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Abstract Graphs appear in numerous applications
including cyber security, the Internet, social networks, pro-
tein networks, recommendation systems, citation networks,
and many more. Graphs with millions or even billions of
nodes and edges are common-place. How to store such large
graphs efficiently? What are the core operations/queries on
those graph? How to answer the graph queries quickly?
We propose Gbase, an efficient analysis platform for large
graphs. The key novelties lie in (1) our storage and compres-
sion scheme for a parallel, distributed settings and (2) the
carefully chosen graph operations and their efficient imple-
mentations. We designed and implemented an instance of
Gbase using MapReduce/Hadoop. Gbase provides a par-
allel indexing mechanism for graph operations that both saves
storage space, as well as accelerates query responses. We run
numerous experiments on real and synthetic graphs, spanning
billions of nodes and edges, and we show that our proposed
Gbase is indeed fast, scalable, and nimble, with significant
savings in space and time.
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1 Introduction

Graphs have been receiving increasing research attention,
being applicable in a wide variety of high impact applica-
tions, like social networks, cyber security, recommendation
systems, fraud/anomaly detection, protein–protein interac-
tion networks, to name a few. In fact, any many-to-many
database relationship can be easily treated as a graph, with
myriads of additional applications (patients and symptoms;
customers and locations they have been to; documents and
terms in IR, etc.). To add to the challenge of graph mining,
even the volume of such graphs is unprecedented, reaching
and exceeding billions of nodes and edges.

Problem definitions. Our goal is to build a general graph
management system in parallel, distributed settings to sup-
port billion-scale graphs for various applications. For the
goal, we address the following problems:

1. Storage. How can we efficiently store and manage such
huge graphs in parallel, distributed settings to answer
graph queries efficiently? How should we split the edges
into smaller units? How should we group the units into
files?

2. Algorithms. How can we define common, core algo-
rithms to satisfy various graph applications?

3. Query Optimization. How can we exploit the efficient
storage and general algorithms to execute queries effi-
ciently?

For all the problems, scalability is a major challenge.
The size of graphs has been experiencing an unprecedented
growth. For example, one of the graphs we use here, the
Yahoo Web graph from 2002, has more than 1 billion nodes
and almost 7 billion edges. Similar size or even larger

123



638 U. Kang et al.

graphs exist: the Twitter graph spans several Terabytes; click-
streams are reported to reach Petabyte scale [1]. Such large
graphs violate the assumption that the graph can be fit in
main memory or at least the disk of a single workstation,
on which most of existing graph algorithms have been built.
Thus, we need to re-think those algorithms, and to develop
scalable, parallel ones, to manage graphs that span Terabytes
and beyond.

Our contributions. We propose Gbase, a scalable and gen-
eral graph management system, to address the above chal-
lenges. The main contributions are the following:

1. Storage. We propose a novel graph storage method
called ‘compressed block encoding’ to efficiently store
homogeneous regions of graphs based on adjacency
matrix representation. We also propose a grid-based
method to efficiently place blocks into files. We run
our algorithm on billion-scale graphs and show that the
block compression method leads up to 43× less storage
and 9.2× faster running time compared with the naive
algorithm.

2. Algorithms. We identify a core graph operation, and
use it to formulate eleven different types of graph
queries including neighborhood, induced subgraph, eg-
onet, K -core, cross-edges, and single source shortest
distances. The novelty is in formulating edge-based que-
ries (induced subgraph) as well as node-based queries
(neighborhoods) using a unified framework.

3. Query optimization. We propose a grid selection strategy
to minimize disk accesses and answer queries quickly.
We also propose a MapReduce [2] algorithm to support
incidence matrix-based queries using the original adja-
cency matrix, without explicitly building the incidence
matrix.

The rest of this paper is organized as follows. We first
present the overall framework in Sect. 2. We describe the
storage and indexing method in Sect. 3, and then the query
execution in Sect. 4. We provide experimental evaluations
and comparisons in Sect. 5. After reviewing the related work
in Sect. 6, we conclude in Sect. 7.

2 Overall framework

The overall framework of our Gbase is summarized in Fig. 1.
The design objective is to balance storage efficiency and
query performance on large graphs. It comprises two compo-
nents: the indexing stage and the query stage. In this Section,
we give a high level overview of each stage; and we will give
more details in Sects. 3 and 4, respectively.

Fig. 1 Overall framework of Gbase. 1 Indexing Stage: raw graph is
clustered and divided into compressed blocks. 2 Query Stage: global
and targeted queries from various graph applications are handled by a
unified query execution engine

In the indexing stage, given the original raw graph which
is stored as a big edge file, Gbase first partitions it into sev-
eral homogeneous blocks. Second, according to the partition
results, Gbase reshuffles the nodes so that the nodes belong-
ing to the same partition are put nearby. Third, Gbase com-
presses all non-empty blocks through standard compression
algorithms such as Gzip and Elias-γ . Finally, the compressed
blocks, together with some meta information (e.g., the block
row id and column id), are stored into the graph databases.
For many real graphs, such homogeneous blocks, commu-
nity-like structure, do exist. Therefore, after partition and
reshuffling, the resulting blocks are either relatively dense
(e.g., the diagonal blocks in Fig. 1) or very sparse (e.g., the
off-diagonal blocks in Fig. 1). Both cases are space efficient
for compression (i.e., the compression ratio is high). In the
extreme case that a given block is empty, we do not store it at
all. Our experiments (See Sect. 5) show that in some cases,
we only need about 2 % storage space of the original after
the indexing stage. Note that in this work, we are focusing
on a static graph, and thus, we leave the update of the graphs
as a future work.

