SIAM J. COMPUT. © 1983 Society for Industrial and Applied Mathematics
Vol. 12, No. 4, November 1983 0097-5397/83/1204-0012 $01.25/0

LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING IN R®
AND RELATED PROBLEMS*

NIMROD MEGIDDO*

Abstract. Linear-time algorithms for linear programming in R? and R® are presented. The methods
used are applicable for other graphic and geometric problems as well as quadratic programming. For
example, a linear-time algorithm is given for the classical problem of finding the smallest circle enclosing
n given points in the plane; this disproves a conjecture by Shamos and Hoey [Proc. 16th IEEE Symposium
on Foundations of Computer Science, 1975] that this problem requires Q(r log n) time. An immediate
consequence of the main result is that the problem of linear separability is solvable in linear time. This
corrects an error in Shamos and Hoey’s paper, namely, that their O(n log n) algorithm for this problem
in the plane was optimal. Also, a linear-time algorithm is given for the problem of finding the weighted
center of a tree, and algorithms for other common location-theoretic problems are indicated. The results
apply also to the problem of convex quadratic programming in three dimensions.

The results have already been extended to higher dimensions, and we know that linear programming
can be solved in linear time when the dimension is fixed. This will be reported elsewhere; a preliminary
version is available from the author.

Key words. linear programming, 1l-center, weighted center, smallest circle, linear time, median,
separability, quadratic programming

1. Introduction. The problem of finding the convex hull of # points in the plane
has been studied by many authors, and its complexity is known to be O(n log n) not
only in the plane but also in R* (Graham [G], Preparata and Hong [PH] and Yao
[Y]). Several known problems in computational geometry, such as farthest points,
smallest circle, extreme point, etc., are closely related to the problem of finding the
convex hull of # points in the plane (Shamos [Sh], Shamos and Hoey [ShH] and
Dobkin and Reiss [DR]). We have not found in these references an explicit statement
about the complexity of linear programming in two and three dimensions. A closely
related problem is the “separability’” problem for which a statement of complexity
was made. The separability problem is to separate two sets of n points in R* by means
of a hyperplane. Dobkin and Reiss [DR] report that this problem is solvable in
O(n log n) time when d = 3, referring to Preparata and Hong’s work [PH). Moreover,
Shamos and Hoey solve the separability problem in R? in O(n log n) time and claim
(erroneously) [ShH, p. 224] their algorithm to be optimal. The truth is that the
separability problem in R is obviously solvable by linear programming in d variables.
In particular, it follows from the results of the present paper that it can be solved in
O(n) time when d =3.

We may learn about the state-of-art of the complexity of linear programming in
R? by considering the “extreme point” problem, i.e., the problem of determining
whether a given point P, in R is a convex combination of n given points Py, - - - , P,
in R?. Dobkin and Reiss [DR, p. 17] state without proof or reference that this problem
(in R?) is solvable in linear time. This statement is rather obvious since the extreme
point problem in the plane can be modeled as a problem of finding a straight line
which crosses through P, and has all the points Py, - - -, P, lying on one side of it.
The latter, however, amounts to linear programming in R ' which is trivial. The same

* Received by the editors February 9, 1982, and in revised form November 15, 1982. This research
was partially supported by the National Science Foundation under grants ECS-8121741 and ECS-8218181,
at Northwestern University.

t Department of Statistics, Tel Aviv University, Tel Aviv, Israel. Currently visiting Department of
Computer Science, Stanford University, Stanford, California 94305.

759



760 NIMROD MEGIDDO

observation implies that the separability problem in R 4 (d =2) can be solved by linear
programming in d — 1 variables so that, in view of the present paper, it is solvable in
linear time in R*.

Another problem, related to linear programming in three variables, which we
solve in O(n) time, is that of finding the smallest circle enclosing n given points in
the plane. Shamos and Hoey [ShH] solve this problem in O(n log n) time, improving
the previously known bound of O(n?) very significantly. A seemingly related problem,
namely, that of finding the largest empty circle, was shown to require {}(n log ) time,
and that led Shamos and Hoey to the (wrong) conjecture that Q(n log n) was also a
lower bound for the smallest enclosing circle problem. They were convinced that the
so-called Voronoi diagram would always provide optimal algorithms, so they stated
[ShH, p. 231]: “...the proper attack on a geometry problem is to construct those
geometric entities that delineate the problem...”. Our results prove that this is not
always the case, since the construction of the Voronoi diagram does require ((n log n)
time, while the smallest enclosing circle can be found in O(n) time.

