Articles

by Tom Muck « www.dwteam.com

Dreamweauver’s Built-in
Power Extension:

How many times have you said “I wish there was an exten-
sion to remove <insert your tag here> tags”. Or “l wish
there was an extension to remove table formatting”. Or
how about this one: “l wish there was an extension to
change tags to CSS”. This article is going to explore
one of the most underused areas of Dreamweaver and Ul-
traDev: the Find/Replace dialog. This dialog box in DW
can perform a thousand-and-one functions - and will even
work site-wide or computer-wide.

When you are editing a document in MS Word, Notepad, or
any other text editor of choice, the find/replace dialog can
be useful for finding and replacing words or combinations
of words. In Dreamweaver, however, the dialog box takes
on a whole new persona. You can search through text, or
you can search through source code. You can search for
individual tags, or you can use regular expressions. If you
haven’t experienced the power of regular expressions,
you’re in for a surprise.

Another great feature about DW'’s find/replace dialog box is
that the queries can be saved and reloaded at a later date.
The Configuration folder of DW is known well by DW users
as the place where all of the functionality of DW is stored.
All extensions reside here. One area of extensibility that
hasn’t been fully utilized by developers is the find/replace
query. These extensions are XML files with a .dwr file exten-
sion that reside in the Queries folder. The extensions can
be created by anyone. They are simply XML representations
of the find/replace query that you execute from within the
find/replace dialog box. By clicking the save icon you can
save the query. By clicking the Open icon, you can open an
existing query.

Let’s start with a simple one. We want to find all refer-
ences to Copyright © 2001 in the site. This is a simple case
of scanning the source code for the following string:

Copyright © 2001

For the settings, you’ll want to choose the following:

Example 1
Find In Entire Local Site
Search For Source Code
Find Copyright © 2001
Replace With Copyright © 2002
Match Case unchecked
Ignore Whitespace differences checked
Use Regular Expressions unchecked

mx<insite

That was almost too easy, but the one key thing to remem-
ber about this query is that Ignore Whitespace Differences
has to be checked. When DW formats the HTML in your
document, it there may be times when line breaks are in-
serted in places you wouldn’t expect. The above example
might appear like this in your document:

Copyright
© 2001

If you hadn’t checked the box, this occurrence would not
have been replaced.

What happens if your copyright notice looks like this in the
source code?

Copyright © 2001

Now, the same query won’t work. You might think that you
can search Text instead of Source, but when you do that,
you have to use actual text and not the HTML encoded
text:

Example 2
Find In Entire Local Site
Search For Text
Find Copyright © 2001
Replace With Copyright © 2002
Match Case unchecked
Ignore Whitespace differences checked
Use Regular Expressions unchecked

One concern here is that when you replace the text, the
bold tags will be lost on the replace as well. What can we
do? This is one area where regular expressions can come
into play:

Example 3
Find In Entire Local Site
Search For Source code
Find (copyright[*&]*©["2]*)(
2001)
Replace With $12002
Match Case unchecked
Use Regular Expressions checked

If you are unfamiliar with regular expressions, this one
needs some explanation. Regular expressions use pattern
matching, much like when you perform a Find Files function
on your computer using an asterisk (*.txt) only much more
powerful. For a full set of regular expression patterns,

consult a JavaScript book, such as JavaScript: The Defini-
tive Guide. For now, I’ll explain the regular expression in
Example 3:

(copyright[”~&] *© [*2]1*) (2001)

The first thing you should take note of is that there are two
groups:

(copyright["&]*© [*2]1*) 1s the first group

(2001) is the second group

The first group is the part of the code that will stay the
same. We can represent this as $1 in our Replace dialog.
When you have groupings in regular expressions, you refer
to the groups as $1, $2, $3, %4, etc.

This way, you can retain sections of your code while replac-
ing others. The code is broken down as follows:

copyright self-explanatory. This will be an exact
match of the word

[h&l* anything and everything up to a & char-
acter

© again, this is an exact match of the html
representation of the copyright sign

[~2]*

anything up to a 2 character

The second grouping consists of the number 2001. This will
be replaced in our query by using the first saved group ($1)
and substituting the number 2002 for the remainder. By
doing this, we are effectively replacing all occurrences of
the copyright statement, and keeping any existing tags in
place. On a huge site, this could be a timesaver.