In the query stage, our goal is to provide a set of core
operations that will be sufficient to support a diverse set of
graph applications, for example, ranking, community detec-
tion, and anomaly detection. The key of the online query
stage is the query execution engine, which unifies the dif-
ferent types of inputs as query vectors. It also unifies the
(seemingly) different types of operations on the graph by a
unified matrix-vector multiplication which we will introduce
in Sect. 4. By doing so, Gbase is able to support multiple dif-
ferent types of queries simultaneously. Table 1 summarizes
the queries (the first column) that are supported by Gbase.
These queries construct the main building blocks for a variety
of important graph applications (Table 1). For example, the
diversity of RWR (Random Walk with Restart [4]) scores
among the neighborhood of a given edge/node is a strong
indicator of abnormality of that node/edge [7]. The ratio
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Table 1 Applications of Gbase

Notice that Gbase answers wide
range of both global (top 4
rows) and targeted queries
(bottom 6 rows with bold fonts)
with applications in browsing
[3–5], ranking [3,4], finding
communities [5,6], anomaly
detection [6–9], and
visualization [5,10]

Query Applications

Browsing Ranking Finding
community

Anomaly
detection

Visualization

Connected comp. � �
Radius � �
PageRank, RWR � � �
LineRank � � �
Induced subgraph � � �
(K)-Neighborhood � � �
(K)-Egonet � � � �
K -core � �
Cross-edges � �
Single source �

shortest distances

Table 2 Definitions of symbols

Symbol Definition

G Graph

A Adjacency matrix of the graph G
B Incidence matrix of the graph G
n Number of nodes

m Number of edges

k Number of partitions

p, q Partition indices, 1 ≤ p, q ≤ k

I (p) Set of nodes belonging to the pth partition

l(p) Partition size, l(p) ≡ |I (p)|, 1 ≤ p ≤ k

G(p,q) Subgraphs induced by pth and qth partitions

m(p,q) Number of edges in G(p,q)

H(.) Shannon entropy function

between the number of edges (or the summation of edge
weights) and number of nodes within the egonet can help
find abnormal nodes on weighted graphs [9]. The K -cores
and cross-edges can be used for visualization and finding
communities in large graphs.

3 Graph storage and indexing

In this section, we describe in detail the indexing and storage
stage of Gbase. We use the symbols in Table 2.

3.1 Baseline storage scheme

A typical way to store the raw graph is to use the adjacency
list format: for each node, it saves all the out-neighbors adja-
cent from the node. The adjacency list format is simple and
might be good for answering out-neighbor queries. However,
it is not an efficient format for answering general queries

including in-neighbor queries and ego-net queries; for exam-
ple, answering the in-neighbor of a query requires reading all
the edges, which is not efficient. For the reason, we instead
use the sparse adjacency matrix format, where we save each
edge by a (source,destination) pair. Note that we only store
nonzero elements of a matrix, and does not store empty ele-
ments. The advantage of the sparse adjacency matrix format
is its generality and flexibility to enable efficient storage and
indexing techniques as we will see later in this and the next
section.

The storage system should be designed to be efficient in
both storage cost and online query response. To this end,
we propose to index and store the graph on the homoge-
neous block, community-like structure, levels. Next, we will
describe how to form, compress, and store/place such blocks.

3.2 Block formulation

The first step is to partition the graph, that is, re-order the rows
and columns, and make homogeneous regions into blocks.
Partitioning algorithms form an active research area, and
finding optimal partitions is orthogonal to our work. Any
partition algorithms, for example, METIS [11], Disco [12],
Shingle [13], SlashBurn [14], etc., can be naturally plugged
into Gbase.

Graph partitioning can be formally defined as follows. The
input is the original raw graph denoted by G. Given a graph
G, we partition the nodes into k groups. The set of nodes that
are assigned into the pth partition for 1 ≤ p ≤ k is denoted
by I (p). The subgraph or block induced by p-th source par-
tition and qth destination partition is denoted as G(p,q). The
sets I (p) partition the nodes, in the sense that I (p) ∩ I (p′) = ∅
for p �= p′, while

⋃
p I (p) = {1, . . . , n}. In terms of stor-

age, the objective is to find the optimal k partitions which
lead to smallest total storage cost of all blocks/subgraphs
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G(p,q) where 1 ≤ p, q ≤ k. Intuitively, we want the induced
subgraphs to be homogeneous (meaning the subgraphs are
either very dense or very sparse), which captures not only
community structure but also leads to small storage cost. For
example, a graph containing two cliques connected by an
edge can be partitioned into two groups where each group
contains all the nodes in a clique.

For many real graphs, the community/clustering structure
can be naturally identified. For instance, in Web graphs, the
lexicographic ordering of the URL can be used as an indicator
of community [15] since there are usually more intra-domain
links compared with the inter-domain links. For authorship
network, the research interest is often a good indicator for
finding communities since authors with the same or simi-
lar research interest tend to have more collaborations. For
patient–doctor graph, the patient information (e.g., geogra-
phy and disease type) can be used to find the communities
(patients with similar disease and living in the same neigh-
borhood have higher chance to visit the same doctor).

3.3 Block compression

The homogeneous block representation provides a more
compact representation of the original graph. It enables us
to encode the graph in a more efficient way. The encoding of
a block G(p,q) consists of the following information:

– source and destination partition ID p and q;
– the set of sources I (p)and the set of destinations I (q).
– the payload, the bit string of subgraph G(p,q).

A naive way of encoding a block is raw block encoding
which only stores the coordinates of the nonzero entries in
the block. Although this method saves the storage space since
the nonzero elements within the block can be encoded with a
smaller number of bits (log(m ax(l(p), l(q))) than the original,
the savings are not great as we will see in Fig. 4 at Sect. 5.

To achieve better storage savings, we propose compressed
block encoding which converts the adjacency matrix of the
subgraph into a binary string and stores the compressed string
as the payload. Any optimal compression algorithm can be
used for the compressed block encoding. Compared to the
raw block encoding, the compressed block encoding requires
more cpu time to compress and uncompress blocks. However,
the storage savings and the reduced data transfer size help to
improve performance of Gbase as we will see in Sect. 5. We
give two examples of the compressed block encoding using
different compression algorithms: zip compression and gap
Elias-γ encoding.