The problems discussed in this paper are presented in order of increasing difficulty.
We start with linear programming in R?which is a subroutine for the three-dimensional
problem. The two-dimensional case is discussed in § 2. In § 3 we consider the problem
of the weighted center of a tree. The latter is more complicated than linear program-
ming in two variables but yet does not involve the difficulties which arise in the
three-dimensional case. The best known bound for it was O(n logn) [KH]. The
problem of the smallest circle enclosing n points in the plane, which is discussed in
§ 4, is more complicated than linear programming in the plane. It is in fact a three-
dimensional problem in a certain sense, and the algorithm which we present for it
leads to the design of a linear-time algorithm for linear programming in R?. In §4
we also point out how our results apply to other location-theoretic problems in the
plane. The problem of linear programmmg in three variables is discussed in § 5. Our
linear programming algorlthm for R* can easily be extended to solve convex quadratic
programming problems in R?in O(n) time. The latter is also discussed in § 5. In the
Appendix we include an efficient algorithm for the extreme-point problem in the
plane (discussed earlier in this Introduction) which is a routine for solving the smallest
circle problem.

2. Linear programming in the plane.
2.1. Preliminaries. The linear programming problem in the plane can be stated
as follows:

minimize c¢1x;+C2X>

X1.%2

s.t. ai1x1+ax2Z6; (i=1,-- e, n).

It will be convenient for us to deal with the problem in an equivalent form, which
can be obtained from the original one in O(n) time:

minimize y
X,y
s.t. yZax +b; (iely),

y=Eax+b (i€l

a=xsbh



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 761

where |[;| +|[o|=n and ~0 =a, b =. We also define the following functions:
g(x)=max {ax +b;: iel},
hix)=min{ax +bi: i€ L}

Obviously, both of these functions are piecewise linear, and g is convex while A is
concave. A number x, a =x =b, is said to be feasible if g(x)=h(x). We can pose our
problem also in a one-dimensional form:

minimize g{x)
s.t. gx)=hx),
a=x=bh.

Our algorithm works as follows. We test values of x in a fashion resembling binary
search. Each test runs in linear time and enables us to drop at least a quarter of the
constraints of the problem. We first have to describe our test in detail.

2.2. Testing a value of x. Given any value x' of x (a=x'=b), we test the
following: (i) Is x' feasible? (ii) If x' is not feasible then if there are any feasible values
of x then they must lie on one side of x'; our test either determines that side or
concludes that no feasible values exist; (iii) If %' is feasible then our test will recognize
whether x' is also optimal and if not then it will tell us on what side of x' the minimum
lies.

We start with the case of infeasible x'. In other words, g(x')>h(x"). Consider
the function f(x)=g(x)—h(x). This function is convex so the values of x such that
f(x)=0 (if there are any) all lie on one side of x'. In order to tell the correct side we
look at the one-sided derivatives of f at x'. This is done as follows (see Fig. 1). Define

s, = min {a;: iel, ax'+b;=gx"},
S, =max{a;: i€, ax’'+b =g(x"},
s, =min {a;: i € I, ax'+b; =h(x")},
S, =max{a;: i €I, ax'+b; =h(x")}.

If s, >S» then f(x) is ascending at x' so that a feasible x can only be smaller than x'.
Analogously, if S, <s, then f(x) is descending at x' so that a feasible x can only be
larger than x'. The remaining case is when s, —8, =0=S, — s In this case f attains
its minimum at x, i.e., there are no feasible values of x.

Consider now the case when x’ is found to be feasible. We are interested in
finding out on what side of x' the optimal solution lines. Assume, first, thatg(x") <h(x’).
Here the analysis is quite simple. We need to look only at the numbers s, and S,. If
sg >0 then an optimal solution (denote it by x*) must satisfy x* <x'. Analogously, if
S, <0thenx*<x'.Otherwise,s, =0 = S, and x' itself is a minimum of g. If g (x") = h(x"
then the situation could be one of the following: (i) If s,>0 and s, =S, then x*<x'.
@ii) If S, <0 and S; =s,, then x*>x'. Otherwise x' itself is a minimum of g(x) under
the constraint g(x)=h(x).

