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Abstract—Networks appear naturally in many high-impact
real-world applications. In an increasingly connected and coupled
world, the networks arising from many application domains
are often collected from different channels, forming the so-
called multi-layered networks, such as cyber-physical systems,
organization-level collaboration platforms, critical infrastructure
networks and many more. Compared with single-layered net-
works, multi-layered networks are more vulnerable as even a
small disturbance on one supporting layer/network might cause
a ripple effect to all the dependent layers, leading to a catas-
trophic/cascading failure of the entire system. The state-of-the-
art has been largely focusing on modeling and manipulating the
cascading effect of two-layered interdependent network systems
for some specific type of network connectivity measure.

This paper generalizes the challenge to multiple dimensions.
First, we propose a new data model for multi-layered networks
(MULAN), which admits an arbitrary number of layers with a
much more flexible dependency structure among different layers,
beyond the current pair-wise dependency. Second, we unify a wide
range of classic network connectivity measures (SUBLINE). Third,
we show that for any connectivity measure in the SUBLINE family,
it enjoys the diminishing returns property which in turn lends
itself to a family of provable near-optimal control algorithms
with linear complexity. Finally, we conduct extensive empirical
evaluations on real network data, to validate the effectiveness of
the proposed algorithms.
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I. INTRODUCTION

Networks are ubiquitous and naturally appear in many
high-impact applications. Moreover, in a way reminiscen-
t of the famous quote from Leonardo da Vinci1, the net-
works arising from these application domains are often inter-
connected/interwined with each other, forming the so-called
multi-layered networks [3], [8], [16], [18]. Cyber-physical
systems are a classic example of multi-layered networks,
where the control layer controls the physical layer (e.g.,
power grid) through the communication layer (e.g., computer
networks); and in the meanwhile, the fully functioning of the
communication layers depends on the sufficient power supply
from the physical layer. Here, these three interdependent layers
naturally form a line-structured dependency graph. Anoth-
er example is the organization-level collaboration platforms
(Fig. 1), where the team network is supported by the social
network, connecting its employee pool, which further interacts
with the information network, linking to its knowledge base.
Furthermore, the social network layer could have an embedded
multi-layered structure (e.g., each of its layers represents a
different collaboration type among different individuals); and

1“Learn how to see. Realize that everything is connected to everything else.”

so does the information network. In this application, the
different layers form a tree-structured dependency graph.

Fig. 1. A simplified example of
multi-layered network.

Compared with single-
layered networks, multi-
layered networks are even
more vulnerable to external
attacks analogous to the
Butterfly Effect in the
atmosphere system. That is,
even a small disturbance on
one supporting layer/network
might cause a ripple effect
to all the dependent
layers, leading to a
catastrophic/cascading
failure of the entire system.
In 2012, Hurricane Sandy
disabled several major power
generator facilities in the New York area, which not only
put tens of thousands of people in dark for a long time,
but also paralyzed the telecom network and caused a great
interruption on the transportation network. Therefore, it is of
key importance to identify crucial nodes in the supporting
layer/network, whose loss would lead to a catastrophic failure
of the entire system, so that counter measures can be taken
proactively.

In response to such an imminent need, a recent trend in
multi-layered networks research community has been focusing
on modeling and manipulating the cascading effect of two-
layered interdependent network systems [3], [15], [18], [19],
[8]. Although much progress has been made, several key
challenges have largely remained open. First (modeling), most,
if not all, of these existing work is devoted to two-layered
networks with a pair-wise dependency structure; and thus
it is not clear how to represent and model multiple (more
than two) layers with a more generic dependency structure.
Second (connectivity measures), there does not exist one
single network connectivity measure that is superior to all
other measures; but rather several connectivity measures are
prevalent in the literature (e.g., robustness, vulnerability, tri-
angle counts). Each of the existing controlling algorithms on
multi-layered networks is tailored for one specific connectivity
measure. It is not clear if an algorithm designed for one specific
connectivity measure is still applicable to other measures. So
how can we design a generic control strategy that applies to
a variety of prevalent network connectivity measures? Third
(optimal control), an optimal control strategy tailored for two-
layered networks might be sub-optimal, or even misleading to
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multi-layered networks, e.g., in case we want to simultaneously
optimize the connectivity of multiple layers by manipulating
one common supporting layer. On the theoretic side, the
optimality of the connectivity control problem of generic
multi-layered networks is largely unknown.

