 1) + k × (m+ T̄)) ≈

O(k1T̄ × (m+ nT̄) + k × (m+ T̄))

MET needs O(m) to store the graph and O(k) to store

the deleted edges. On average, MET tracks T̄ eigenvalues

and their corresponding eigenscores, this requires O(mT̄)
space. Thus, MET requires O(m+ k +mT̄) storage. Since

k << n, the total storage cost for MET is O(m× (1 + T̄)).

In the runtime complexity of MET, there are terms T̄ 2

and k1. Table 3 shows that T̄ and k1 are very small. In

addition, k << m. Thus, the runtime of MET is linear with

the size of graph.

MET-Naive. If one happens to know how many eigen-

values T to track a priori, then MET does not need to adap-

tively track multiple eigenvalues. We have a naive version

of MET, called MET-naive, where k edges are sequentially

deleted based on the largest estimated λi in i = 1, 2, . . . , T .

Similar to MET, all estimated λ values are updated after each

edge deletion (Line 14 in Algorithm 1); and the eigenscore

of the deleted edge is marked, so that it is not selected again

(Line 15 in Algorithm 1).

MET-Naive tracks a constant number of eigenvalues T

and does not re-compute eigenscores. Its runtime cost is

O(T × (m + nT) + k × (m + T)). For brevity, we have

omitted the proof for it here. Similar to MET, the space cost

for MET-Naive is O(m× (1 + T)).
See Section 4.4 for a discussion of how far MET’s

results are from the upper-bound on the optimal solution that

minimizes the largest eigenvalue of a graph.

4 Experiments

This section is organized as follows: data description, exper-

imental setup, results, and discussion.

4.1 Data Description Table 2 lists the graphs used in

our experiments. All of our graphs are undirected and un-

weighted. We use four different graph types to evaluate our

696 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Time # of # of Avg. # of % of Average Distance

Dataset Span Nodes (n) Edges (m) Degree Connected Components Nodes in LCC in LCC

Oregon-1 7 days 5,296 10,097 3.81 1 100% 3.5

Oregon-2 7 days 7,352 15,665 4.26 1 100% 3.5

Oregon-3 7 days 10,860 23,409 4.31 1 100% 3.6

Oregon-4 7 days 13,947 30,584 4.39 1 100% 3.6

YIM-1 1 day 50,492 79,219 3.14 2802 54.5% 16.2

YIM-2 1 day 56,454 89,269 3.16 2650 61.2% 15.9

YIM-3 1 day 31,420 39,072 2.49 2820 62.9% 13

FB-1 1 day 27,165 26,231 1.93 2081 50.4% 9.4

FB-2 1 day 29,556 29,497 1.99 1786 57.8% 9.3

FB-3 1 day 29,702 29,384 1.98 1902 55.6% 9.4

FB-4 1 day 29,442 29,505 2.00 1746 58.1% 8.9

FB-5 1 day 29,553 29,892 2.02 1624 59.8% 8.8

Twitter-1 1 month 25,799 16,410 2.18 2899 63.6% 7.5

Twitter-2 1 month 39,477 45,149 2.29 3827 68.9% 7.3

Twitter-3 1 month 57,235 68,010 2.38 4828 73.4% 7.5

Twitter-4 1 month 77,589 96,980 2.50 5665 77.1% 7.6

Table 2: Graphs used in our experiments. LCC stands for the largest connected component. Average Distance is the average

number of hops between two randomly selected nodes.

algorithms. They are as follows: Oregon Autonomous Sys-

tem (AS):4 There are four graphs in this dataset, each col-

lected in a week. The data was collected in 2001. A node

represents an autonomous system. An edge is a connection

inferred from the Oregon route-views. Yahoo! Instant Mes-

senger (YIM):5 YIM is a online chatting program. A node

is a Yahoo! IM user. An edge indicates a communication

between two users. We have three social graphs here, each

corresponding to a day’s worth of data. The data was col-

lected in April 2008. We use the data in the 1st, 11th, and

21st day of the month. Facebook user-postings (FB):6 We

have five social graphs here, each corresponding to a day’s

worth of data. The data was collected in March 2013. We

use the data from the 10th to 14th day of the month. A node

is a Facebook user. There is an edge between two users if

there is a “posting” event between them in the selected day.

Twitter re-tweet (TT):7 We have four social graphs, each

corresponding to a month’s worth of data. The data was col-

lected from May to August 2009. A node represents a Twit-

ter user. There is an edge between two users if there is a

re-tweet event between them.

