Exploiting Dominancein Three Symmetric Problems

Steven Prestwich and J. Christopher Beck
Cork Constraint Computation Centre
Department of Computer Science, University College, Cork, Ireland
{s.prestwich,c.beck} @4c.ucc.ie

Abstract

Symmetry breaking has led to huge improvements
in search performance, and has recently been the
subject of considerable research. The related con-
cept of dominance is even more powerful than sym-
metry, yet it has been relatively unused in Con-
straint Programming. This paper describes pre-
viously unexploited dominances for three well-
studied symmetric problems. Experiments show
the benefit of adding constraints to exclude both
symmetric and dominated solutions.

1 Introduction

A great deal of work has been done by the Constraint Pro-
gramming (CP) community in the area of detection and ex-
ploitation of symmetric search states. Informally, a pair of
search states s;, s; is symmetric if there is a validity preserv-
ing mapping between them. For each extension of s; (includ-
ing s, itself) there is a corresponding state that is an extension
of s; with the same validity. If the extension to s; is a (non-
)solution then so is the corresponding extension to s;. Obvi-
ously this relationship is bi-directional: if s; is symmetric to
s; then s; is symmetric to s;.

Dominance relations are a standard tool in the search for
optimal solutions to combinatorial optimization problems.
Informally, a dominance relation is a relation on a pair of
search states s;, s; stating that the best solution that is an ex-
tension of s; is no better than the best extension of s;. There-
fore only s; needs to be extended. There are two primary
differences between dominance relations and symmetry: the
cost function of the former and the bi-directionality of the lat-
ter. While symmetry has traditionally been applied in satis-
faction problems, we can easily model satisfaction problems
as having a cost function that is zero for any solution and infi-
nite for a non-solution. The bi-directionality can be dealt with
by adding constraints to enforce the anti-symmetric condition
of the dominance relation.

Even well-studied problems in the symmetry literature may
also contain unexploited dominances that can be used to sig-
nificantly improve search performance. Proll & Smith [16]
used the term pseudo-symmetry to denote the same weaken-
ing of bi-directionality. They added pseudo-symmetry break-
ing constraints to improve search in a template design prob-

lem. Getoor et al. [12] added domain-specific redundant con-
straints to remove sub-optimal solutions from online schedul-
ing problems. Gent et al. [10] recently added constraints to
the Graceful Graphs problem to exclude dominated solutions.
But despite these examples, dominance has been far less ex-
ploited than symmetry in CP.

With the aim of stimulating further research in this area, we
present three case studies using symmetric problems from the
CP literature. Section 2 provides some background. Section
3 studies the Maximum-Density Still Life problem, Section
4 Steel Mill Slab Design, and Section 5 Peaceable Armies of
Queens. Section 6 concludes the paper. All our experiments
are performed on a 733 MHz Pentium I1.

2 Dominance Relationsand Symmetry

Ibaraki [14] provides a formal definition of dominance rela-
tions to find a single optimal solution.® Assuming a standard
constructive tree search as in common in CP, let .S be the set
of all search states, and let f(s) be the minimum cost feasi-
ble solution that is an extension of the search state, s € S.
If s is infeasible then f(s) = oo. A dominance relation is a
binary relation < on search states that satisfies the following
conditions:

o s; < s; implies f(s;) < f(s;)

e < is a partial ordering: transitive, reflexive, and anti-
symmetric

e 5; = s; As; # s; implies that there exists some ex-
tension s; of s; such that for all extensions s;. of s;,
St X Sjr N\ Sy 7é Sj

The anti-symmetric requirement means that if f(s;) =
f(s;) and s; # s; then only one of s; < s; ors; =< s;
can hold. In that case, a simple way to tie-break is to allow
s; = s; if s; was found before s; in the tree search.

As an example of dominance relations, Ibaraki uses the
(now) familiar 8-queens where the dominance relation s; =<
s; holds if and only if the patterns represented by the search
states are isomorphic and s; was found before s;.

!baraki presents alternative conditions for fi nding al optimal
solutions, while another condition that we do not discuss here arises
from technical aspects of branch-and-bound search.

Because an explicit relation on all pairs of search states is
impractical, dominance relations are often based on proper-
ties of the search states. That is, a property X is identified and
it is proved that search states with X dominate search states
without X. For example, in job shop scheduling, solutions
which are “semi-active” have been shown to dominate non-
semi-active solutions and a common heuristic searches only
for semi-active solutions [7]. We will follow this property-
based approach.

Suppose that we are able to identify a property P of a
search state with the following attribute: if there exists a so-
lution satisfying P then there also exists at least one solution
satisfying —P. This is a one-way relationship because the
existence of a solution satisfying —P need not imply the ex-
istence of a solution satisfying P. However, by only consid-
ering solutions satisfying —P we can reduce the search space
without affecting validity. One way to do this is to add con-
straints to enforce =P. We shall call this technique domi-
nance enforcement. It is directly analogous to the addition of
symmetry breaking constraints to a model [17] and is justified
by the following simple theorem:

Theorem. Dominance enforcement preserves va-
lidity.
Proof. Consider two cases. (i) There is no solution satisfying
P. Then adding the constraint — P excludes no solutions. (ii)
There is at least one solution satisfying P. Then there also ex-
ists at least one solution satisfying — P, which the constraint
=P does not exclude. QED.