Zip Compression. In the zip compression method, we apply
the standard Gzip algorithm to compress the binary string
representation of the adjacency matrix blocks. For example,
for the following adjacency matrix of a graph:

G =
⎛

⎝
1 0 0
1 0 0
0 1 1

⎞

⎠ (1)

raw block encoding will just store the nonzero coordinates
(0, 0), (1, 0), (2, 1), and (2, 2) as the payload. Compressed
block encoding using zip algorithm converts the matrix into
a binary string 110, 001, 001 (in the column major order) and
then run the Gzip algorithm to generate the payload.

Gap Elias-γ Encoding. In the gap Elias-γ encoding, we
first compute the gaps between nonzero elements inside a
block, and compress the gaps using Elias-γ encoding. Elias-
γ encoding stores a number x using 1+2�logx	 bits which is
close to the information-theoretic minimum [13]. For exam-
ple, the offsets of the nonzero elements of the matrix in
Eq. (1) are 0, 1, 4, 3 in the column major order. These offsets
are then encoded with Elias-γ to create the payload.

Storage estimation. The storage needed for raw block
encoding is 2 ∗ m(p,q) ∗ log(max(l(p), l(q))) for each block.
Using compression algorithms achieving the information-
theoretic minimum cost asymptotically (e.g., zip compres-
sion and the gap Elias-γ encoding), the storage needed for
compressed block encoding is l(p)l(q)H(d(p,q)) for each block

(see Eq. (1) of [16]), where d(p,q) = m(p,q)

l(p)l(q)
is the den-

sity of G(p,q), and H(·) is the Shannon entropy function
H(X) = −∑

x p(x) log p(x) where p(x) is the probabil-
ity that X= x . The total storage needed for all the blocks in
the compressed block encoding is given by

∑

1≤p,q≤k

l(p)l(q)H(d(p,q)). (2)

Note that the number of bits to encode an edge in the com-
pressed block encoding decreases as d increases, while it is
constant in raw block encoding.

3.4 Block placement

After compressing the blocks, we need to store/place them
in the file system (e.g., HDFS of Hadoop, relational DB).
Here, the main idea is to place several blocks together into a
file, and select only relevant files as inputs in the query stage.
The question is, how do we place blocks into files? A typical
approach is to use vertical placement to place the vertical
blocks in a file as shown in Fig. 2a. The other alternative is
to use horizontal placement to place the horizontal blocks in
a file as shown in Fig. 2b. However, both of the placement
techniques are good only for one type of query: for example,
horizontal and vertical placement are good for out-neighbor
and in-neighbor queries, respectively.

To solve the problem, Gbase uses the grid placement,
shown in Fig. 2c, which we demonstrate to be efficient
for queries that access in-neighbors, out-neighbors, or both.

123



GBASE: an efficient analysis platform for large graphs 641

(a) (b) (c)

Fig. 2 Adjacency matrices showing possible placement of blocks into
files in Hadoop. The smallest rectangle represents a block in the adja-
cency matrix. The placement strategy determines which of the blocks
are grouped into files G1 to G6 or G9. Vertical placement in a is good for
in-neighbor queries, but inefficient for out-neighbor or egonet queries.
Horizontal placement in b is good for out-neighbor queries, but ineffi-
cient for in-neighbor or egonet queries. Gbase uses the grid placement,
shown in c, which is efficient for all types of queries

The advantage of the grid placement is that it minimizes
the number of input files to answer queries. Suppose we
store all the compressed blocks in K files. With the verti-
cal and the horizontal placement, we need O(K ) file acces-
ses to find the out- and in-neighbors of a given query node,
respectively. In contrast, we need only O(

√
K ) files acces-

ses with grid placement. We will see this run-time query
optimization in more detail at Sect. 4.3. We note that the
parameter optimization for the grid placement (e.g., number
of files, number of blocks per file) is left for a possible future
work.

4 Handling graph queries

In this section, we describe query execution in Gbase. Gbase
supports both “global” queries, as well as “targeted” queries
for one or a few specific nodes. The answer to global que-
ries requires traversal of the whole graph, like, for example,
diameter estimation. In contrast, “targeted” queries need to
access only parts of the graph. Gbase supports eleven dif-
ferent queries including neighborhoods, induced subgraphs,
egonets, K -core, cross-edges, and single source shortest dis-
tances.

4.1 Global queries

Global queries are performed by repeated joins of edge
blocks and vector blocks. Gbase supports the follow-
ing graph queries: degree distribution, PageRank, RWR
(“Random Walk with Restart”), radius estimations, discovery
of connected components [6], and LineRank (i.e., PageRank
on the line graph [17]). Our main contribution here is that
our proposed storage and compression schemes reduce the
graph storage significantly, and enable faster running time as
shown in Sect. 5. The global queries also serve as primitives
for targeted queries (see ‘T6: K -core’ in Sect. 4.2), enabling
a variety of applications as shown in Table 1.

4.2 Targeted queries

Many graph mining operations can be unified as matrix-vec-
tor multiplication. Here the matrix is either the adjacency
matrix A of size n × n or the incidence matrix B of size
m × n where n and m are the number of nodes and edges in
the graph, respectively. Each row of the incidence matrix cor-
responds to an edge, and it has two nonzeros whose column
ids are the node ids of the edge.

The matrix-vector multiplication observation has the extra
benefit that it corresponds to a SQL join. Thus, graph min-
ing could use all the highly optimized join algorithms in the
literature (hash join, indexed join, etc.), while still leverages
the proposed block compression storage scheme.

In fact, for most of the upcoming primitives, we shall first
give the matrix-vector details, and then the SQL code.

T1: 1-step neighbors. The first query is to find 1-step in-
neighbors and out-neighbors of a query node v.

Matrix-Vector version
Given a query node v, its 1-step in-neighbors can be found
by the following matrix-vector multiplication:

in1(v) = A × ev, (3)

where the matrix A is the adjacency matrix of the graph and
the vector is the “indicator vector” ev which is the n-vector
whose vth element is 1, and all other elements are 0s. The
1-step in-neighbors of the query node v are those nodes
whose corresponding values in in1(v) are 1s.

The 1-step out-neighbors can be obtained in the similar
way by replacing A with its transpose AT .