In summary, if x’ is any value in [a, b] then in linear time we can either find that
the problem is infeasible, recognize that x' itself is an optimal solution, or decide that
the rest of the computation may be confined to one of the subintervals [a, x'], [x', b].

2.3. The algorithm. We start the procedure by arranging the elements of I, in
disjoint pairs and, similarly, those of I, in disjoint pairs (a single element from either



762 NIMROD MEGIDDO

set may be left unmatched). Consider, for example, a pair /,jeI;. If a; =g, then,
obviously, one of the constraints y Zaxx +b;, y Za;x +b; may be dropped without
affecting the optimal solution of the problem. Otherwise, a; # a; and the number
xij = (b;~b;)/(a;—a;) (i.e., the solution of the equation a,x +b; =a;x +b;) has the
property that if x is confined to an interval which does not contain x; in its interior
then, again, one of the two constraints is redundant and may be dropped. A similar
observation is of course valid for a pair of constraints of the form y =a;x +b,.

Consider all the pairs that have been formed. First, drop every constraint which
is redundant according to the previous observation, i.e., either because of an inequality
a; = a; or because of a relation x;£ (a, b). We now consider only those pairs /,  (that
have been formed) for which a; # a; and a <x; <b. The next step is to find the median
xm of the set of x;’s. This can be done in linear time (see [AHU]). We then test the
value x,, along the lines described in § 2.2, i.e., we either recognize that our problem
is infeasible, find out that x,, is an optimal solution for our problem, or deduce that
the interval [a, 5] may be redefined (the new interval being either [a, x,.] or [x,., b1).
In the first two cases our task is finished. In the latter case we do the following. At
least half of the critical values x; (as defined by the original pairs) will not be in the
interior of the new interval. We will thus be able to drop one constraint per each such
pair which is at least a quarter of the set of constraints (including those that have
been dropped prior to the evaluation of x,,). We are thus left with a linear programming
problem in the plane with at most [3n/4] constraints. This implies that the runtime
time (n) of our algorithm on an n-constraint problem satisfies time (n)=C - n +
time (3n/4) and hence time (n) = O(n). Of course, when n is small (e.g., n =4) the
problem will be solved directly.



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 763

3. The weighted center of a tree.

3.1. Introduction. The weighted center of a tree is defined as follows. Given is
a tree T =(V, E) with n vertices. A nonnegative length dj; is associated with every
edge (i,j) and a nonnegative weight w; is associated with every vertex i. An edge (7, )
is identified with a line segment of length d;; so that we can talk about any ‘“‘point”
on the edge (i, f); formally, a point x = (i, j; t) is characterized by being located at a
distance of ¢ from i and d;—t from j. Thus the distance d(x,y) between any two
points x, y on the tree is well defined, namely, it is the length of the unique path from
x to y. The weighted center of T is a point x which minimizes the function r(x)=
max {wid (x, ): i € V}. The center is unique unless all the weights equal zero. A related
problem is to find a vertex j which minimizes the function r(x), i.e., x is restricted to
be a vertex of the tree.

The best known algorithm for the weighted center problem is an O(n logn)
procedure by Kariv and Hakimi [KH]. Other algorithms which run in O(n?) time
have been given in Dearing and Francis [DF], Levin [L] and Hakimi, Schmeichel and
Pierce [HSP].

The unweighted case, namely, when all the weights w; are equal, is much easier
and is solvable in O(n) time (see Handler and Mirchandani [HM]). We will present
here a linear-time algorithm for the general weighted case.

3.2. Preliminaries. The function r(x) is convex on every simple path of the tree.
Specifically, if P is a simple path and is any vertex, then consider the vertex j which
is on the path P and is nearest to i. The vertex j partitions the path into two pieces
over each of which the function g;(x)=d(x, i) is linear and increasing as we move
away from j. Thus, g;(x) is piecewise linear on P (with at most two pieces) and convex.
The function r(x) is hence piecewise linear and convex, being the maximum of convex
functions.