4.2 Experimental Setup We compare MET with the fol-

lowing nine methods. (1) MET-Naive, see Section 3 for

details. (2) NetMelt, where edges are selected based on

eigenscores of the leading eigenvalue [12]. (3) NetMelt+,

where eigenscores are recomputed after edge edge deletion;

4http://topology.eecs.umich.edu/data.html
5http://webscope.sandbox.yahoo.com
6Proprietary data given to us by a collaborator.
7http://socialcomputing.asu.edu

it is an improved but much slower version of NetMelt. (4)

Rand, where edges are selected randomly for deletion. (5)

Rich-Rich, where edge are selected based on the highest

dsrc × ddst; dsrc and ddst are the degrees of the source and

destination nodes [4]. (6) Rich-Poor, where edges are se-

lected based on the highest |dsrc − ddst|. (7) Poor-Poor,

where edges are selected base on the lowest dsrc × ddst. (8)

EBC, where edges are selected based on the highest edge

betweenness centrality, which is defined as the number of

shortest paths from all pairs of vertices that pass through an

edge. (9) Miobi, where edges are selected to minimize the

robustness of the graph, which is defined as the average of

the top K eigenvalues of the adjacency matrix [4].

In MET-Naive, the default value for T is 10 (unless

otherwise noted). MET does not need the parameter T to be

specified, because it adaptively selects T . The default value

for the slack parameter epsilon is 0.5. We evaluate the effect

of selecting different values of epsilon in Figure 3.

One of our evaluation criteria is efficacy, which is the

relative drop in the leading eigenvalue: %drop = 100λ1−λ̄1

λ1

,

where λ1 is the leading eigenvalue of the original graph and

λ̄1 is the leading eigenvalue of the graph after removing

k edges. The higher the percentage drop in the leading

eigenvalue, the better the efficacy.

We also evaluate the efficiency of the aforementioned

algorithms by measuring the wall clock time (in seconds).

Obviously, lower runtime is better. All experiments were

conducted on a Macbook Pro with CPU 2.66 GHz, Intel Core

i7, RAM 8 GB DDR3, hard drive 500 GB SSD, and OS X

10.8. The code is written in Matlab.

For brevity, we omit the results on Rich-Poor and Poor-

697 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

! "! #!! #"! $!!
!

"

#!

#"

$!

$"

%!

%"

&'()*+,-./01*23145-637

&
'
(
)*
8
*9
14
:1
;3
1*
/-
*<
1;
6
/-
(
*=
/(
1-
'
;>
,
1

?=@

?=@(A;/'1
A1.?1>.

A1.?1>.B

?/5C/

+;-6

+/4D(+/4D
=EF

! "!!! #!!! $!!! %!!! &!!! '!!!
!

"!

#!

$!

%!

&!

'!

()*+,-./0123,45367/859

(
)
*
+,
:
,;
36
<3
=5
3,
1/
,>
3=
8
1/
*
,?
1*
3/
)
=@
.
3

A?B

A?B(C=1)3
C30A3@0

C30A3@0D

A17E1

-=/8

-16F(-16F
?GH

(a) Oregon (b) YIM

! "!! #!! $!! %!! &!!!
!

&!

"!

'!

#!

(!

$!

)*+,-./01234-56478096:

)
*
+
,-
;
-<
47
=4
>6
4-
20
-?
4>
9
20
+
-@
2+
40
*
>A
/
4

B@C

B@C(D>2*4
D41B4A1

D41B4A1E

B28F2

.>09

.27G(.27G
@HI

! "!! #!! $!! %!! &!!! &"!! &#!!
!

&!

"!

'!

#!

(!

$!

)*+,-./01234-56478096:

)
*
+
,-
;
-<
47
=4
>6
4-
20
-?
4>
9
20
+
-@
2+
40
*
>A
/
4

B@C

B@C(D>2*4
D41B4A1

D41B4A1E

B28F2

.>09

.27G(.27G
@HI

(c) FB (d) TT

Figure 1: (Best viewed in color.) Trade-off between efficacy and efficiency when removing 1000 edges from our graphs.

Higher percentage drop in the leading eigenvalue and lower runtime is better (i.e., the upper left corner of the plots). MET

and NetMelt+ achieve similar percentages of drop in the leading eigenvalue, but NetMelt+ is much slower than MET. For

example, NetMelt+ is 100 times slower than MET on YIM graphs.