SQL version
We can also find 1-step in-neighbors and out-neighbors in
standard SQL. Assume we have a tableE(src, dst) stor-
ing the edges, with attributes ‘source’ (src) and “destina-
tion” (dst). The 1-step out-neighbors of a query node “q”
are given by

SELECT dst
FROM E
WHERE src=“q”

without even requiring a join. 1-step in-neighbors can be
answered in a similar way.

T2: K-step neighbors. The next query is to find “within
k-step” neighbors. Let us only consider the k-step in-neigh-
bors. k-step out-neighbors can be found in similar way - we
only need to replace the matrix A by its transpose AT in the
matrix-vector multiplication version; and switch src and
dst in the SQL version.
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Matrix-Vector version
The k-step in-neighbors nhk(v) of the query node v is defined
recursively by (k − 1)-step neighbors nhk−1(v) in terms of
matrix-vector multiplication as follows:

nhk(v) = A× nhk−1(v), (4)

where the 0-step in-neighbors nh0(v) is simply the indicator
vector ev . After the k multiplications, the k-step in-neigh-
bors are those nodes whose corresponding values in nhk(v)

or nhk−1(v) are 1s.

SQL version
As before, assume we have a table Ewith attributes src and
dst. The k-step in-neighbors can also be found by SQL join.
In general, the k-step in-neighbors is a (k− 1)-way join. For
example, the 2-step in-neighbors of a query node “q” is given
by the following SQL join:

SELECT E2.src
FROM E as E1, E as E2
WHERE E1.dst=“q”

AND E1.src = E2.dst

T3: Induced subgraph. Given a set of nodes Vq in a graph
G, the induced subgraph is defined to be a graph whose nodes
are Vq and an edge between two nodes v1 and v2 exist if and
only if they are adjacent in G.

Matrix-Vector version
Let B be the m × n incidence matrix where m and n are the
number of edges and nodes of the graph, respectively. Let
evq be the n-vector, whose corresponding elements for Vq

are 1s, and 0s otherwise.
Then, the induced subgraph S(Vq) from Vq is expressed

by the following matrix-vector multiplication:

S(Vq) = B× evq , (5)

where the resulting vector S(Vq ) is m-vector and the elements
in S(Vq) have values of 0, 1, or 2. The induced subgraph is
given by those edges whose corresponding values in S(Vq)

are 2s since it means that the incident nodes (both the source
and the target) of the edges are in Vq .

SQL version
Assume we have an incidence matrix as table B, with attri-
butes eid, srcid, and dstid, representing the edge id, the
source node id, and the destination id of a row in the inci-
dent matrix, respectively. Also assume we have a query vector
table Q with an attribute nodeid. Then the induced subgraph
is given by the following join:

SELECT B.eid, B.srcid, B.dstid
FROM B, Q as Q1, Q as Q2
WHERE B.srcid=Q1.nodeid

AND B2.dstid=Q2.nodeid

T4: 1-step egonet. Informally, the 1-step-away egonet (or
just “egonet”) of a node v is its 1-step-away vicinity. For-
mally, it is defined as the induced subgraph that includes v

and its 1-step neighbors. Extracting the egonet of a query
node v is a special case of extracting induced subgraph. That
is, the set of nodes Vq is defined to be the v and its 1-step
in-neighbors and out-neighbors.

The details are omitted, since we can combine earlier
expressions (for both the matrix-vector case, as well as for
the SQL case).

T5: K-step egonet. K -step egonet of a node v is defined to
be the induced subgraph from v and its within-k step neigh-
bors. Extracting the k-step egonet of a query node v is also
a special case of extracting induced subgraph. That is, the
set of nodes Vq is defined to be the v and its within-k step
neighbors. Thus, the same expression for the k-step neigh-
bors and the induced subgraph can be used for extracting
k-step egonet.

T6: K-core. K -core of a graph is a maximal connected
subgraph in which all vertices have degree at least K [10].
K -core is useful for finding communities and visualizing
graphs. Although it seems complicated at first, all K -cores of
a large graph can be enumerated by Gbase using primitives
defined before:

1. Compute degrees of all nodes. Let C be the set of nodes
with degree ≥ K .

2. Compute induced subgraph G ′ using C .
3. Find connected components of G ′. The resulting com-

ponents are the K -core.

T7: Cross-edges. Given two disjoint sets V1 and V2 of
nodes, how can we find the cross-edges connecting the two
sets? Cross-edges are useful for visualizing the interaction of
two distinct sets of nodes, as well as anomaly detection (e.g.,
a set of nodes having few edges to the rest of the world are
suspicious). Cross-edges can be computed by Gbase using
induced subgraph queries:

1. Compute induced subgraphs S(V1), S(V2), S(V1 ∪ V2)

using nodes in V1, V2, and (V1 ∪ V2), respectively.
2. Let E1, E2, and E12 be the set of edges in S(V1),

S(V2), and S(V1 ∪ V2), respectively. The cross-edges
are exactly the edges in E12 − E1 − E2.

T8: Single-source shortest distances. Given a query
“source” node q, and the maximum path length k, the single-
source shortest distances query finds the shortest path dis-
tances from q to the nodes reachable within k steps, where
the maximum path length is limited by k.
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Matrix-Vector version
Let dk be an n-vector containing the answer to the query. We
initialize d0 by setting 0 for the element q, and∞ for other
elements. dk is updated recursively from dk−1 as follows:

dk = A× dk−1, (6)

where the sub operations in the matrix-vector multiplica-
tion are redefined. In the standard matrix-vector multipli-
cation, the i th element dk

i of the vector dk is determined
by dk

i =
∑

j Ai j d
k−1
j . Here we redefine the operations by

dk
i = min j (Ai j + dk−1

j ).

SQL version
Assume we have a table E with attributes src, dst , and val,
representing source node id, destination node id, and weight
of an edge, respectively. We also have a distance vector table
V with attributes id and val, representing row id and the
value of the element at the row, respectively. The next-step
distance vector is computed by the following SQL statement:

SELECT E.src, MIN(sum2(E.val, V.val))
FROM E, V
WHERE E.dst=V.id

GROUP BY E.sid

where sum2 is a UDF (user-defined function) which returns
the sum of the two arguments.