This paper aims to address all these challenges, and the
main contributions can be summarized as
• New Data Models. We propose a novel multi-layered

network model (MULAN), which admits an arbitrary
number of layers with a much more flexible node-level
dependency structure among different layers, beyond
the current pair-wise dependency (Section II).

• Connectivity Measures. We unify a family of prevalent
network connectivity measures (SUBLINE), in close
relation to a variety of important network parameters
(e.g., epidemic threshold, network robustness, triangle
counting) (Section III).

• Optimal Control. We show that for any network con-
nectivity measure in the SUBLINE family, the optimal
connectivity control problem with the proposed MU-
LAN model enjoys the diminishing returns property,
which naturally lends itself to a family of provable
near-optimal control algorithms with linear complexity
(Section IV).

• Empirical Evaluations. We perform extensive experi-
ments based on real data sets to validate the effective-
ness of the proposed algorithms. (Section V).

II. A NEW MULTI-LAYERED NETWORK MODEL

In this section, we propose our new multi-layered network
model that admits an arbitrary number of layers with a more
generic dependency structure among different layers. We start
with the main symbols used throughout the paper ( Table I). We
use bold upper case letters for matrices (e.g., A, B), bold lower
case letters for column vectors (e.g., a, b) and calligraphic font
for sets (e.g., A, B). The transpose of a matrix is denoted with
a prime, i.e., A′ is the transpose of matrix A.

TABLE I. MAIN SYMBOLS.
Symbol Definition and Description

A,B the adjacency matrices (bold upper case)
a,b column vectors (bold lower case)
A,B sets (calligraphic)

A(i, j) the element at ith row jth column
in matrix A

A(i, :) the ith row of matrix A

A(:, j) the jth column of matrix A
A′ transpose of matrix A
G the layer-layer dependency matrix
A networks at each layer of MULAN

A = {A1, . . . ,Ag}
D inter-layer node-node dependency matrices
θ, ψ one to one mapping functions
Γ multi-layered network MULAN

Γ =< G,A,D, θ, ψ >
Si, Ti, . . . node sets in layer Ai(calligraphic)

Si→j nodes in Aj that depend on nodes S in Ai

N (Si) nodes and inter-layer links that depend on Si

mi, ni number of edges and nodes in layer Ai

λ<A,j>,u<A,j> jth largest eigenvalue (in module) and its
corresponding eigenvector of network A

λA,uA first eigenvalue and eigenvector of network A
C(A) connectivity function of network A
IA(Si) impact of node set Si on network A
I(Si) overall impact of node set Si to MULAN

With the above notation, we introduce a new data model
for multi-layered networks as follows.

Definition 1. A Multi-layered Network Model (MULAN).
Given (1) a binary g × g abstract layer-layer dependency

network G, where G(i, j) = 1 indicates layer j depends
on layer i (or layer i supports layer j), G(i, j) = 0 means
no direct dependency from layer i to layer j; (2) a set of
within-layer adjacency matrices A = {A1, . . . , Ag}; (3) a
set of inter-layer node-node dependency matrices D, indexed
by pair (i, j), i, j ∈ [1, . . . , g], such that for a pair (i, j),
if G(i, j) = 1, then D(i,j) is an ni × nj matrix; otherwise
D(i,j) = Φ (i.e., an empty set); (4) θ is a one-to-one map-
ping function that maps each node in layer-layer dependency
network G to the corresponding within-layer adjacency matrix
Ai (i = 1, ..., g); (5) ϕ is another one-to-one mapping function
that maps each edge in G to the corresponding inter-layer
node-node dependency matrix D(i,j). We define a multi-layered
network as a quintuple Γ =< G,A,D, θ, ϕ >.

For simplicity, we restrict the within-layer adjacency ma-
trices Ai to be simple (i.e., no self-loops), symmetric and
binary; and the extension to the weighted, asymmetric case
is straight-forward. In this paper, we require inter-layer depen-
dency network G to be an un-weighted directed acyclic graph
(DAG). Notice that compared with the existing pair-wise two-
layered model, it allows a much more flexible and complicated
dependency structure among different layers. For the inter-
layer node-node dependency matrix D(i,j), D(i,j)(s, t) = 1
indicates that node s in layer i supports node t in layer j.