Here’s another example of a Find/replace query using a
regular expression. Suppose you want to clean all format-
ting from your tables in your site, or in selected pages in
your site. Obviously you want to keep all of the content
within the tables in place, but there has to be an easy way
to remove the extraneous attributes. We could use the
Specific Tag functionality of the find/replace dialog, but
you would have to strip attributes out one at a time, or
create a complex list of attributes. Let’s build a regular
expression to do the job in one step.

One of the features of regular expressions is the ability to
choose one match OR another match. For example, to find
all table, tr, td, or th tags, you could use this:

<table|tr|td]|th>

So far, this will find all opening tags with no attributes.
Let’s add an expression to find closing tags as well:

<\/?table|tr|td]|th>

Now the expression tells us to find all tags that may have
an optional slash character (/) for a closing tag. Since the
slash is a reserved character, we escape it with a backslash.
The question mark tells us that there may be zero or one of
the preceding single character. This will now find all open-
ing and closing tags.

Now, let’s add an expression to find the tags with attri-

butes:

<\/?table|tr|td|th[">]*>

We’ve added this expression [*>]* to say "give me anything
up to a closing > character.” The expression isn’t finished,
however, because we need to retain the actual tag when
we do the replacement. To do that, we’ll need a grouping
level:

<(\/?table|tr|td|th) [*>]*>

We put the parenthesis around the optional closing tag slash
symbol and the entire tag name. This ensures that we will
be able to replace opening and closing tags, and be able
to remember which are which. Now for the replacement
string:

<$1>

That’s it. If you run this on the sample page, all of the at-
tributes are stripped out of the table cells, rows, headers,
and the table itself. Click the Save icon on the find/replace
dialog box to save this query for future use.

Amuch simpler query to replace all <th> tags with <td> tags
using regular expressions could be written like this:

Find
Replace with

(<K\/2)th([">]>)
$1tds2

Notice that the opening and closing parts of the tag are

grouped ($1 and $2) so that the only thing that is being
replaced is the “th”.

One of the most powerful aspects of the find/replace dialog
is the tag functionality:

6 Find and Replace

Firnd Ih: lEurrent Documsnt 'I Untitled D' acurment

Search For: !Specific Tag _:i Itd _vj
4| = |with attribute = fdion == H e =]
Action: Iset attribute _-_l lalign ;! To; I -i

Options: [~ Match Case ﬂg

V' lgnomewhitespace Differences
I Use Regular Expressions

Find &

Replace

Cloge

Help

Articles

Fird Mext

Replace Al

Figure 1: Find/replace using tags

The query in the preceding section could have been done
using the tag replace functionality of the find/replace dia-
log. These queries can be saved as well. Simply set it up
as follows:

Example 5
Find In Current Document
Search For Specific Tag th
+ - (click - to remove all choices)
Action Change Tag
To Td

Mmx<insite

Changing a tag is just one of the many types of function-

Action
alities available for working with tags. Some of the others ;
:) Set Attribute color
include:
To #000066
Search for Specific Tag
With attribute attribute name Some of the other actions available for tag matches are as fol-
Without attribute attribute name lows
Containing text Replace tag and contents
Not Containing text Replace contents only
Inside t. " Remove tag and contents
nside tag ag name Strip tag
Not inside tag tag name Change tag
Set attribute
You can also group these together, such as Remove attribute
Search for specific tag font Add before start tag
With attribute size eeldiatoenditas
- - Add after start tag
Without attribute color Add before end tag

The find/replace dialog can search your document, or you can select documents in your site window to allow searching of
specific documents. Even better, you can perform site-wide find/replace queries. One thing that you have to be aware
of, however, is that these types of matches cannot be undone. If you strip all formatting from a particular tag and later
realize that several of your pages didn’t need the functionality removed, you will have to edit the pages by hand to restore
the functionality - undo works only on the current document.

Find/replace also works on folders in your hard drive. You can choose the Folder option from the Find In dropdown list
and then browse to any folder in your hard drive. It can even be your entire C: drive - find/replace will scan for text using
more powerful options than you have with the standard operating system find dialog box.

You can see that the find/replace dialog box has a lot of possible options beyond simple searching and replacing of words
and code. You can use it to reformat entire documents or sites with a few simple keystrokes. You can also save complex
queries and trade them with other developers, or package them as extensions. Exploring the functionality can be an eye-
opening experience.

coming September 2002
wuww.communitymx.com