4.3 Query execution engine

We describe the query execution engine of Gbase built on
the top of Hadoop [18], an open source implementation of
MapReduce [2] which is a distributed large scale data pro-
cessing platform.

Overview. As described in previous sections, the main
operation of Gbase is the matrix-vector multiplication.
Gbase handles queries by executing appropriate block
matrix-vector multiplication modules. The global queries are
typically handled by multiple matrix-vector multiplications
since the answer to the queries is often a fixed point of the
multiplication (e.g., the first eigenvector in case of Page-
Rank). The local queries require one or few multiplications.

Most of the operations require the adjacency matrix of the
graph. Thus, Gbase uses the adjacency matrix directly as its
input. However, some operations including the induced sub-
graph require the incidence matrix which is different from
the adjacency matrix. We will see how to handle the que-
ries requiring incidence matrix efficiently at the end of this
subsection.

(a) (b) (c)

Fig. 3 Grid selection in 6 by 6 blocks where the query node belongs
to the second block. The smallest rectangle corresponds to a block, and
a bigger rectangle containing 4 blocks is a grid which is stored in a file.
Notice that Gbase selects different grids based on the type of the query
and the query node id. For example, Gbase selects G1, G4, and G7,
instead of all the grids for in-neighbors query. This reduced input size
results in the decreased running time. a 1-step in-neighbors, b 1-step
out-neighbors, c 1-step in- and out-neighbors

Grid selection. Before running the matrix-vector multipli-
cation, Gbase selects the grids containing the blocks relevant
to the queries. Only the files corresponding to the grids are
fed into Hadoop jobs that Gbase executes. For global que-
ries, we need to select all the grids since all the blocks are
relevant. For targeted queries, however, we can select only
relevant grids. For in-neighbor queries, we select grids whose
column range contains the query node as shown in Fig. 3a.
For out-neighbor queries, we select grids whose row range
contains the query node as shown in Fig. 3b. For in/out neigh-
bors and egonet queries, we select grids whose row or column
range contains the query. As we will see in Sect. 5, this grid
selection has advantages of decreasing the running time.

Handling incidence matrix queries. While the majority of
operations use the adjacency matrix, the induced subgraph
queries use the incidence matrix. Thus, Gbase need to access
the incidence matrix to support the queries. A naive approach
is to build the incidence matrix Bm×n by numbering edges
sequentially. However, it requires the storage to save B which
is twice the size of the original adjacency matrix. The ques-
tion is, can we answer incidence matrix queries efficiently
without the additional storage?

Our proposed main idea is to derive the incidence matrix
from the original adjacency matrix as required. That is, an
adjacency matrix element (src, dst) can be interpreted as
elements ([src, dst], src) and ([src, dst], dst) of the inci-
dence matrix where [src, dst] is the edge id. Thus, the query
execution algorithm for handling incidence matrix can work
on the original adjacency matrix by treating each adjacency
matrix element as two incidence matrix elements.

The Hadoop algorithm for the induced subgraph, which
reflects the main idea, is shown in Algorithm 1. The algorithm
is composed of two stages. In the first stage, the elements
in the incidence matrix and the query vector are grouped
together to generate partial results. Notice that two incidence
matrix elements are generated (line 6,7 of Algorithm 1) for
an adjacency matrix element. In the second stage, the partial
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results are summed to get the final result. Note that only edges
having the sum 2 are included in the egonet since it means
that the two incidence nodes of the edges are contained in
the query node set.

Algorithm 1: Hadoop algorithm for Induced Subgraph
Input : Edge E = {(src, dst)} of a graph G = (V, E),

Query Node Set Vq = {nodeid}
Output: Edges belonging to the subgraph induced from Vq

InducedSubgraph-Map1(Key k, Value v) ;1
begin2

if (k, v) is of type E then3
(src, dst)← (k, v);4
// Emit incidence matrix elements5
Output(src, [src, dst]);6
Output(dst, [src, dst]);7

else if (k, v) is of type Vq then8
(nodeid)← (k, v);9
Output(nodeid,“1”);10

end11

end12

InducedSubgraph-Reduce1(Key k, Value13
v[1..r]) ;
begin14

if v[] contains “1” then15
Remove “1” from v[];16
foreach p ∈ v[1..r − 1] do17
[src, dst] ← p;18
// Emit partial multiplication result19
Output([src, dst], 1);20

end21

end22

end23

InducedSubgraph-Map2(Key k, Value v) ;24
begin25

Output(k, v); // Identity Mapper26

end27

InducedSubgraph-Reduce2(Key k, Value28
v[1..r]) ;
begin29

sum ← 0;30
foreach num ∈ v[1..r ] do31

sum = sum + num;32

end33
// Select edges whose incident nodes belong to the query node34
set
if sum=2 then35
[src, dst] ← k;36
Output(src, dst);37

end38

end39

5 Experiments

To evaluate our Gbase system, we perform experiments to
answer the following questions:

Q1 How much does our compressed block encoding reduce
the data size?

Q2 How do our algorithms scale up with the graph sizes and
the number of machines?

Q3 How much our indexing and query execution methods
save in query response time?

We first describe the experimental settings, and presents
results which provide answers to the questions.

5.1 Experimental setting

Datasets. We use large graph datasets summarized in Table 3.
The YahooWeb dataset is a web graph from Yahoo! with 1.4
billion nodes, 6.6 billion edges, and 120 GB in space. Twit-
ter is a social network containing the “who follows whom”
relationships. YahooWeb and Twitter are few of the largest
real graphs which help us test the scalability of our Gbase
system on real workload. LinkedIn is a social network con-
taining friends relationships. Wikipedia is a document graph
showing the links between articles. In order to show the per-
formance across different data scales, we use two synthetic
data generators: Kronecker [19] and Erdős-Rényi [20] to gen-
erate multiple graphs with different sizes.