However, this does not prove that combining two domi-
nance constraints is guaranteed to preserve at least one solu-
tion. (The same applies to symmetry breaking, for example
when breaking both row and column symmetries in a ma-
trix model [8] one must be careful to combine the two sets
of constraints in the correct way.) In this paper we shall ig-
nore this important point, as this is a work in progress, but a
more formal treatment of the subject would be a useful direc-
tion for future work. This might proceed along similar lines
to the many recent applications of group theory to symme-
try breaking. Other approaches such as Symmetry Breaking
During Search (SBDS) [2; 11] might also be generalized to
dominance enforcement.

Note that, unlike symmetry breaking, by enforcing dom-
inance we may lose access to the full set of solutions. But
this is unimportant for problems in which we are interested
in finding any [optimal] solution, or in proving insolubility
[optimality].

3 Maximum-Density Still Life

Our first case study is the game of Life, invented by Conway
in the 1960s. In an infinite 2-dimensional array, each cell
is either alive or dead and has 8 neighbours. The game is
initialized by setting each cell alive or dead. Subsequently the
array is transformed into a new pattern for as many iterations
as desired using a few simple rules: (1) a cell with 2 living
neighbours is unchanged in the new pattern; (2) a cell with 3
neighbours is alive in the new pattern; and (3) any other cell
is dead in the new pattern. A still-life is a pattern that does
not change between iterations. A maximum density still-life

o o o o
[¢] (¢] (¢] o (¢] (¢]
[¢] (¢] (¢] (¢]
[¢] o o o
[¢] (¢] (¢] o (¢] (¢]
(¢] (¢] (e] (¢]

Figure 1: A still-life pattern for dominance enforcement.

is one with the greatest number of live cells, in a finite square
region R of N x N cells (all cells outside R are dead).

31 A BascModd

Two integer program (IP) formulations of this problem were
given in [3]. We use the second, better model which has a 0/1
variable x. for each cell e € R, 1 denoting a live cell and 0 a
dead one. The constraints are as follows:

e Death by isolation: 2zc—3_ ;. () 5 < 0, Where N(e)
denotes the variables corresponding to the neighbours of
e’s cell.

e Death by overcrowding: 3ze + 3 re n(e) 25 < 6.

e Birth: VS C N(e),|S| = 3 :
> fen(e)—sTf 2.

o Cells outside R cannot become alive: =5 +xz4+ 25 < 2,
where f, g and h are 3 cells lying in a line along the
boundary of R.

e The density must be at least d: ZeeR Te > d.

To solve the problem we solve a series of CSPs with increas-
ing d.

—Te + Zfeszf -

3.2 Dominance

Consider the pattern of cells in Figure 1 with o denoting dead
cells. In any still-life the cells marked - can be all live or
all dead. Moreover, if there is a solution of density at least
d in which they are all dead then there is also a solution of
density greater than d in which they are not all dead. This
is the property P we need to apply dominance enforcement
constraints: we add a constraint —P forcing one of them to
be live. However, if one of the four is live they they must all
be live, in order to form a still-life, so we can add a stronger
constraint: >, 4z; + >,y @; > 4. X denotes the cells
marked - while O denotes those marked o. The pattern may
be partly off the edge of the finite region R, as long as the
four central cells are inside R. We call these constraints D.

A second dominance is based on the following observa-
tion: if there is a solution whose top row contains only dead
cells then there is also a solution in which this is not true.
We can simply translate the pattern one or more rows up-
ward until a live cell appears in the top row. Therefore we
can add a translational dominance enforcement constraint to
exclude patterns in which the top row is all dead. Similarly,
we can exclude patterns in which the left column is all dead:
i@ > 1land Y0, @15 > 1. We call these constraints
T. Note that T are not symmetry breaking constraints: not
every pattern with live top row cells can be translated to one
whose top cells are all dead.