Poor. In all of our graphs, they performed poorly when

compared to Rich-Rich. In addition, we omit the results

on Miobi (with re-computation after 50 edge-deletions as

recommended in [4]). Miobi (with re-computation) achieved

lower efficacy than MET and NetMelt+, while its runtime

was higher than NetMelt+.

4.3 Results

4.3.1 Trade-off between Efficacy and Efficiency Fig-

ure 1 shows the trade-off between the percentage drop in λ1

(i.e., efficacy) and wall-clock runtime (i.e., efficiency).8 Net-

Melt is a fast algorithm since it computes the eigenscores

8For brevity, we have omitted the efficacy results as the budget k varies.

only once, but it performs poorly in social graphs where

the eigen-gap is small. NetMelt+ is very slow because it

computes the eigenscores after every edge deletion. MET

achieves similar efficacy to NetMelt+, while having a low

runtime. For example, MET is 108 times faster than Net-

Melt+ on the Yahoo! IM graphs, while preserving 99% of

NetMelt+’s efficacy. On the FB graphs, MET is 12 times

faster than NetMelt+, while preserving 96% of NetMelt+’s

efficacy. On the TT graphs, MET is 30 times faster than Net-

Melt+, while preserving 99.3% of NetMelt+’s efficacy.

Table 3 lists the average values for the number of re-

computations of eigenscores and the number of eigenvalues

tracked by MET. We observe that MET needs to track a

few eigenvalues with a small number of re-computations,

which makes MET much faster than NetMelt+. On the FB

698 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Avg. # of eigenvalues Avg. # of

Dataset being tracked re-computations

Oregon 2.08 1.25

YIM 5.17 10.3

FB 6.83 24.6

TT 3.03 9.4

Table 3: Average number of eigenvalues being tracked in

MET and the average number of times MET re-computes

eigenscores, when removing k = 1000 edges from each

graph. MET tracks small numbers of eigenvalues and sel-

domly does re-computation, which makes MET a fast and

effective algorithm.

graphs, MET needs to track more eigenvalues and do more

re-computations than on YIM and TT graphs. The reason

for this is because the eigen-gaps on the FB graphs are very

small compared to those on the YIM and TT graphs (see

Figure 2).

4.3.2 Effectiveness of the Slack Variable ✏ in MET Fig-

ure 2 plots the top eigenvalues of (i) the original graph and

(ii) after MET removes 1000 edges. The gap between λ1

and λ21 is as small as 0.37 on Yahoo! IM, 0.36 on TT,

and 0.05 on FB. When this situation happens, the (eigen-

score) re-computation condition is triggered more often (i.e.,

max(estimated λi) < λT after few edge deletions). One

possible solution is to track even more eigenvalues, which

also increases runtime. MET enables trade-off between effi-

cacy and runtime by introducing a slack variable ✏. Figure 3

shows the effect of increasing ✏. In real-world applications,

one may allow a small drop in the efficacy to improve the

runtime. To achieve the highest efficacy, we simply set ✏ to

0. In this case, MET can preserve more than 99% of efficacy

compared with NetMelt+ in all social graphs.

4.3.3 Simulating Virus Propagation As mentioned pre-

viously, the leading eigenvalue λ1 of the adjacency matrix

affects the dissemination of a virus. We simulate the pop-

ular Susceptible-Infected-Susceptible (SIS) model in order

to evaluate the efficacy of minimizing the virus by differ-

ent methods. In the SIS model, a node can be in one of

two states: susceptible or infected. A susceptible node will

be infected at some infection rate β if it connects with in-

fected neighbors. In the mean time, an infected node also

tries to recover by itself at a rate δ. In our experiment, we

removed k = 1000 edges from the original graph and eval-

uated how many nodes were infected. We ran 100 experi-

ments for 100 time steps and report the average results. In

Figure 4, the x-axis is the time step and the y-axis is the frac-

tion of nodes infected at a particular time step. The lower the

fraction of infected nodes, the better. We observe that MET

always achieves similar performance to NetMelt+; but recall

that MET is substantially faster than NetMelt+.

4.4 Discussion The runtime of MET is 100+ times faster

than NetMelt+ on Yahoo IM!, 30 times faster on TT, but

only 10+ times faster on FB. The top eigenvalues of FB

become very close to each other after removing k edges.