Storage Schemes. We use the following notations to distin-
guish different storage and indexing methods:

– Gbase RAW (original RAW encoding): raw encoding
which is the original adjacency matrix format.

– Gbase NNB (No clustering, No compression, Block-
ing): raw block encoding without compression and clus-
tering.

– Gbase NCB (No clustering, Compression, Blocking):
compressed block encoding without clustering.

– Gbase CCB (Clustering, Compression, Blocking): com-
pressed block encoding with clustering.

– Gbase CCB+GS (CCB with Grid Selection): CCB with
grid selection as described in Section 4.3.

For compression, we use gap Elias-γ encoding since it
achieves higher compression rate than Gzip algorithm. To
evaluate the effect of clustering, we use the following set-
tings:

– YahooWeb: the original YahooWeb graph is already well
clustered, since its nodes are lexicographically num-
bered, and thus, many intra edges within domains exist.
For the reason, we use the original graph as the clus-
tered graph. We randomly permuted the node ids of the
original graph to generate the non-clustered graph.

– Twitter, LinkedIn, Wikipedia: we use the Shingle order-
ing [13] to cluster the graphs.

– Kronecker and Erdős-Rényi: since Kronecker graphs
are highly clustered from its construction, we use the
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Table 3 Order and size of
networks

M: million, K: thousand
YahooWeb: http://webscope.
sandbox.yahoo.com
Twitter: http://www.twitter.com
LinkedIn:underNDA
Wikipedia: http://en.wikipedia.
org/wiki/Wikipedia:Database_
download
Kronecker, Erdős-Rényi: http://
www.cs.cmu.edu/~ukang/
dataset

Graph Nodes Edges File size Description

YahooWeb 1,413 M 6,636 M 0.12 TB Web graph snapshot at 2002

Twitter 104 M 3,730 M 83 GB Twitter who follows whom at June 2010

LinkedIn 7.5 M 58 M 1 GB Who connected to whom at 2006

Wikipedia 3.6 M 42 M 0.6 GB document network at 2007

Kronecker 177 K 1,977 M 25 GB Synthetic Kronecker graph

120 K 1,146 M 13.9 GB

59 K 282 M 3.3 GB

Erdős-Rényi 177 K 1,977 M 25 GB Synthetic Erdős-Rényi graph

120 K 1,146 M 13.9 GB

59 K 282 M 3.3 GB

Kronecker graph as the clustered representation of the
Erdős-Rényi graph. That is, we use Erdős-Rényi graph
for RAW, NNB, and NCB, and Kronecker graph for CCB
experiment: this graph is called “Random” in the exper-
iments.

We deploy our Gbase Hadoop implementation onto the
M45 Hadoop cluster by Yahoo!. The cluster has total 480
machines with 1.5 Petabyte total storage and 3.5 Terabyte
memory.

5.2 Space efficiency comparison

We show the data sizes of real and synthetic graphs across
different storage schemes in Fig. 4 and Table 4. We have the
following observations:

Fig. 4 Effect of different encoding methods for Gbase. The Y -axis is
in log scale. “Yahoo” and “Wiki” denote the YahooWeb and the Wiki-
pedia graphs, respectively. For “Random” graph, Erdős-Rényi graph is
used for RAW, NNB, and NCB, and Kronecker graph is used for CCB
experiment. Notice our proposed compressed block encoding on clus-
tered graph (CCB) achieves the best compression, reducing up to 43×
smaller than the original (RAW). The “Random” graph (Kronecker and
the Erdős-Rényi) has better performance gain than real-world graphs
since the density is much higher. The Kronecker graph has better com-
pression than the Erdős-Rényi graph since it has a block-like structure
from the construction

Size reduction. The raw block encoding (NNB), and
the compressed block encoding without clustering (NCB)
method reduce the data sizes at most 1.8× and 11.7×, respec-
tively. However, for LinkedIn graph, they in fact increases
the data sizes than the original. The reason of this increase in
data size is that blocks from the original LinkedIn graph are
very sparse, and thus, the storage overhead of the meta infor-
mation (block row id, column id, etc.) outweighs the savings
from the encodings. In contrast, our proposed clustered block
encoding (CCB) method reduces the data size for all cases,
achieving 43× storage savings at maximum.

Density and compression. The compressed block encoding
compression ratio is better for the denser graphs (“Random”)
than the sparse real-world graphs (YahooWeb, Twitter, Link-
edIn, and Wikipedia). The reason is that denser graphs lead
to denser blocks which allow reduced bits per edge by com-
pression algorithms.
Block structure and compression. For “Random” graphs,
CCB achieves 43× savings while NCB achieves 11.7× sav-
ings. Note that CCB and NCB applied compressed block
encoding on Kronecker and Erdős-Rényi graphs, respec-
tively. The reason of Kronecker graph’s better compression
rate than Erdős-Rényi graph is that the Kronecker graph is
block structured from the construction [19], and thus, it ben-
efits the compression algorithm better than the Erdős-Rényi
graph.

To summarize, compressed block encoding on clustered
graph (CCB) has shown great space savings (up to 43×)
across all datasets outperforming all competitors (RAW,
NNB, NCB), which confirms the design objective of Gbase.

5.3 Indexing time comparison

So far, we have compared the resulting space efficiency of dif-
ferent methods. Next, we evaluate the indexing time required
by each method. In Fig. 5, we show the running time of
Gbase indexing process vs. the number of edges for graphs
generated by both Kronecker (KR) and Erdős-Rényi (ER)
generators. We use 200 machines.
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Table 4 Effect of different encoding methods for Gbase