N M M+T M+D | M+T+D
5 opt 999 877 999 877
proof 709 639 709 639
6 opt 7501 3009 7484 2993
proof 25703 22292 25700 22289
7 opt 161626 | 145563 | 161542 145487
proof 159718 | 149054 | 159686 149023
8 opt || 4893631 | 4682075 | 4882021 | 4672235
proof || 3289248 | 3143639 | 3282801 | 3137996
N M | M+T | M+D | M+T+D
5opt | <0.1s | <0.1s | <0.1s <0.1s
proof || <0.1s | <0.1s | <0.1s <0.1s
6 opt 0.5s 0.2s 0.5s 0.2s
proof 1.4s 1.2s 1.5s 1.3s
7 opt 11s 10s 12s 10s
proof 11s 11s 13s 11s
8 opt 6m2s | 5m48s | 6m22s 6m34s
proof || 4m23s | 4m18s | 4m40s 4m16s

Figure 2: Still-life results (backtracks and CPU time)

3.3 Reaultsand Discussion

We transform the basic model Af, with and without the T°
and D constraints, to linear pseudo-Boolean form and then
apply a simple backtracker to solve the problem. Pseudo-
Boolean form is a special form of 0/1 integer program that
can be solved by SAT-based algorithms (see for example [1]).
The backtracker uses a lexicographical variable ordering (ex-
cept that a variable whose domain size becomes 1 is imme-
diately assigned) and a value ordering that tries O before 1.
The results are shown in Figure 2: “opt” is the CPU time or
backtracks needed to find an optimal solution and “proof” is
the time or backtracks to prove that no denser solution exists
(restarting the algorithm with a lower bound equal to the best
known value plus 1).

In all cases the dominance enforcement constraints reduce
or leave unchanged the required number of backtracks. The
D constraints result in little reduction in backtracks while in-
curring a CPU time overhead. The 7" constraints, on the other
hand, reduce both the backtracks and the CPU time. The re-
sults are comparable with the basic CP and IP results of [6]
but not as good as their hybrid approach nor other state-of-
the-art approaches [15; 19]. Though the improvement due to
dominance is small we feel that it is worth reporting, because
the geometrically-inspired dominances may inspire more ef-
fective versions for this or other problems. (In fact we reuse
the idea of translational dominance in Section 5.)

4 Steel Mill Slab Design

Our second case study is a simplified industrial problem. In
a steel mill, slabs are produced from molten iron in a finite
number of sizes which are later cut to fulfil individual orders.
Given a set of orders of certain sizes, we must pack the orders
onto the slabs while minimizing the total size of the slabs. In
addition, each order is assigned a colour, corresponding to
a route through the mill. There is a limit, p, on how many

different colours may be assigned to a slab. We denote the S
slab sizes by o, the K colours by «;, and the O order weights
by Wi .

41 A Basic Mode

We start from a basic model similar to the IP model of [13],
but explicitly model wastage as suggested in [9]. The number
of slabs is not known in advance so we assume that there may
be as many slabs as orders. A size variable s;; is 1 if and only
if slab 7 takes size o;. Each slab has up to one size,), s;; <
1, and a slab with no size implicitly has size 0, denoting that it
is unused. The optimization problem of minimizing the total
slab size can be reduced to a series of CSPs with decreasing
upper bound U on the size. Each CSP has a total capacity
constraint: >, Zj sijo; < U. Anorder variable o;; is 1 if
and only if order j is assigned to slab i. Each slab capacity
must not be exceeded and each order is assigned to exactly

one slab:
> oy =1
[

E ojjwi < E SikOk
J &

A colour variable ¢;; is 1 if and only if colour j is assigned
to slab i. (In some instances not all colours are used, so
we relabel them to consecutive numbers.) No more than p
colours may be assigned to a slab, and if an order is as-
signed to a slab then so is its colour: Zj cij < pand
0ij < cix,;. A wastage variable e; for [= 1...B where
B = [log, (U — >, wj+1)] is such that the wastage for slab

i is bounded by 21321 2l=1e,:

-1
E Sijﬂjfg Oikwkgg 27 ey
1

J k

The total wastage is bounded by:

Zz2l_1€il S U — Zwk
l k

4.2 Symmetry

When variable sets form matrices, as they do here, a pow-
erful way of breaking symmetry is to impose lexicographi-
cal ordering on rows and/or columns [8]. In principle this
can be expressed in linear constraints by comparing weighted
sums of the form >°, 2°~'z; (assuming binary variables), but
the finite word length of a computer makes this impracti-
cal for large vectors of variables. Instead we approximately
break symmetry by using sums of the form 3=, i%x; but re-
tain the symmetry breaking ideas of Frisch et al. This tech-
nique (which we have not seen used before but do not claim
to be original) potentially breaks some symmetry but leaves
at least one solution, because at least one weighted sum will
be greatest whatever coefficients we choose. But it may not
break all symmetries because more than one weighted sum
may be equal. In future work we hope to repeat the experi-
ments below using lexicographic ordering.

Orders of the same weight and colour are interchangeable
so we approximately order those columns of the order vari-
able matrix: >, i%(0;, — 0;;) > 0, where j < k, k; = kg

and w; = wy. The constraints

<Zl2) D K (sik —sk) + Y 1P(ou — o) 20
l k !

order slabs by decreasing size, and where two slabs take the
same size force their order vectors to be approximately or-
dered. The o variables are prevented from interfering with
the slab size ordering by the coefficient }_, 2.