Fig. 2(a) presents an example of a four-layered network. In
this example, Layer 1 (e.g., the control layer) is the supporting
layer (i.e., the root node in the layer-layer dependency network
G). Layer 2 and Layer 3 directly depend on Layer 1 (e.g.,
one represents a communication layer by satellites and the
other represents another communication layer in landlines,
respectively), while Layer 4 (e.g., the physical layer) depends
on both communication layers (Layer 2 and Layer 3). The
abstracted layer-layer dependency network (G) is shown in
Fig. 2(b). A = {A1,A2,A3,A4} denotes the within-layer
adjacency matrices, each of which describes the network
topology in the corresponding layer. In this example, D is a set
of matrices containing only four non-empty matrices: D(1,2),
D(1,3), D(2,4), and D(3,4). For example, D(3,4) describes the
node-node dependency between Layer 3 and Layer 4. The one-
to-one mapping function θ maps node 1 (i.e., Layer 1) in G
to the within-layer adjacency matrix of Layer 1 (A1); and the
one-to-one mapping function ϕ maps edge < 3, 4 > in G to
the inter-layer node-node dependency matrix D(3,4) as shown
in Fig. 2(b).

III. UNIFICATION OF CONNECTIVITY MEASURES

In this section, we present a unified view for a variety of
prevalent network connectivity measures.

The key of our unified connectivity measure (referred to as
SUBLINE in this paper) is to view the connectivity of the entire
network as an aggregation over the connectivity measures of
its sub-networks (e.g., subgraphs), that is,

C(A) =
∑

π⊆A

f(π) (1)

where π is a subgraph of A. The non-negative function f :
π → R

+ maps any subgraph in A to a non-negative real
number and f(Φ) = 0 for empty set Φ. In other words, we
view the connectivity of the entire network (C(A)) as the sum
of the connectivity of all the subgraphs (f(π)). Based on such
a connectivity definition, we further define the impact function
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(a) A four-layered network (b) The corrsponding layer-layer dependency network G
Fig. 2. An illustrative example of MULAN model

of a given set of nodes S as follows, where A\S is the residual
network after removing the set of nodes S from the original
network A.

I(S) = C(A)− C(A \ S) (2)

Based on eq. (2), we can define the overall impact of node
set Si in Ai on the multi-layered network system as

I(Si) =
g∑

j=1

αjI(Si→j) =

g∑

j=1

αj(C(Aj)− C(Aj \ Si→j))

(3)

where α = [α1, ..., αg]
′ is a g × 1 non-negative weight vector

that assigns different weights to different layers in the system.
Si→j denotes the set of nodes in layer-j that depend on nodes
S in layer-i.

It turns out many prevalent network connectivity measures
can be interpreted from this perspective. Examples include
path capacity, loop capacity and triangle capacity. We omit
the detailed discussions due to space limit.

IV. OPTIMAL CONNECTIVITY CONTROL

In this section, we first define the optimal connectivity con-
trol problem (OPERA) on the proposed multi-layered network
model (MULAN); then unveil its major theoretic properties;
and finally propose a generic algorithmic framework to solve
it.

A. OPERA: Problem Statement
We formally define the optimal connectivity control prob-

lem (OPERA) on the proposed MULAN model for multi-
layered networks as follows.

Problem 1. OPERA on MULAN

Given: (1) a multi-layered network Γ =< G,A,D, θ, ψ > (2)
a control layer Al, (3) an impact function I(.), and (4) an
integer k (budget);

Output: a set of k nodes Sl from the control layer (Al) such
that I(Sl) (the overall impact of Sl) is maximized.

In the above definition, the control layer Al indicates the
sources of the ‘attack’; and the g × 1 vector α indicates the
target layer(s) as well as their relative weights. For instance,
in Figure 2(a), we can choose Layer 1 as the control layer
(indicated by the strike sign); and set α = [0 1 0 1 ]′, which
means that both Layer 2 and Layer 4 are the target layers
(indicated by the star signs) with equal weights between them.
In this example, once a subset of nodes S in Layer 1 are

attacked/deleted (e.g., shaded circle nodes), all the nodes from
Layer 2 and Layer 3 that are dependent on S (e.g., shaded
parallelogram and triangle nodes) will be disabled/deleted,
which will in turn cause the disfunction of the nodes in Layer
4 (e.g., shaded diamond nodes) that depend on these affected
nodes in Layer 2 or Layer 3. Our goal is to choose k nodes
from Layer 1 that have the maximal impact on both Layer 2
and Layer 4, i.e., to simultaneously decrease the connectivity
C(A2) and C(A4) as much as possible.

B. OPERA: Theory
In this subsection, we present the major theoretic results of

the optimal connectivity control problem (OPERA) on multi-
layered networks defined in Problem 1. It says that for any
connectivity function C(A) in the SUBLINE family (eq. (1)),
for any multi-layered network in the MULAN family (Defi-
nition 1), the optimal connectivity control problem (OPERA,
Problem 1) bears diminishing returns property.