Let x be any point on the tree. A vertex j (j # x) is said to be adjacent to x if x
lies on an edge which is incident upon j (x may itself be a vertex but then it is not
considered adjacent to itself). Let V;(x) denote the set of vertices i such that j lies
on the simple path from x to i (see Fig. 2). Let T;(x) denote the subtree which is
spanned by the set V;(x)U {x}; in particular, this subtree contains an edge (j, x) which
is just a subsegment of (j,k) for some keV. Consider the function ri(x)=
max {wid(x, {): i € V;(x)}. Clearly, r;(x) decreases as we move from x in the direction
of j. Let ji, - - + , j be all the vertices adjacent to x (I =2 if x is interior to some edge).
Obviously, r(x)=max {r;,(x), - - -, r;(x)}. Moreover, if the maximum is attained at
more than one index then x is a local minimum of the function r, and hence it must
be the center since r is convex. On the other hand, if the maximum is attained at a
unique index, then the center must lie in the corresponding subtree. Formally, if

FiG. 2



764 NIMROD MEGIDDO

r(x)>re(x) for every vertex k (k #j) adjacent to x then the center lies in T;(x). In
summary, given any point x, we can easily tell (in O(n) time) in which of the subtrees
T;(x) the center lies.

Kariv and Hakimi [KH] based their procedure on the above observations. Given
that the center lies in a subtree T’ they “‘test” the centroid x of T' to find out which
of the subtrees of 7', rooted at x, contains the center. Since the centroid defines
subtrees whose sizes are at most half the size of 7', the process terminates within
O(log n) tests and hence runs in O(n log n) time. The improvement we suggest here
is in reducing the cost of a test. We will also perform Oflog n) tests; however, the
cost of each test will be no more than three quarters the cost of the preceding one.

3.3. The linear-time algorithm. Let ¢ denote the centroid of T, i.e., ¢ is a vertex
such that for every adjacent vertex j, |V;(c)|=n/2 (where n is the number of vertices
of T). We note that ¢ can be found in O(n) time [HM]. This is accomplished by a
walk over the vertices, always moving in the direction in which the number of vertices,
in the subtree entered into, is being maximized. Now assume that ¢ is known.

First, evaluate r;(c) for each adjacent vertex j. This amounts to finding all the
distances d(c, i) and hence can also be carried out in O(n) time. If there are two
vertices j1, j2 (j1#J2) adjacent to c, such that r;,(c) = r,(c)=r(c), then c itself is the
center and we terminate. Thus, let us now assume that j is adjacent to ¢ and r;(c) > r« (¢)
for every other adjacent vertex k. We now know that the center lies in T;(c).

If u is a vertex not in V;(c) and if x is in T;(c) at a distance of ¢t from ¢, then
d(u,x)=d(u,c)+t. If u and v are vertices not in Vj(c) then by solving (for ¢) the
equation w,(d(u, c)+1t)=w,(d(v,c)+1) we can tell the following: Assume, without
loss of generality, that w,d(u, ¢) Zw.d (v, c). There is a value t,, (0=t,, =) such
that, for every x in Tj(c) at a distance of ¢ from ¢, w,d(u, x)Zw,d (v, x) if and only
if 0=¢=1,,. Thus, if we knew that the center lay at a distance smaller than ¢,, from
¢ then we could disregard the vertex v from that point and on in the process of finding
the center. Similarly, the vertex u could be eliminated if we knew that the center lay
at a distance greater than t,, from ¢. We will show below how to efficiently exploit
this observation. However, we first need to show how to recognize whether or not
the center lies within a distance of ¢ from x, where x is any leaf vertex and ¢ is any
positive real number; our discussion applies to the tree T;(c) where x =c is a leaf and
¢ is some value of the type f.., derived from data which are external relative to the
tree T;(c).

Given a leaf x and a positive real number ¢, we can (in linear time) find all the
points yy, - -,y such that d(x,y.)=¢ v = 1,-++,l This is done as follows. First,
evaluate all the distances d(x, i). Now note that every edge (i, /), such that dix,)=t=
d(x,j), contains a unique point y, at a distance of t—d(x, i) from i, and hence
d(x, y,) =t. The set of all points z such that d(x, z) =t can be represented as a union

of subtrees rooted at the points yi, -,y (each y, may contribute several such
subtrees). Let these subtrees be simply denoted by Ty, -+, T.. and let their roots be
denoted uy, -+, um Uy, <+ umb<{y1, -+, yi}). Let V; denote the set of vertices

of T except for u; (see Fig. 3). Define R;(x)=max {wid(x, k): k € V;}. Since the sets
V, are pairwise disjoint, it follows that we can evaluate all the quantities R;(u:),

i=1,-+-,m,inO(n)time. Let R =max {R;(u;): i = 1, -, m}. First,if R;(u;) <R then
the center is certainly not in T;. Similarly, if R (u;,)=Ry,(u;,) =R for some i1# 12,
then the center cannot lie inside any T}, i=1, -+, m. The remaining case is when

there is a unique i (1=i{=m) such that R;(u;) = R. In this case the center may lie in
T.. However, this can be recognized by evaluating the functions r;(y), where j is any