Graph RAW NNB NCB CCB
RAW

CCB

YahooWeb 116,518,939,878 90,927,149,331 80,271,934,486 21,327,750,493 5×
Twitter 83,156,286,766 58,092,370,573 29,718,767,360 16,522,432,151 5×
LinkedIn 1,036,553,688 1,138,819,798 1,320,553,373 397,694,425 3×
Wikipedia 604,698,633 378,842,305 250,924,451 224,976,600 3×
Random 25,199,902,253 14,121,708,962 2,148,362,975 584,395,280 43×
The numbers show the graph sizes in bytes. Note our proposed compressed block encoding on clustered graph (CCB) achieves the best compression,
leading up to 43× smaller storage than the original (RAW)
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Fig. 5 Scalability of indexing in Gbase. KR-NNB: Kronecker
graph with raw block encoding. ER-NNB: Erdős-Rényi graph with
raw block encoding. KR-NCB,CCB: Kronecker graph with com-
pressed block encoding. ER-NCB,CCB: Erdős-Rényi graph with
compressed block encoding. Notice that the indexing time is linear on
the number of edges. Also notice that the compressed block encoding
is up to 22× faster than the raw block encoding, since the output size
is smaller

Running time. Compressed block encoding (NCB and CCB)
requires much less time than raw block encoding (NNB),
despite the additional compression step: NCB and CCB per-
form 22.4× and 20.3× faster than NNB for 1145M and
1977M edges, respectively. The reason is that the resulting
compressed blocks are much smaller than those from the raw
block encoding without compression. Thus, the running time
for writing the compressed blocks to disks is much smaller
than in the case of the uncompressed block. Also note that
the KR-NNB takes longer time than ER-NNB. The reason is
that some blocks in Kronecker graphs are very dense, while
in Erdős-Rényi graphs all the blocks are sparse. The dense
blocks in Kronecker graphs result in long encoding time,
and it increases the total running time since the running time
of a MapReduce job is bounded by the longest mapper or
reducer time.

Linear scalability. The indexing times for both compressed
(NCB and CCB) and raw block encoding (NNB) increase lin-
early as the number of edges for both Kronecker and Erdős-
Rényi graphs. This confirms the scalability of our encoding
schemes.

Fig. 6 Running time comparison of global (PageRank) queries over
different storage methods, using 100 machines. We use two largest
real-world graphs (YahooWeb and Twitter), and two synthetic graphs
(Kronecker and Erdős-Rényi graphs which are called “Random”). The
CCB method, which combines the clustering and the compressed block
encoding, performs the best, outperforming RAW method up to 9.2×.
Note that the time savings rates are smaller than the storage savings
rates shown in Fig. 4 and Table 4, due to the additional cpu time for
decoding compressed blocks

Fig. 7 Machine scalability of our proposed CCB method. The Y -axis
shows the ratio of the running time TM with M machines, and T25, for
PageRank queries. Note the speed-up grows near-linear to the number
of machines

5.4 Global query time

So far, we confirmed the scalability and efficiency of the
indexing phase. Next we evaluate the performance of differ-
ent schemes on the query phase. Here, we show the running
time and the scalability of Gbase global queries in Figs. 6, 7,
and 8. We choose to run the PageRank query, since PageRank
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Fig. 8 Edge scalability of our proposed CCB method. The Y -axis
shows the running time in seconds, for PageRank queries on Kronecker
graphs. Note the running times scale up near-linearly with the number
of edges for all the settings (10, 25, and 40 machines)

is one of the most representative matrix-vector multiplication
based algorithm. The PageRank query is evaluated on Yahoo-
Web, Twitter, Kronecker and Erdős-Rényi graphs. We have
the following observations.

Running time. In Fig. 6, we see that our proposed CCB
method, which combines the clustering and the compressed
block encoding, performs the best for all graphs on PageRank
queries. Specifically, it outperforms RAW, NNB, NCB meth-
ods up to 9.2×, 2×, and 1.6×, respectively, for the Random
graph. Note that the time savings rates are smaller than the
storage savings rates shown in Fig. 4 and Table 4. The reason
is that the compressed block encoding requires additional cpu
time for decoding blocks, thereby increase the running time.
However, the effect of the decreased I/O time overshadowed
the additional decoding time, resulting in smaller total run-
ning time.

Machine scalability. Figure 7 shows the scalability of CCB
method with regard to the number of machines. The Y -axis
shows the “speed up”, that is, the ratio of the running time
TM with M machines, and T25. We see that for all the graphs,
the running times scale up near-linearly with the number of
machines. Putting more machines will eventually decrease
the slope, but we leave the limit of this linear scale up open
for future work. We also note that figuring out the minimum
number of machines required to handle a certain data size is
another future work.

An interesting observation is that the slope of the speed-up
is small for the “Random” graph. The reason is that after the
block compression, the Random data become much smaller
(43×) than the original, and thus, even the 25 machines can
handle the compressed data in a fairly small amount of time.
Putting 100 machines in this case does not help for the speed-
up much, since there is a limit of speed-up due to the fixed
costs to run MapReduce jobs.

Edge scalability. Figure 8 shows the scalability of CCB
method with regard to the number of edges. We used the

Fig. 9 Running times of targeted queries over different storage and
indexing methods, on Twitter graph. 1-Nh and 2-Nh denote the
1-step and the 2-step neighborhood queries, respectively. Note that the
CCB+GS (grid selection method combined with the clustered zip block
encoding) outperforms the others by 4.6× at maximum

Fig. 10 Running time of targeted queries over different storage and
indexing methods, on YahooWeb graph. 1-Nh and 2-Nh denote the
1-step and the 2-step neighborhood queries, respectively. Note that the
CCB+GS (grid selection method combined with the clustered zip block
encoding) outperforms the others by 3.4× at maximum

Kronecker graphs for the experiments. Note that for all the
settings (10, 25, and 40 machines), the running time scales
up near-linearly with the number of edges.

5.5 Targeted query time

We show the performance of targeted queries on Twitter and
YahooWeb graphs in Figs. 9 and 10, respectively. Since the
targeted queries are often against a small subset of the data,
increasing the number of machines does not matter here for
improving an individual query. Therefore, we only demon-
strate the result with fixing the number of machines to 100.
All the experiments report the average running time of 10
randomly selected query nodes.