4.3 Implied Constraints

Consider an implied constraint of Frisch et al. If symmetry
breaking constraints are used then the first slab must be large
enough to be assigned the largest order . (though it is not
necessarily assigned to the first slab). Furthermore, because
of the slab size ordering, order ;» must be assigned to a slab
1...M where M = min(O, |[U/w,]|): 0;, = 0andi >
M. The upper bound U on the total capacity can be used in
implied constraints:

ZZSW;‘ + (i - 1)281'3'0]' <U

k>i g J

where 2 < ¢ < O. Similar constraints impose a lower bound
on the total capacity:

ZZSk]‘O’j + (0 —19) Zsijgj > Zwk

k<i j j k
4.4 Dominance

We have found four dominances in the steel mill slab design
problem. To the best of our knowledge the fourth is new, but
the other three could have been incorporated immediately into
the model without considerations of dominance. However,
they were not used in previous work on this problem, and
we aim to show that thinking in dominance terms can lead to
them in a natural way.?

We use a small example of Frisch et al. as an illustration:
the available slab sizes are {1, 3, 4}, the available colours are
{red, green, blue, orange, brown} and the input orders are
shown in Figure 3. It also shows three optimal solutions, the
first taken from Frisch et al.

Colour Dominance. Consider a hypothetical solution (not
in Figure 3) in which only two orders are assigned to slab 1:
5,6 which are both orange. Assume that p = 2 so that each
slab can be assigned up to 2 colours. Then we are free to
assign another colour such as blue to slab 1 without violating
a colour constraint, even though no blue orders are assigned
to it. This is a form of dominance: if a solution exists with
orders 5,6 assigned to slab 1 which is assigned the colour
orange, then there exists a solution with slab 1 also assigned
the colour blue. To enforce the dominance we add constraints
to exclude states in which a colour is assigned to a slab but

2These dominances may have been made unnecessary by not
branching on the related variables, for example by not branching on
colour variables we do not encounter colour-dominated solutions. It
is an open question which strategy works best, but by leaving the
choice of branching variables free we are able to apply a generic
solver that does not provide branching control.

order |1 2 3 4 5 6 7 8 9
weight 2 3 1 1 1 1 1 2 1
coour R G G B O O O B B

Solution 1 Solution 2 Solution 3

slab|size|orders||slab|size|orders||slab|size|orders
11417891 11 3189 113189
213113 213113 213113
31312 31312 31312
4|1 31456 1| 4| 31456 1| 4|1 |4
5 117 5 117
6 | 1|5
71116

Figure 3: A small example and three optimal solutions

no order of that colour is: c;; < Zjesk 05, Where Sp, =
{j| k; = k}. The definition of the colour constraint therefore
has been changed from an “if” to an “if-and-only-if”.
Wastage Dominance. The <-definition of wastage can be
transformed to an =-definition by adding inequalities:

Zsijﬂj - Zoikwk > Z 2= tey
j k l
Now the e;; give the exact wastage for slab ¢ instead of an
upper bound. This is a dominance: if a solution exists in
which the wastage is greater than necessary, then there also
exists one in which it is exactly the total slab size minus the
total order weight. This is not a symmetry as we may not be
able to increase a slab wastage without violating the upper
bound on total wastage.

Capacity Dominance. Consider any solution in which the
size of a slab is larger than necessary: that is, it could be
reduced to the next smaller size (or even smaller) while still
exceeding or equalling the sum of the weights of its assigned
orders. The existence of the wasteful solution implies the
existence of the better solution (but not vice-versa) so we can
add constraints to exclude the former:

o
D sik(l+ok1) <Y oijw s < Y 0ij
k=2 j i

A slab’s size is now a function of its orders: it is the smallest
size that is large enough to contain the slab’s orders. If no
orders are assigned then a slab has size 0.

Cutting Dominance. The second solution of Figure 3 is
derived from the first by cutting slab 1 of size 4 into slab
1 of size 3 and slab 5 of size 1. The third solution is de-
rived from the second by cutting slab 4 of size 3 into slabs
4,6,7 each of size 1. These transformations are reversible
and could be treated as a symmetry, giving an opportunity
for further symmetry breaking by adding constraints such as:
s13 + 017 + 018 + 019 < 3. But we may need to enumerate
a large number of assignment-size combinations. This situa-
tion can be improved by relaxing the symmetry requirement
to a dominance as follows. Consider any solution in which
slab 1 has size 4 and is assigned orders {7} U S for some or-
ders S. Then it can be decomposed into two slabs, one of size

PBS

O Uy | Solver @ @ (@ (@
12 77 03 | 189 044 04 159
16 99 18.9 132 48 381 543
18 110 226 948 57.9 485 454

19 115 1493 36.9 141 7.00
20 122 2683 394 10.5 54.1
21 135 246 801 0.74 1085
25 166 882 185 964 31.3
30 195 — — 376 198

Figure 4: Search times in seconds for optimum solutions.