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 765

vertex adjacent to u; and y = u;. All this again requires only O (n) time. In summary,
we can decide whether or not the center is within a distance of ¢ from x (equivalently,
whether or not it lies in one of the T;’s) in O(n) time.

Returning to the original tree T, its centroid ¢ and the subtree T;(c) which is
known to contain the center, we now do the following. Arrange the vertices outside
T;(c) in disjoint pairs (u1, v1), (U2, 02),* -+, (s v,) (leaving one out if there is an odd
number of them). Note that there will be at least [n/4]—1 such pairs since at most
n/2 vertices are in Tj(c). For every such pair (i, v) consider the equation w, (d(u,c)+
t) = w,(d(v, c)+t), assuming, without loss of generality, that wud(u, c)=wd(v,c).
If w,=w, then the vertex v is “discarded”; otherwise, let ¢, =(w.d(u, c)—
wod (v, €))/ (Wy —wa).

Having calculated the values ¢, (for all pairs from whith no vertex was discarded),
we now find the median of these values. This is done in O(n) time (see [AHU]). Let
the median be denoted by t,.. We now check whether the center lies (in T;(c)) within
a distance of t,, from c¢. This can be carried out in O(n) time as we have already seen.
Suppose, for example, we find that the center indeed lies within a distance of #,, from
¢. Consider a pair (u, v) such that ¢,, Zt,. It follows that wherever the center x* lies
(provided it is in Tj(c) at a distance of no more than ¢, from c¢) it must be true that
wod(u, x*) = w,d(v, x*). Thus, the vertex v is “‘dominated” by u in the sense that if
the maximum weighted distance from the center is determined by v then it is also
determined by u. Hence, we can safely discard the vertex v in this case. Similarly, if
x* is known to be at a distance greater than ¢, from c, then from pairs (4, v), such
that t,, =t,.,, we can discard the vertex u.

It follows that one vertex is discarded from approximately half the pairs. In other
words, we will discard approximately & of the vertices of the tree. At this point we
have reduced our problem to the weighted center problem on a tree T’ which is
defined as follows. For each vertex u not in Tj(c), which has not been discarded, form
an edge (c, u) and let its length be precisely d(c, u). Also, let w, be the same as in T.
Adjoin all these edges to the tree #;(c) and call the new tree T". Since n/8 vertices
have been discarded, it follows that the run time, time(n), for a tree of n vertices,
satisfies time (1) =<time (7n/8)+ Cn, which implies time (n) = O(n).

The discrete problem of finding a vertex which minimizes the function r(x) can
now be solved. It follows from the convexity of the function r(x) that the vertex
minimizing r(x) is either identical with or adjacent to the point at which r{x) has its
global minimum. Thus, by finding this global minimum we obtain at most two vertices
(endpoints of an edge), one of which is minimizing r(x) relative to the set of vertices.



766 NIMROD MEGIDDO

4. Smallest circle enclosing n points.

4.1, Introduction. In the present section we shall deal with the classic problem
of finding the smallest circle enclosing n given points (a; b;), i =1,--,n, in the
Euclidean plane. In the language of location theory this is the (unweighted) Euclidean
1-center problem in the plane. Formally, we are looking for a point (x, y) so as to
minimize Max {((x —a;)>+(y —6:)>)"/*: 1 =i =n}. Thus, the point (x, y) is an optimal
location for a facility if we wish to minimize the largest distance that a customer would
have to travel from his residence (in one of the given points (a;, b;)) to the facility.