For example, Figure 2 showed that the difference between

λ1 and λ21 in FB can be as small as 0.05. When the top-T

eigenvalues are so close (as in FB), MET has to track more

eigenvalues or re-compute the eigenscores more often, both

of which lead to higher runtimes. In real-world applications,

one may allow a small loss in efficacy by using MET’s slack

variable ✏, which makes MET faster. For example, on FB,

MET is 12 times faster than NetMelt+ while preserving 96%

of NetMelt+’s efficacy.

A key question is: How far are the MET results from

the upper-bound on the optimal solution that minimizes the

largest eigenvalue of a graph? As mentioned previously,

finding the optimal solution is NP hard. To answer this

question, we show the upper-bound on the largest degree

dmax of a graph after removing k edges.This result will

help us provide an upper-bound on the drop in the lead-

ing eigenvalue in the optimal solution. To the best of our

knowledge, ours is a tighter upper-bound on the optimal so-

lution than previously published. Before moving forward,

here are a couple of preliminaries: (1) As shown in [11],

∆λi = λi − λ̄i ≈ getEigenscore(e, λi, ui, vi). Sec-

tion 2 defined getEigenScore(e, λi, ui, vi). As the name

suggests, it returns edge e’s eigenscore associated with λi.

(2)
√
dmax ≤ λ1, where dmax is the maximum degree of G.

If A0 is a sub-matrix of A, according to Proposition 3.1.1 in

[2]), we have:

(4.1) λ1(A
0) ≤ λ1(A)

Then, from the definition of λ, we can write:

(4.2) λ1(A) = max
x

x
T
Ax

xTx

If we set x in Eq. 4.2 to be a vector of all ones except for

the highest degree node, where it will have
√
dmax, then we

observe that
√
dmax is an eigenvalue of a star graph with the

highest degree of dmax. Putting Eq. 4.1 and Eq. 4.2 together,

we get
√
dmax ≤ λ1.

Now suppose we have a sequence of numbers: d1 ≥
d2 ≥ ... ≥ dn. This is not a degree sequence, just a sequence

of numbers. Consider the trivial problem of minimizing the

maximum element in this sequence by reducing one element

at a time. Obviously, the best way of accomplishing this is

to reduce d1 until it is equal to d2, then reduce d1 and d2
alternately until they are equal to d3, then reduce d1, d2, and

d3 alternatively until they are equal to d4, and so on. Suppose

699 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0

10

20

30

40

50

!" #" !!" !#" $!"

λ
i

Index i

Original Graph Modified Graph

0

5

10

15

20

1 6 11 16 21

λ
i

Index i

Original Graph Modified Graph

(a) λ’s of Oregon-1 (b) λ’s of YIM-1

0

5

10

15

!" #" !!" !#" $!"

λ
i

Index i

Original Graph Modified Graph

0

5

10

15

20

!" #" !!" !#" $!"

λ
i

Index i

Original Graph Modified Graph

(c) λ’s of FB-1 (c) λ’s of TT-1

Figure 2: Top eigenvalues of the original graph and the modified graph (i.e., the graph after removing 1000 edges selected

by MET). The top eigenvalues in social networks are very close to each other after removing 1000 edges with MET. After

the edge removal, the gaps between λ1 and λ21 in YIM-1, FB-1, and TT-1 are 0.37, 0.05, and 0.36, respectively.

f(x) is defined to be the maximum value of this sequence

after performing x such reductions in this way.

In the case of a graph, if we are allowed to remove k

edges in a given graph, the maximum degree of the modified

graph can not be smaller than f(2k). We can find the upper-

bound on the percentage drop in the leading eigenvalue in

Eq. 4.3. Notice that 0 <
p

f(2k) ≤ λ̄1 ≤ λ1, where λ̄1 is

the leading eigenvalue after removing edges.

(4.3) %drop =
100(λ1 − λ̄1)

λ1

≤ 100(λ1 −
p

f(2k))

λ1

Figure 5 plots the percentage drop of the leading eigen-

value when using MET, using
p

f(2k), and using dmax− k.

Our
p

f(2k) provides a tighter upper-bound on the optimal

solution than dmax − k, which was introduced in [13, 12].

5 Related Work

The closet research to MET fall into two categories: (1)

controlling dissemination by deleting edges and (2) spectra

of graphs.