Theorem 1. Diminishing Returns Property of MULAN.
For any connectivity function C(A) in the SUBLINE family
(eq. (1)), for any multi-layered network in the MULAN family
(Definition 1); the overall impact of node set Sl in the control
layer l, I(Sl) =

∑g
i=1 αiI(Sl→i), is (a) monotonically non-

decreasing; (b) sub-modular; and (c)normalized.
Proof: Omitted for space.

C. OPERA: Algorithms
In this subsection, we introduce our algorithm to solve

OPERA (Problem 1).

A Generic Solution Framework. Finding out the global
optimal solution for Problem 1 by a brute-force method
would be computationally intractable, due to the exponential
enumeration. Nonetheless, the diminishing returns property of
the impact function I(.) (Theorem 1) immediately lends itself
to a greedy algorithm for solving OPERA with any arbitrary
connectivity function in the SUBLINE family and an arbitrary
member in the MULAN family, summarized in Algorithm 1.

In Algorithm 1, Steps 2-4 calculate the impact score
I(v0) (v0 = 1, 2, ...) for each node in the control layer Al.
Step 5 selects the node with the maximum impact score.
In each iteration in Steps 7-19, we select one of the re-
maining (k − 1) nodes, which would make the maximum
marginal increase in terms of the current impact score (Step
12, margin(v0) = I(S ∪ {v0}) − I(S)). In order to further
speed-up the computation, the algorithm admits an optional
lazy evaluation strategy (adopted from [11]) by activating an
optional ‘if’ condition in Step 11.
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We can show that Algorithm 1 leads to a near-optimal
solution with linear complexity, thanks to the diminishing
returns property in Theorem 1. We omit the detailed algorithm
analysis due to space limit.

Algorithm 1 OPERA: A Generic Solution Framework

Input: (1) A multi-layered network Γ, (2) a control layer Al,
(3) an overall impact function I(Sl) and (4) an integer k

Output: a set of k nodes S from the control layer Al.
1: initialize S to be empty
2: for each node v0 in layer Al do
3: calculate margin(v0)← I(v0)
4: end for
5: find v = argmaxv0margin(v0) and add v to S
6: set margin(v)← −1
7: for i = 2 to k do
8: set maxMargin ← −1
9: for each node v0 in layer Al do

10: /*an optional ‘if’ for lazy eval.*/
11: if margin(v0) > maxMargin then
12: calculate margin(v0)← I(S ∪ {v0})− I(S)
13: if margin(v0) > maxMargin then
14: set maxMargin ← margin(v0) and v ← v0
15: end if
16: end if
17: end for
18: add v to S and set margin(v)← −1
19: end for
20: return S

V. EXPERIMENTAL RESULTS

In this section, we empirically evaluate the proposed
OPERA algorithms. All experiments are designed to show the
effectiveness of the proposed OPERA algorithms at optimizing
the connectivity measures (defined in the proposed SUBLINE

family) of a multi-layered network (from the proposed MU-
LAN family).

A. Experimental Setup
Data Sets Summary. We perform the evaluations on three

application domains, including (D1) a multi-layered Internet
topology at the autonomous system level (MULTIAS); and
(D2) critical infrastructure networks (INFRANET). For each
application domain, we use real networks to construct the
within-layer networks (i.e., A in the MULAN model) and
construct one or more inter-layer dependency based on real
application scenarios (i.e., G and D in the MULAN model).
A summary of these data sets is shown in Table II. We will
present the detailed description of each application domain in
Subsection V-B.

TABLE II. DATA SETS SUMMARY.
Data Sets Application Domains # of Layers # of Nodes # of Links

D1 MULTIAS 2∼4 5,929∼24,539 11,183∼50,778
D2 INFRANET 3 19,235 46,926

Baseline Methods. To our best knowledge, there is no
existing method which can be directly applied to the con-
nectivity optimization problem (Problem 1) of the proposed
MULAN model. We generate the baseline methods using
two complementary strategies, including forward propagation
(‘FP’ for short) and backward propagation (‘BP’ for short).
The key idea behind the forward propagation strategy is that
an important node in control layer might have more impact
on its dependent networks as well. On the other hand, for
the backward propagation strategy, we first identify important