1 assigned order 7, the other of size 3 assigned orders S. This
is always possible: no colour constraint can become violated
by cutting a slab into two, nor can the total capacity constraint
be violated as the capacity is unchanged. The reverse trans-
formation (merging two slabs into one) might violate a colour
constraint so this is not a symmetry. This dominance can be
enforced by adding a constraint to exclude any solution in
which slab 1 has size 4 (size number 3) and is assigned order
7: s13 + 017 < 1. This binary constraint subsumes several
symmetry breaking constraints of higher arity.

These binary constraints do not enforce all cutting domi-
nances. In the second solution of Figure 3, orders 4,5,6 are
assigned to slab 4, which therefore has size 1 +1 +1 = 3.
We cannot cut this into two slabs of sizes 1 and 2 because 2 is
not a valid slab size. We can cut it into 3 slabs of size 1 as in
the third solution. All the cutting dominance constraints can
be described by s;; + > ;. 0ix < || where:

e (2 contains orders of no more than p different colours;

e either (i) >, .o wx = o and there is a proper partition-
ing of € into subsets each of whose size is a slab weight;
or (ii) o5 — > cqwr = oy for some j” and there is a
partitioning of © (possibly the trivial partitioning {Q})
into subsets each of whose size is a slab weight;

e () has no proper subset that can be so partitioned (to
avoid generating subsumed constraints).

45 Resultsand Discussion

We transform the linear constraint models to pseudo-Boolean
form and apply PBS [1] (with VSIDS variable ordering
and G=50 as recommended). Using the instances from [9;
13], Figure 4 shows the time in seconds taken to find an op-
timum solution for ILOG Solver 5.0 on a 750 MHz Pentium
111 [?]; this has similar performance to our machine so the
times are roughly comparable. Case (a) and the Solver results
use symmetry breaking and implied constraints, case (b) adds
capacity dominance enforcement constraints (implied when
U is set to the optimum value), case (c) adds to (b) colour
and wastage dominance enforcement constraints, and case (d)
adds to (c) cutting dominance enforcement constraints up to

arity 3. Times longer than one hour are denoted by “—”. The
upper bound U was set to the known optimum value for the
problem.

PBS with symmetry breaking and implied constraints is
(perhaps surprisingly) not much worse than Solver. Adding

capacity dominance enforcement constraints significantly im-
proves performance. Adding colour and wastage dominance
enforcement constraints has a slightly erratic effect but is pos-
itive overall, and enables PBS to solve the largest problem.
Adding cutting dominance enforcement constraints also has
an erratic effect, with improvements on some instances.

Figure 5(i) compares PBS on model (c) with the results of
[13] who used a faster 1.17 GHz Pentium 1lI. (The CPLEX
results are the best of several models; CPLEX was unable
to solve all instances within the time limit with any single
model.) They experimented with: IP models implemented in
OPL and solved with CPLEX; CP models with two different
branching strategies, solved with ILOG Solver 5.2; and hy-
brid CP/IP models solved by Solver and CPLEX. Both Solver
and CPLEX were called via OPL. Solver model 1 denotes an
IP model similar to our model (a), and model 2 denotes a hy-
brid model with channelling constraints.

We start PBS with U = 1000 instead of oo because our
model needs a finite upper bound in order to express the
wastage constraints (a better method would be to compute an
upper bound for U). Each time we find a solution we restart
the search with U set to the total slab size of that solution mi-
nus 1. There is no other communication between iterations so
some search effort is wasted. When starting from a high value
of U the best PBS variable ordering heuristic turn out to be a
fixed ordering (o, s, ¢, e) instead of the recommended VSIDS
ordering. We now fail to solve the largest instance within
the time limit but obtain better results overall. All times in-
clude proof of optimality, which is trivial on these instances
because each has a “perfect” solution with zero wastage. We
use a threshold of 5746 seconds instead of one hour, to al-
low for our slower machine. Numbers in brackets indicate
the best result found within the time limit, while times longer
than the threshold are denoted by “—”.

PBS with model (c) now has better overall performance
than Solver with either constraint model, though our results
are not as good as their CPLEX or hybrid results. Note that
dominance enforcement constraints could be added to the hy-
brid model. (In retrospect it may have been more informative
to add dominance in the same models as used by previous re-
searchers.) As noted, for these problem instances the proof
of optimality is trivial as they all have perfect solutions. We
expect the dominance enforcement constraints to have an im-
pact on the time required to prove optimality as they prune
alternative (but not better) solutions. We therefore designed
a set of benchmarks without perfect optimum solutions. For
a problem of size N, we define a set of NV orders with size 2
and colour 1, N orders with size 3 and colour 2, and 1 order
of size 4 and colour 3. The available slab sizes are 3 and 6.

Figure 5(ii) shows the optimum total slab size U,,: and
total order weight >w for various values of NV, with execution
times for proofs of optimality (U = U,y¢ — 1) under various
models. Values of N having perfect solutions are omitted.
Cases (a), (c) and (d) are as in Figure 4. The colour, wastage
and capacity dominance enforcement constraints make a very
large difference to the proofs of optimality.