Controlling dissemination by deleting edges. Tong

et al. [12] use the eigenscores associated with the leading

eigenvalue λ1 to select the “best” edges (i.e., ones that yield

the highest drop in λ1) for deletion. Their method, called

0

10

20

30

40

50

60

70

80

90

100

Oregon YIM FB Twitter %
 D

ec
re

a
se

 i
n

 L
ea

d
in

g
 E

ig
en

v
a

lu
e

Graph

MET Upper-Bound (f(2k)) Upper-Bound (dmax - k)

Figure 5: Upper-bound on the percentage decrease in λ1 with

the optimal solution using the highest node-degree of the

graph. Budget k = 1000. The optimal solution must be in

between the black bars (MET) and red bars (our upper-bound

based on
p

f(2k)). The red bars provide a tighter bound

than the blue bars (which define the upper-bound based on

dmax − k).

700 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0

5

10

15

20

25

30

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

%
 D

ec
re

a
se

 i
n

 L
ea

d
in

g
 E

ig
en

v
a

lu
e

R
u

n
ti

m
e

(s
)

epsilon

Runtime % Decrease in Leading Eigenvalue

0

10

20

30

40

50

60

0

50

100

150

200

250

0 0.5 1 1.5 2

%
 D

ec
re

a
se

 i
n

 L
ea

d
in

g
 E

ig
en

v
a

lu
e

R
u

n
ti

m
e

(s
)

epsilon

Runtime % Decrease in Leading Eigenvalue

(a) Oregon (b) YIM

0

10

20

30

40

50

60

0

50

100

150

200

250

300

0 0.5 1 1.5 2

%
 D

ec
re

a
se

 i
n

 L
ea

d
in

g
 E

ig
en

v
a

lu
e

R
u

n
ti

m
e

(s
)

epsilon

Runtime % Decrease in Leading Eigenvalue

0

10

20

30

40

50

60

0

20

40

60

80

100

120

0 0.5 1 1.5 2

%
 D

ec
re

a
se

 i
n

 L
ea

d
in

g
 E

ig
en

v
a

lu
e

R
u

n
ti

m
e

(s
)

epsilon

Runtime % Decrease in Leading Eigenvalue

(c) FB (c) TT

Figure 3: The effects of selecting ✏ values on percentage drop in λ1 (i.e., efficacy) and runtime in MET . The values on the

y-axes are the averages over graphs of the same type. Smaller ✏ values create higher eigen-drops but also higher runtimes.

Note that when ✏ is 0, the runtimes are still lower than NetMelt+. That is, MET is 23 times faster in Yahoo! IM, 4 times faster

in FB, and 11 times faster in TT; while preserving 99.9%, 99.2%, and 99.9% efficacy, respectively. The performance of MET

on Oregon is not affected by the value of ✏ due to the large eigen-gaps in Oregon (i.e., ✏ does not trigger re-computation).

NetMelt tracks only λ1; thus its performance is hindered on

a graph with small eigen-gaps (see Section 4). Bonchi [1]

and Goyal et al. [6] identify “important” links (i.e., ones

that most likely explain propagation in a social network)

by studying past propagation logs. They examine the in-

fluence probabilities from available propagation events since

the social-network connections are not associated with prob-

abilities. These influence probabilities are dynamic and can

change over time. Our work uses the topology of the graph,

rather than propagation logs. Kuhlman et al. [8] study block-

ing simple and complex contagions via edge removal in

ratcheted dynamical systems, where infected nodes cannot

recover. Nodes are infected by contacting one infected node

in the simple-contagion scenario and at least two infected

nodes in the complex-contagion scenario. They investigate

various heuristics for this NP-hard problem on weighted and

unweighted networks. MET is agnostic to the recovery of

a node after infection. Chan et al. [4] track multiple eigen-

values for the task of manipulating network robustness. We

compare MET with their approach in Section 4. MET has

better efficacy and efficiency than their approach.

Spectra of a graph is about the relationship between

the topology and the eigen decomposition of the graph. In

particular, spectra of a graph provides information about

the graph’s connectivity, robustness, and randomness [5, 2].

Stewart and Sun [11] present a very nice study of graph

spectra under perturbation.

6 Conclusions

We observed that small eigen-gaps are prevalent in social

graphs, which make the problem of minimizing dissemina-

tion by deleting edges a challenge for approaches that only

track the leading eigenvalue or perform eigen decomposition

only once. We introduced MET, an efficient and effective ap-

proach that minimizes dissemination on a graph, regardless

of its eigen-gaps. MET deletes k edges by tracking multi-

ple eigenvalues adaptively and by re-computing eigenscores

when necessary. We evaluated MET against several com-

peting methods on various large graphs and showed the effi-

cacy and efficiency of MET. We found that MET yields the

best combinations of efficacy and efficiency. Moreover, we

showed how far the MET results are from the upper-bound

on the optimal solution.