The smallest enclosing circle problem has a long history. It was posed by Sylvester
[Syl] in 1857 and different solutions have been suggested in Sylvester [Sy2],
Rademacher and Toeplitz [RT], Courant and Robbins [CR], Francis [F], Smallwood
[Sm], Francis and White [FW], Nair and Chandrasekaran [NC], Elzinga and Hearn
[EH], and finally, Shamos and Hoey [ShH)]. Shamos and Hoey’s algorithm runs in
O(n log n) time and is the only one which has been proved to run in o(xn’) time. It
is based on constructing the so-called “farthest point Voronoi diagram’ which we
review below. This powerful structure is very useful for solving a number of computa-
tional geometric problems and its construction requires {}(n logn) time. This led
Shamos and Hoey to the (wrong) conjecture that the smallest enclosing circle problem
also had a lower bound of Q(n log n) [ShH, p. 154]. We shall present here a linear-time
algorithm for this problem.

The diagram is a partition of the plane into regions V; where a point (x, y) is in
V; if and only if the point (a; b;) is farthest from (x, y) among the points (a; b;),

i=1,--+,n These regions are either empty or unbounded polyhedral sets. The
construction of the diagram also yields the vertices of the polytope 7 = convex hull
{(ay, b1), - * +, (an, by)}in their cyclic ordering on the boundary of 7. Once the boundary

is known, it takes O(n) time to find the two farthest points. These two points define
a circle whose diameter equals the distance between them. If the entire = is contained
in this circle then this is the smallest possible circle. Otherwise, the smallest enclosing
circle is centered at a point where some three regions V), V}, Vi meet, i.e., the circle
is defined by the points (a,, b;), (a;, b;), (ak, bx). It can be shown that there are at most
n —2 such points in the diagram (relying on the fact that, as a graph, the farthest-point
Voronoi diagram has no circuits) and the distances from such points to their respective
defining points (a,, b;) can be produced during the construction of the diagram. It thus
takes O(n) time to find the center of the smallest enclosing circle once the diagram
has been constructed.

4.2. A constrained version of the smallest circle problem. We will first develop
an algorithm for a constrained problem, namely, where the center of the enclosing
circle is forced to lie on a given straight line. For simplicity of presentation assume
this line is the x-axis. Furthermore, at the end of the computation in this constrained
problem we will be able to tell on which side of the straight line the unconstrained
center lies. This will play an important role in the solution of the unconstrained
problem,

Consider the problem of minimizing g(x)=max {(x — a)+b2:1=i=n}. Leti,j
be any two distinct indices and consider the equation (x — a)+bi=(x- a,z)2 + bf. This
isin fact a linear equation: —2a;x + ai +b}=-2a;x+ af +b7.1f a; = a; then (assuming,
for example, b2 ébf) we may drop the function (x —a,~)2+b,2 from the definition of
g. If a; # a; then there is a critical value x; ———(a,2 —ai +b,2 —bf)/Z(a,-~a,») such that
(assuming a; >a;) (x —a)Y+bi=(x —a,~)2+b,2- if and only if x = x;;.

The algorithm for the constrained center problem works as follows: Consider the
pairs (1, 2), (3,4), - - - . For each pair (i, i +1) (i odd), such that a; = a;.,, drop one of



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 767

the functions as explained above. Compute the critical values x;;.,. Find the median
x,, of the values x;;.+1 by any linear-time median-finding algorithm (see [AHUY)). Let
+* denote the minimizer of g. Compute g(x,,). We shall now discuss the question of
recognizing whether x,,, < x* xm=x*orx, >x* Letl ={i: (xn - a)+b? =g} If
x,, <a; for every i € I then x,,, <x*. If x,n >a; for every i €I then x,, >x*; otherwise,
x,, = x*, Knowing either that x* <x,, or that x*>x,,, we can discard a quarter of our
functions as follows. Assume for example x * < x,.. We have at least half of our critical
values x;;+1, greater than x*. If xi;+1 > xn then, since (x —a,-)2+b,2 =(x ——a,~+1)2+b,»2+1
if and only if x =x;;+;, we may discard the function (x —a;)* +b7. This is because
(x*—a;)?+b7 =(x* —a;41)* +bteq. Thus for at least half the pairs we can discard one
function per pair. This implies that at least one quarter of the functions are dropped
at the end of this stage. The linearity of the run time follows.