Effect of compression and clustering. For all the queries in
both of the graphs, the compressed block encoding without
clustering (NCB) performs better than the naive block encod-
ing (NNB), but the performance gain is small. For exam-
ple, NCB for the 1-Nh query on YahooWeb graph performs
1.09× better than NNB as shown in Fig. 10. In contrast,
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the compressed block encoding with clustering (CCB) per-
forms much better than the naive block encoding (NNB).
For example, CCB for the egonet query on YahooWeb graph
performs 2.8× better than NNB as shown in Fig. 10. We can
see that our proposed compression, combined with cluster-
ing, helps for faster running time. We note that the maximum
speed-up gains (2.8×) is smaller than the maximum storage
savings (5×) by compression, due to the additional cpu time
for decoding data.

Effect of grid selection. The CCB-GS method, which com-
bines the CCB with grid selection, achieves the fastest run-
ning time for all the queries in both of the graphs. In Twit-
ter graph, the CCB-GS method outperforms RAW and CCB
methods up to 4.6× and 2.6×, respectively, for egonet que-
ries. The reason of this performance gain is that CCB-GS
selects only relevant grids (

√
K for total K grids) for input

blocks, while CCB reads all the blocks for query execution.
We see that our proposed run-time optimization for query
execution pays off, leading to faster running times.

6 Related work

In this section, we review the related work, which can be cat-
egorized into four parts: (1) graph indexing techniques, (2)
graph queries, (3) column store, (4) matrix computation, and
(5) parallel data management.

Graph indexing. Graph indexing is very active in both dat-
abases community as well as data mining community in the
recent years. To name a few, Trißl et al. [21] proposed to
index the graph using pre- and postorder number to answer
the reachability queries. Chierichetti et al. [13] explored link
reciprocity for adjacency queries. Aggarwal et al. [22] pro-
posed using edge sampling to handle graph connectivity que-
ries. Sarkar et al. [23] explored the clustering properties to
proximity queries on graphs. Maserrat et al. [24] proposed a
Eulerian data structure for neighborhood queries.

Despite of their success, there are two major limitations of
these work. First, all the indexing techniques are designed for
one particular type of queries. Therefore, their performance
might be highly optimized for that particular type of query,
but they are far sub-optimal for the remaining, vast majority
types of queries. Second, they are implicitly designed for the
centralized computational mode, which limits the size of the
graph such indexing techniques can support. These limita-
tions are carefully addressed in the Gbase, which supports
multiple different types of queries simultaneously and is nat-
urally applicable to the distributed computing environment.

Finally, there are works on indexing many small graphs
using frequent subgraph [25,26] or significant graph pat-
terns [27], which is quite different from our setting where
we have one large graph.

Graph queries. There are numerous different queries on
graphs. To name a few, graph-level queries answer some
global statistics of the whole graph, for example, estimat-
ing diameters [8], counting connected components [6], etc.
Node-level queries, on the other hand, focus on the rela-
tionship among individual nodes. Representative queries
include neighborhood [24], proximity [4], PageRank [3],
centrality [28], etc. Between the graph-level and individ-
ual node-level, there are also queries on the sub-graph level,
for example, community detection [29,30], finding induced
subgraph [31], etc. Gbase covers a wide range of queries,
including the global and the node-level ones, by a unified
matrix-vector multiplication framework.

Column store. Column-oriented DBMS has gained its pop-
ularity in the recent years, due to (among other merits) its
excellent I/O efficiency for read-extensive analytical work-
loads. From research community, some representative works
include [32–36]. A notable work of column store data-
base from industrial side is HBase (http://hbase.apache.org/).
HBase is designed for large sparse data, built on the top of
Hadoop core. Different from HBase, our Gbase partitions
the data in two dimensions (both columns and rows) and it
is tailored for large real graphs. By leveraging the block and
community-like property which exists in many real graphs,
Gbase enjoys the advantages of both row-oriented and col-
umn-oriented storages.

Matrix computation. A remotely related work includes
large scale matrix computation software including NASA’s
General Purpose Solver [37] and SciDB [38]. Although
Gbase works on the adjacency matrix of a graph, Gbase
is based on compressed representation of the graphs which
is not provided in the aforementioned works.

Parallel data management. Parallel data processing has
attracted a lot of industrial attention recently due to the suc-
cess of MapReduce, a parallel programming framework [2],
and its open source version Hadoop [18]. Due to its excel-
lent scalability, ease of use, and cost advantage, MapRe-
duce and MapReduce-like systems have been extensively
explored for various data processing. Representative work
include Pregel [39], PEGASUS [6], SCOPE [40], Dryad [41],
PIG Latin [42], Sphere [43], and Sawzall [44], etc. Among
them, both PEGASUS and Pregel focus on large graph que-
rying/mining and are most related to our work. The proposed
Gbase (preliminary version in [45]) provides an even lower-
level support in terms of storage cost by indexing the graph
on the homogeneous block levels, which are ignored in either
PEGASUS or Pregel. In addition, both PEGASUS and Pre-
gel essentially perform node/vertex-centralized computation.
Our Gbase is more flexible in the sense that it also supports
edge-centralized processing (e.g., induced subgraphs, ego-
net, etc.) in addition to node-centralized processing.
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7 Conclusion

In this paper, we propose Gbase, an efficient analysis plat-
form for large graphs. The main contributions are the follow-
ings.

1. Storage. We carefully design Gbase to efficiently store
homogeneous regions of graphs in distributed settings
using a novel “compressed block encoding”. Experi-
ments on billion-scale graphs show that the storage and
the running time reduced up to 43× and 9.2× of the
original, respectively.

2. Algorithms. We unify node-based and edge-based que-
ries using matrix-vector multiplications on the adja-
cency and the incidence matrices. As a result, we get
eleven different types of versatile graph queries sup-
porting various applications.

3. Query optimization. We propose a fast graph query exe-
cution algorithm using a grid selection. Also, we pro-
vide a efficient MapReduce algorithm to support inci-
dence matrix based queries using the original adjacency
matrix, without explicitly building the incidence matrix.

Researches on large graph mining can benefit significantly
from Gbase’s efficient storage, widely applicable primitive
operations, and fast query execution engine. Future research
directions include query optimization for multiple, hetero-
geneous queries, efficient update of the graphs, and better
support for time evolving graphs.
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