Future work. We will investigate algorithms that can

minimize dissemination on a graph while keeping its com-

munity structure intact.

701 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0 100 200 300 400 500

0.0001

0.001

0.01

0.1

1

!"#$%&'$(

)
*+
,'
"-
.
%-
/%
0.
/$
,'
$1
%2
-
1
$3
%4
".
%5
-
6
%3
,+
7$
8

9:!

9:!(2+";$
2$'9$7'

2$'9$7'<

=+.1

=",>(=",>
:?@

0 100 200 300 400 500

0.0001

0.001

0.01

0.1

1

!"#$%&'$(

)
*+
,'
"-
.
%-
/%
0.
/$
,'
$1
%2
-
1
$3
%4
".
%5
-
6
%3
,+
7$
8

9:!

9:!(2+";$
2$'9$7'

2$'9$7'<

=+.1

=",>(=",>
:?@

(a) Oregon (b) YIM

0 100 200 300 400 500

0.001

0.01

0.1

1

!"#$%&'$(

)
*+
,'
"-
.
%-
/%
0.
/$
,'
$1
%2
-
1
$3
%4
".
%5
-
6
%3
,+
7$
8

9:!

9:!(2+";$
2$'9$7'

2$'9$7'<

=+.1

=",>(=",>
:?@

MET and NetMelt+

are close

0 100 200 300 400 500

0.001

0.01

0.1

1

!"#$%&'$(

)
*+
,'
"-
.
%-
/%
0.
/$
,'
$1
%2
-
1
$3
%4
".
%5
-
6
%3
,+
7$
8

9:!

9:!(2+";$
2$'9$7'

2$'9$7'<

=+.1

=",>(=",>
:?@

(c) FB (c) TT

Figure 4: (Best viewed in color.) Comparing the capability of different methods in minimizing the number of infected nodes

in the SIS model. Lower on the y-axis is better. We removed k = 1000 edges from each graph using different algorithms,

ran 100 simulations and took the average number of infected nodes. The normalized virus strengths of Oregon, YIM, FB,

TT graphs are 1.43, 2.49, 2.34, 2.07, respectively. The virus strength is β
δ

, where β, δ are the infection and death rates of

the virus. Our method MET achieves similar performance to NetMelt+ in minimizing the number of infected node, but is

much faster than NetMelt+. MET always beats the other methods in social graphs, which often have small eigen-gaps.

References

[1] F. Bonchi. Influence propagation in social networks: A data

mining perspective. In IEEE Intelligent Informatics Bulletin,

page 2, 2011.

[2] A. Brouwer and W. H. Haemers. Spectral of Graph. Springer,

2009.

[3] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and

C. Faloutsos. Epidemic thresholds in real networks. ACM

Trans. Inf. Syst. Secur., 10(4):1:1–1:26, 2008.

[4] H. Chan, L. Akoglu, and H. Tong. Make it or break it:

Manipulating robustness in large networks. In SDM, pages

325–333, 2014.

[5] F. R. K. Chung. Spectral Graph Theory. American Mathe-

matical Society, 1997.

[6] A. Goyal, F. Bonchi, L. V. S. Lakshmanan, and S. Venkata-

subramanian. On minimizing budget and time in influence

propagation over social networks. Social Netw. Analys. Min-

ing, 3:179–192, 2013.

[7] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the

spread of influence through a social network. In KDD, pages

137–146, 2003.

[8] C. J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and

S. S. Ravi. Blocking simple and complex contagion by edge

removal. In ICDM, pages 399–408, 2013.

[9] C. Lanczos. An iterative method for the solution of the

eigenvalue problem of linear differential and integral. J. Res.

Nat. Bur. Stand., pages 255–282, 1950.

[10] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler, and

C. Faloutsos. Threshold conditions for arbitrary cascade

models on arbitrary networks. In ICDM, pages 537–546,

2011.

[11] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory.

Academic Press, 1990.

[12] H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and

C. Faloutsos. Gelling, and melting, large graphs by edge

manipulation. In CIKM, pages 245–254, 2012.

[13] H. Tong, B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad,

C. Faloutsos, and D. H. Chau. On the vulnerability of large

graphs. In ICDM, pages 1091–1096, 2010.

702 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

06
/2

1/
16

 to
 1

49
.1

69
.2

23
.1

97
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