Solver Solver CPLEX Solver+ | PBS
O | model 1 model 2 model 1 CPLEX (c)
12 (79) 0.28 9.90 0.52 | 1.05
16 (112) 6.51 10.7 0.53 | 11.9
18 (121) 145 1.98 0.67 118
19 (122) 303 2.6 191 | 78.7

20| (152) 2014 591 297 | 509
21 — 218 120 484 464
25 — 1216 652 76| 5.1
30 — (197) 1180 159 | (196)

N Yw Uopt (a) (C) (d)
3 19 21| 0.01 0.02 0.02
5 29 30| 0.05 0.03 0.03

6 34 36| 0.07 0.07 0.05

8

9

44 45 2.16 054 0.2
49 51| 058 0.68 0.14
11 59 60| 455 6.32 0.69
12 64 66| 533 5.79 0.39

14 74 75| 1777 131 6.7
15 79 81| 51.2 555 0.99
17 89 90 — 1320 27.1

Figure 5: Slab design results.

5 Peaceable Armiesof Queens

For our final case study we consider the problem of placing
equally sized armies of black and white queensonan N x N
chess board so that no white queen can attack a black queen
(or vice-versa), and to maximize the size of the armies [4].
An IP model was defined by Plastria [5]. Smith et al. [18]
defined and tested three constraint models for the problem,
breaking symmetry by using SBDS [2; 11].

5.1 A Basic Modd

We define a new IP for the problem, drawing on ideas from
the constraint models of [18]. Associate a pair of 0/1 vari-
ables b;; and w;; with each square. The b;; (resp. w;;) take
value 1 if there is a black (resp. white) queen on square (4, 5)
and 0 otherwise. In addition to these square variables, de-
fine 0/1 line variables b, and w, for each line ¢ (row, column
or diagonal; one diagonal at each corner contains a single
square). The optimization problem can be expressed as a se-
ries of CSPs with increasing lower bound @ on the number

of black and white queens:
DD b 2Q 2.0 wizQ
i 7 i 7

Any surplus queens may be removed to obtain a pattern with
exactly @ black and @ white queens. The other constraints
are as follows. No square or line may be both black and white:
bij +w;; < 1andby +w, < 1. If asquare is black [white]
then its four associated line variables are black [white]:

4b;; < sz 4w < sz
LeLyj LeLij

where L;; denotes the lines passing through square (¢, j). Ifa
line is black [white] then at least one of its associated squares

is black [white]:

> by

(4,5)€Se

wy < Z Wij

(4,5)€Se

where S, denotes the squares on line /.

52 Symmetry

Smith et al. use SBDS to break four rotational symmetries,
two reflectional symmetries and one colour symmetry (flip
all colours). We add constraints to the model before search,
which is weaker than SBDS but has the advantage that it can
be used with any search algorithm. First the colour symmetry
is broken by insisting that no white queens are placed on the
top row: wy, = 0. For the rotational and reflectional symme-
tries, we consider the eight half-rows and half-columns at the
edges of the board as binary representations of integers. We
then post constraints to make the black left half of the top row
represent the greatest number:

z}N/QJ 91— 1(b1 — by —win) >0

WNP2L 91 (b — b1y — wii) > 0

LN/QJT Ybip —by—ic1iN —wWN—i—1n) >0
ZlLN/QJ 27 (bjy — by n—im1 —wiN—i—1) >0
ZLN/QJ 207 by —bn_i—11 — wWN—i—11) =0
ZLN/QJ 217 (bjy — b N—i—1 —WNN—i—1) >0

5.3 Dominance

Suppose that in a solution, queens are only placed in a smaller
rectangle than V x N, for example rows and columns2... N.
The solution can still be rotated and reflected within the
smaller square, and also translated upward until a queen ap-
pears in the top row, and leftwards until a queen appears in the
left column. The reverse is not true: a solution with queens in
the top row and left column cannot necessarily be translated,
because other queens might fall off the bottom row and right
column. Thus we have two translational dominances, which
can be enforced by insisting that at least one queen be placed
in the top row and at least one queen be placed in the left
column: by + wy > 1 and by4+1 + wny1 > 1, where line
N + 1 denotes the left column. Combining these constraints
with the colour symmetry breaking constraint above, results
in the constraint b; = 1, requiring a black queen in the top
row.