We now address the question of recognizing on which side of the straight line
the unconstrained center lies. First, note that the function f(x, y)=max {(x —a,-)2+
(y —b,)%: i =i=n}is convex. It is essential to note that f is convex, not only in each
variable, but also as a function of two variables. This also implies that the function
h(y)=min,f(x,y) is convex. By minimizing g(x) we in fact evaluate h(0). The
y-coordinate of the unconstrained center is precisely where A (y) attains its minimum.
Denote this value by y°. Since A(y) is convex we can tell the sign of y* simply by
looking in the neighborhood of y = 0. Thus, let (x*, 0) be the constrained center we
have found. Let I ={i: (x*—a;)* +b7 = g(x*)}. Obviously, if I ={i} then x*=a; and
y* has the sign of b;. If I ={i,j} then (x*, 0) lies on the perpendicular bisector of the
line segment [(as b), (a;, b;)). Obviously, y© has the sign of the y-coordinate of the
midpoint of this segment, i.e., 3 (b; +b;). In general, all the points (a;, b:), i €I lie on
a circle centered at (x*, 0). If (x*, 0) is in the convex hull of these points then y =0,
Otherwise, there exist two points (a;, b)), (a;, b)), (7 €1 ) such that f(x, y) decreases
as we move from (x* 0) in the direction of the midpoint of the line segment
[(a; b:), (aj, b;)] (i.e., along the perpendicular bisector of that segment; see Fig. 4). In
this case y° has the sign of 3 (b; +b;). It should be noticed that the determination of
these two points or the recognition that (x*, 0) is in the convex hull can be carried
out in linear time with the aid of linear programming in the plane (see § 2); a more
straightforward method is given in the Appendix.

In summary, given any straight line in the plane, we can in O(n) time determine
on which side of the line the center of the smallest enclosing circle lies. Moreover, if

FiG. 4



768 NIMROD MEGIDDO

this center happens to lie on the line then we discover its exact location during the
procedure.

4.3. The O (n) algorithm for the smallest circle. We shall now utilize the result
of the preceding section for finding the center of the unconstrained problem. We start
by producmg the perpendicular bisectors of the line segments [(az;_1, b; - 1), (a2, b2:)],
i=1,---,[n/2]. Denote them by L, Consider the angles a (—m/2=<a < 7r/2) which
these lines form with the positive direction of the x-axis. Let «,, denote the median
of these angles. Consider the linear transformation that takes the x-axis to the line
y =anx and leaves the y-axis fixed. By applying this transformation we can have at
least half of our lines with nonnegative angles and at least half with nonpositive
angles. It is obvious that this can be achieved in linear time.

The next step is to form pairs of lines (L;, L;) so that each pair has one line with
nonnegative angle and one line with nonpositive angle; the pairs are disjoint. Thus,
there will be [n/4] such pairs. For each pair (L;, L;) define a value y;; as follows. If L,
and L; are parallel to the x-axis then let y;; be the mean of their constant y-coordinates.
Otherwise, they must intersect; let (x;, y;) denote their point of intersection. Now,
let y,. denote the median of the [n/4] values y;. The value y,, can be found in linear
time. At this point we test on what side of the straight line y =y,, the center must
lie. This test runs in O(n) time as we have shown in § 4.2. If the center lies on the
line y =y,, then we are done. Thus, suppose it does not lie on the line and assume,
without loss of generality, that it lies underneath this line. Consider a pair L;, L; of
parallel lines such that y,; = y,.. At least one of these lines lies above the line Y =Ym
Suppose it is the line L; (which is the perpendicular bisector of the line segment
[(@zi-1, b2i-1), (@2 b2:)]). We can now drop one of thg two defining points, namely the
one which lies underneath the line L,, since the other point is farther from the center.
However, in general the lines L,, L; are not expected to be parallel.

Consider now the set of all pairs (L;, L,;) of nonparallel lines for which Vi Z Y-
We find the median x,, of the x;’s corresponding to such pairs. Like in the case of
the y-coordinate, we now test on what side of the line x = x,, the center of the smallest
enclosing circle must lie. Suppose, for example, it lies to the left of this line. Consider
pairs (i, j) such that x; Zx,, and y; Zy,.. One of the lines, say L, forms a nonpositive
angle with the positive direction of the x-axis. It follows (see Fig. 5) that one of the

A ,,q+ ><_ &

><

AT VTR

=~

3

7
¢
;

A

74
x <

3 apha)

3

F1G. 5



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 769

points defining L;, namely, the one which lies “‘southwest” of it, can be dropped since
the other point will be at least as far from the center.