nodes in target layer(s), and then trace back to its supporting
layer through the inter-layer dependency links (i.e., D). For
both strategies, we need a node importance measure. In our
evaluations, we compare three such measures, including (1)
node degree; (2) pagerank measure [13]; and (3) Netshield
values [21]. In addition, for comparison purposes, we also
randomly select nodes either from the control layer (for
the forward propagation strategy) or from the target layer(s)
(for the backward propagation strategy). Altogether, we have
eight baseline methods (four for each strategy, respectively),
including (1) ‘Degree-FP’, (2) ‘PageRank-FP’, (3) ‘Netshield-
FP’, (4) ‘Rand-FP’, (5) ‘Degree-BP’, (6) ‘PageRank-BP’, (7)
‘Netshield-BP’, (8) ‘Rand-BP’.

OPERA Algorithms and Variants. We evaluate three preva-
lent network connectivity measures, including (1) the lead-
ing eigenvalue of the (within-layer) adjacency matrix, which
relates to the epidemic threshold of a variety of cascading
models; (2) the loop capacity (LC), which relates to the robust-
ness of the network; and (3) the triangle capacity (TC), which
relates to the local connectivity of the network. As mentioned
in Section III, both the loop capacity and the triangle capacity
are members of the SUBLINE family. Strictly speaking, the
leading eigenvalue does not belong to the SUBLINE family.
Instead, it approximates the path capacity (PC), and the latter
(PC) is a member of the SUBLINE family. Correspondingly,
we have three instances of the proposed OPERA algorithm
(each corresponding to one specific connectivity measures) in-
cluding ‘OPERA-PC’, ‘OPERA-LC’, and ‘OPERA-TC’. Recall
that there is an optional lazy evaluation step (Step 11) in the
proposed OPERA algorithm, thanks to the diminishing returns
property of the SUBLINE connectivity measures. When the
leading eigenvalue is chosen as the connectivity function, such
a diminishing returns property does not hold any more. To
address this issue, we introduce a variant of OPERA-PC as
follows. At each iteration, after the algorithm chooses a new
node v (Step 18, Algorithm 1), we (1) update the network by
removing all the nodes that depend on node v, and (2) update
the corresponding leading eigenvalues and eigenvectors. We
refer to this variant as ‘OPERA-PC-Up’. For each of the three
connectivity measures, we run all four OPERA algorithms.

Machines and Repeatability. All the experiments are per-
formed on a machine with 2 processors Intel Xeon 3.5GHz
with 256GB of RAM. The algorithms are programmed with
MATLAB using single thread. All data sets used in this paper
are publicly available. Due to the space limit, we omit the
actual figures for some experimental results. We will include
these additional results in an extended technical report.

B. Effectiveness Results
D1 - MULTIAS. This data set contains the Internet topology
at the autonomous system level. The data set is available at
http://snap.stanford.edu/data/. It has 9 different network snap-
shots, with 633 ∼ 13, 947 nodes and 1, 086 ∼ 30, 584 edges.
In our evaluations, we treat these snapshots as the within-
layer adjacency matrices A. For a given supporting layer,
we generate the inter-layer node-node dependency matrices
D by randomly choosing 3 nodes from its dependent layer
as the direct dependents for each supporting node. For this
application domain, we have experimented with different layer-
layer dependency structures (G), including a two-layered net-
work, a three-layered line-structured network, a three-layered
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Fig. 3. Evaluations on the MULTIAS data set, with a four-layered diamond-shaped dependency network. The connectivity change vs. budget. Larger is better.
All the four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

tree-structured network and a four-layered diamond shaped
network. Figure 3 shows the results on the diamond shaped net-
work. All the four instances of the proposed OPERA algorithm
perform better than the baseline methods. Among the baseline
methods, the backward propagation methods are better than
the forward propagation methods. This is because the length of
the back tracking path on the dependency network G (from the
target layer to the control layer) is short. Therefore compared
with other baseline methods, the node set returned from the
BP strategy is able to affect more important nodes in the target
layer. The results on the other dependent networks are similar
and omitted due to the space limit. In all these scenarios, the
proposed OPERA algorithms perform best consistently.