Another dominance occurs when placing a queen on a
square cannot violate any constraint. There are three cases.
Firstly, if a solution exists with an empty square whose lines
are uncoloured then a solution also exists with a queen of ei-
ther colour in that square (recall that in our formulation only
lower bounds are placed on the sizes of the armies). We call
this the uncoloured dominance and it can be enforced by plac-
ing a queen in that square; more specifically, a black queen.
Secondly, if a solution exists in which an empty square has
no white lines and at least one black line passing through it,
then a black queen may be placed there. We call this the
black dominance. Thirdly, if a solution exists in which an
empty square has no black lines and at least one white line,

pseudo-Boolean ILOG Solver
N @| basicsymm dom both +VOlbasicsymm|U+VO
4 2/ <0.1<0.01<0.1 <0.1 0.01/0.03 0.02] 0.02
5 4| 0.12 0.020.08 0.01 0.02/0.11 0.04| 0.03
6 5 16 015 0.6 0.07 0.08 29 041 0.13
77 29 22 6 049 066/ 56 7.8 1.12
8 9| 236 41 93 54 52572100 240/ 11.7
91226091 17041262 93 31 116
10 14 879 298 2460
11 17 12379 2874 37100
1221 17868
1324 247331

Figure 6: Results for the Peaceable Armies of Queens

then a white queen may be placed there. This is the white
dominance. Two families of constraints can be used to en-
force these dominances. One enforces both the black and un-
coloured and the other enforces the white:

bijﬁLZ’ngl bij+wij+2b421
LeL;j LeL;j

5.4 Reaultsand Discussion

As above, these models are transformed to pseudo-Boolean
form. We apply a naive backtracker using a lexicographi-
cal variable ordering: first the square variables row by row,
then the line variables (experiments with the much more so-
phisticated PBS solver [1] surprisingly gave inferior results).
Figure 6 shows the CPU times for the algorithms to find and
prove optimal solutions for various values of N. It shows
results for the basic model (basic), the basic model with sym-
metry breaking (symm), with dominance enforcement (dom),
with both (both), and both with a modified (but still static)
variable ordering heuristic (+VO). The modified variable or-
dering chooses variables with the highest score pn + p +n
where p and n are the number of positive and negative occur-
rences of the variable, breaking ties lexicographically. The
figure also shows results for ILOG Solver with and with-
out SBDS on a basic squares-only model (basic and symm),
and ILOG Solver results with SBDS on the best (unattacked
squares) model and a most-unattacked-square variable order-
ing heuristic (U+VO). The results for Solver are taken from
Smith et al. [18] who use a 600 MHz Celeron PC. () denotes
the number of queens.

Both symmetry breaking and dominance enforcement
make a significant difference to search time. Though our
symmetry breaking approach is simple it achieves speedups
comparable to those of SBDS on this problem. Dominance
enforcement achieves similar speedups, that increase with
N until it gives better results than symmetry breaking (we
do not know whether this can be extrapolated to larger in-
stances). Applying both symmetry breaking and dominance
enforcement gives even better results than ILOG Solver, and
adding the modified variable ordering further reduces execu-
tion times so that we are able to increase N by 2. Figure
7 shows the first known optimal solutions, as far as we are
aware, for N = 12 and N = 13. The solution for N = 13

bbb. b
bbb. . b
bbb. b. b
b . bb
bbb
. b b
w. w
W W .
W W Ww. w
WW. WW.
W. W. . . WWW.
W. . .. Www.
b b. b. b. b
w LW
W. W. W. W. W. W
w LW
b b. b. b. b
w LW
b b. b. b. b
w LW
W. W. W. W. W. W
w LW
b b. b. b. b
w LW
b b. b. b. b

Figure 7: Optimal 12 x 12 and 13 x 13 solutions.

actually contains 25 black queens and 24 white ones; to ob-
tain a solution with equal-sized armies we can simply remove
any black queen.

6 Conclusion

Problem symmetry has recently received a great deal of at-
tention in the literature, and exploiting it has led to huge im-
provements in search performance. Symmetry can be seen
as a special (bi-directional) form of dominance, which is a
weaker, more general property. However, dominance has
been far less exploited than symmetry in the CP literature.
We believe that it should rank alongside symmetry breaking
as a generic CP technique, and that it can be profitable to treat
both in a uniform way.

To support this thesis we added new dominance enforce-
ment constraints to three well-studied symmetric problems.
In the Still-Life and Peaceable Armies of Queens problems
we found geometrically-inspired dominances that are analo-
gous to some common symmetries: whereas rotation and re-
flection are common symmetries in geometric problems, we
found translational and pattern-based dominances, leading to
improved results on the latter problem. In the Steel Mill Slab
Design problem we found a new form of dominance (cutting)
that improves proofs of optimality. We hope that these exam-
ples will serve to stimulate further research on dominance in
CP.

It may be that dominance has been relatively unexploited
because it is more natural to think in terms of symmetry.
However, we found that after a little practice it became quite
natural to think in dominance terms, and that it helped to
guide the modeling process. In the Steel Mill Slab De-

sign problem we found several dominance enforcement con-
straints that transform if and less-than-or-equal-to definitions
to tighter if-and-only-if and equals definitions. Though these
could have been exploited without thinking in dominance
terms, they were not used by previous researchers and we
were led to them by considerations of dominance.

Dominance also led us to an insight on another problem.
The best constraint model for the Peaceable Queens prob-
lem found by Smith et al. [18] was the unattacked queens
model. That model represents only the white queens, ensur-
ing that there are at least as many unattacked squares as white
queens; black queens are implicitly placed in these squares.
The stated advantages of this model are that the search vari-
ables have smaller domains and that there are fewer con-
straints. But another perspective on this model is that by
merging the cases of a square containing no queen and a black
queen, it implicitly enforces the black and uncoloured (but
not the white or translational) dominances. Perhaps part of
the advantage of this model can be traced to the absence of
these dominances. In retrospect, the unattacked queens model
could have been inspired by the identification and elimination
of dominated solutions. Given that constraint modeling is a
poorly understood and difficult process, heuristics that lead to
good models are an important research direction.

Acknowledgments

This work was supported in part by the Boole Centre for
Research in Informatics, University College, Cork, Ire-
land, and also by Science Foundation Ireland under Grant
00/P1.1/C075. Thanks to Ken Brown, lan Gent, Brahim
Hnich, lan Miguel and Barbara Smith for helpful discussions.

References

[1] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: A
Backtrack Search Pseudo-Boolean Solver. Symposium on
the Theory and Applications of Satisfiability Testing, 2002.

[2] R. Backofen, S. Will. Excluding Symmetries in
Constraint-Based Search. Fifth International Conference
on Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science vol. 1713, Springer-
Verlag 1999, pp. 73-87.

[3] R. Bosch. Integer Programming and Conway’s Game of
Life. SIAM Review 41(3), 1999, pp. 594-604.

[4] R. Bosch. Peaceably Coexisting Armies of Queens. Op-
tima (Newsletter of the Mathematical Programming Soci-
ety) vol. 62 pp. 6-9, 1999.

[5] R. Bosch. Armies of Queens, Revisited. Optima
(Newsletter of the Mathematical Programming Society)
vol. 64, 2000, p. 15.

[6] R.Boschand M. Trick. Constraint Programming and Hy-
brid Formulations for Life. Workshop on Modelling and
Problem Formulation, Cyprus, 2001.

[7] H.-L. Fang. Genetic Algorithms in Timetabling and
Scheduling. PhD thesis, Department of Artificial Intelli-
gence, University of Edinburgh, 1994.

[8] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, 1. Miguel, J.
Pearson, T. Walsh. Symmetry in Matrix Models. Workshop
on Symmetry in Constraints, Cyprus, 2001.

[8] A. M. Frisch, I. Miguel, T. Walsh. Symmetry and Implied
Constraints in the Steel Mill Slab Design Problem. Work-
shop on Modelling and Problem Formulation, Cyprus,
2001.

[10] I. P. Gent, I. McDonald, I. Miguel, B. M. Smith. Ap-
proaches to Conditional Symmetry Breaking. 4th Interna-
tional Workshop on Symmetry and Constraint Satisfaction
Problems, Toronto, Canada, 2004.

[11] 1. P. Gent, B. M. Smith. Symmetry Breaking During
Search in Constraint Programming. Fourteenth European
Conference on Artificial Intelligence, Berlin, Germany,
2000, pp. 599-603.

[12] L. Getoor, G. Ottosson, M. P. J. Fromherz, B. Carlson.
Effective Redundant Constraints for Online Scheduling.
Fourteenth National Conference on Artificial Intelligence,
Providence, Rhode Island, 1997, pp. 302-307.

[13] B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Hybrid Mod-
elling for Robust Solving. Annals of Operations Research
(to appear).

[14] T. Ibaraki The Power of Dominance Relations in
Branch-and-Bond Algorithms Journal of the Association
for Computing Machinery, vol. 24, 1977, ACM Press, pp.
264-279

[15] J. Larrosa, E. Morancho. Solving “Still Life’ with Soft
Constraints and Bucket Elimination. Ninth International
Conference on Principles and Practice of Constraint Pro-
gramming, Kinsale, County Cork, Ireland, 2003, pp. 466—
479.

[16] L. Proll, B. M. Smith. Integer Linear Programming and
Constraint Programming Approaches to a Template De-
sign Problem. INFORMS Journal of Computing vol. 10,
1998, pp. 265-275.

[17] J.-F. Puget. On the Satisfiability of Symmetrical Con-
strained Satisfaction Problems. J. Komorowski, Z. W.
Ras (eds.), Methodologies for Intelligent Systems, In-
ternational Symposium on Methodologies for Intelligent
Systems, Lecture Notes in Computer Science vol. 689,
Springer-Verlag, 1993, pp. 350-361.

[18] B. M. Smith, K. E. Petrie, 1. P. Gent. Models and Sym-
metry Breaking for Peaceable Armies of Queens. ECAI
Workshop on Modelling and Solving Problems with Con-
straints, 2002.

[19] B. M. Smith. A Dual Graph Translation of a Prob-
lem in “Life’. Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science vol. 2470,
Springer-Verlag, 2002, pp. 402-414.