D2 - INFRANET. This data set contains three types of
critical infrastructure networks, including (1) the power grid,
(2) the communication network; and (3) the airport net-
works. The power grid is an undirected, un-weighted net-
work representing the topology of the Western States Pow-
er Grid of the United State [23]. It has 4,941 nodes and
6,594 edges. We use one snapshot from the MULTIAS da-
ta set as the communication network with 11,461 nodes
and 32,730 edges. The airport network represents the in-
ternal US air traffic lines between 2,649 airports and has
13,106 links (available at http://www.levmuchnik.net/Content/
Networks/NetworkData.html). We construct a triangle-shaped
layer-layer dependency network G (see the icon of Figure 4)
based on the following observation. The operation of an airport
depends on both the electricity provided by the power grid and
the Internet support provided by the communication network.
In the meanwhile, the full functioning of the communication
network depends on the support of power grid. We use the
similar strategy as MULTIAS to generate the inter-layer node-
node dependency matrices D. The results are summarized in
Figure 4. Again, the proposed OPERA algorithms outperform
all the baseline methods. Similar to the MULTIAS network,
the back tracking path from the airport layer to the power grid
layer is also very short. Therefore the backward propagation
strategies perform relatively better than other baseline methods.
In addition, we also change the density of the inter-layer
node-node dependency matrices and evaluate its impact on the
optimization results (detailed results are omitted for space).
We found that (1) across different dependency densities, the
proposed OPERA algorithms still outperform the baseline
methods; and (2) when the dependency density increases, the
algorithms lead to a larger decrease of the corresponding
connectivity measures with the same budget.

VI. RELATED WORK

In this section, we review the related work, which can be
categorized into two groups: (a) network connectivity control,

and (b) multi-layered network analysis.

Network Connectivity Control. Connectivity is a funda-
mental property of networks, and has been a core research
theme in graph theory and mining for decades. Depending on
the specific applications, many network connectivity measures
have been proposed in the past. Examples include the size
of giant connected component (GCC), graph diameter, the
mixing time [9], the vulnerability measure [1], the epidemic
thresholds [4], the natural connectivity [10] and number of
triangles in the network, each of which often has its own,
different mathematical definitions.

From algorithm’s perspective, network connectivity control
aims to optimize (e.g., maximize or minimize) the corre-
sponding connectivity measure by manipulating the underlying
topology (e.g., add/remove nodes/links). Recent work tries
to solve this problem by collectively finding a subset of n-
odes/links with the highest impact on the network connectivity
measure. For example, Tong et al. [21], [20] proposed both
node-level and edge-level manipulation strategies to optimize
the leading eigenvalue of the network, which is the key
network connectivity measure behind a variety of cascading
models. In [5], Chan et al. further generalized these strategies
to manipulate the network robustness measure through the
truncated loop capacity [10]. Another important aspect of
network connectivity control lies in the network dynamics.
Chen et al. in [6] proposed an efficient online algorithm to
track some important network connectivity measures (e.g., the
leading eigenvalue, the robustness measure) on a temporal
dynamic network.

Multi-Layered Network Analysis. Multi-layered net-
works have been attracting a lot of research attention in recent
years. In [16] and [7], the authors presented an in-depth
introduction on the fundamental concepts of interdependent,
multi-layered networks as well as the key research challenges.
In a multi-layered network, the failure of a small number of
the nodes might lead to catastrophic damages on the entire
system as shown in [3] and [22]. In [3], [15], [19], [18], [8],
different types of two-layered interdependent networks were
thoroughly analyzed. In [7], Gao et al. analyzed the robustness
of multi-layered networks with star- and loop-shaped depen-
dency structures. Similar to the robustness measures in [17],
most of the current works use the size of GCC (giant connected
component) in the network as the evaluation standard [14],
[12], [2]. Nonetheless, the fine-granulated connectivity details
might not be captured by the GCC measure.

VII. CONCLUSION

In this paper, we study the connectivity control problem
on multi-layered networks (OPERA). Our main contributions
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Fig. 4. Evaluations on the INFRANET data set, with a three-layered triangle-shaped dependency network. The connectivity change vs. budget. Larger is better.
All the four instances of the proposed OPERA algorithm (in red) outperform the baseline methods.

are as follows. First, we propose a new data model for
multi-layered networks (MULAN), which admits an arbitrary
number of layers with a much more flexible dependency
structure among different layers, beyond the current pair-wise
dependency. Second, we unify a family of prevalent network
connectivity measures (SUBLINE). Third, we show that for
any network connectivity measure in the SUBLINE family,
the optimal connectivity control problem with the proposed
MULAN model enjoys the diminishing returns property, which
naturally lends itself to a family of provable near-optimal
control algorithms with linear complexity. Finally, we con-
duct extensive empirical evaluations on real network data, to
validate the effectiveness of the proposed algorithms. In the
future, we plan to generalize MULAN to an arbitrary layer-
layer dependency network as well as the dynamic setting.
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