It follows that during this process we drop one point per pair for at least a quarter
of our pairs of lines. In other words, at least [n/16] points will be dropped with an
O(n) effort. It thus follows that the entire process runs in linear time.

4.4. A remark on other planar location problems. An analogous problem is the
rectilinear 1-center problem in the plane for which linear-time algorithms are known
[FW]. However, the weighted rectilinear problem, i.e.,

minimize max {w;(x —a]|+|y =bD:i=1,---,n}
Xy

(where (a;, b;) are given points and w; are given positive weights) can now be solved
in O(n) time by our methods in the present paper. The previously known bound was
O(n log n) and followed from separating the planar problem into two one-dimensional
problems. The one-dimensional problem is a special case of the weighted center
problem of a tree, provided the numbers are sorted.

A much more complicated problem is the weighted Euclidean 1-center problem.
The best known bound for this problem used to be O(r*) [EH], [DW], [CP]. In a
recent paper the author [M2] presented an algorithm which required O (n(log n)’(log
log n)*) time. The methods presented in the present paper combined with those of
[M1], [M2] can yield an O(n(log n)?) algorithm for the weighted Euclidean 1-center
problem. The details will be given elsewhere.

5. Linear programming in R’
5.1. Preliminaries. In this section we will be dealing with the following problem:

*
minimize yix;+y2x,+ yaxs

X1,X2,X3
s.t. ai1x1+ai2x2+ai3x3§Bi (f=1,' * -,n).
We first transform the problem into the following form (in O(n) time):

minimize 2

v,z
s.t. zzax+by+e (el
z=ax+by+c (iel),
aix +by+c, =0 (iely)
where |I1|+ || +|I| = n. We define the following functions:
g(x,y)=max{a;x +biy +cirieli},
h(x,y)=min{a;x +b;y +c;: i€ I},
e(x,y) =max {a;x +b;y +c;: i €I}

which are all piecewise linear, g and e being convex while /4 is concave. Let also
flx,y)=max {g(x,y)—h(x,y), e(x,y)}. Note that our problem is equivalent to the
following:

minjrvnize glx,y)

s.t. flx, y)=0,

where f is convex. We call a point (x, y) feasible if flx,y)=0.



770 NIMROD MEGIDDO

The algorithm in R> generalizes that of the plane along the following lines. We
will first develop a routine which tests straight lines in the plane. The goal of the test
is to select one of the half planes determined by the line, such that the rest of the
computation may be confined to that half plane. Then a procedure is developed during
which applications of the test enable us to drop relatively large families of inequalities,
so that the cost of the tests which follow becomes smaller and smaller.

5.2. Testing a line. Given any straight line in the x, y-plane, we wish to recognize
which of the two half planes, determined by the line, is relevant for our problem. For
simplicity, assume that the line coincides with the x-axis (otherwise transform the
coordinate system accordingly). So, the goal of the test is to find whether we should
look for a point (x, y) with positive y or negative y. The conclusion of the test may
be one of the following: (i) The problem is infeasible. (ii) There is a global minimum
with y =0. (iii) The problem is unbounded. (iv) The rest of the computation should
be in the half plane {(x, y): y >0}. (v} The rest of the computation should be in the
half plane {(x, y): y <O0}.

We may reach conclusions (iv) or (v) in one of the following circumstances. We
may find that there are no feasible solutions on the x-axis and realize that if there
are any feasible points then they all must lie in the half plane we have found. On the
other hand, we may find a feasible point on the x-axis but realize that, in order to
decrease the value of the function g, we must proceed into the half plane we have
identified.

The test amounts to finding the minimum of g(x, 0) subject to f(x, 0) =0 and then
analyzing the picture in the neighborhood of the solution of this optimization problem.
Our planar linear programming algorithm in § 2 is capable of reaching one of the
following results: (i) It may find out that the problem is unbounded (even when
restricted to the x-axis). (ii) It may find out that the problem (on the x-axis) is infeasible,
in which case it will produce a point (x*, 0) which minimizes f(x,0) (in this case
f(x,0)>0 for every x). (iii) It may find a point (x*, 0) which minimizes g(x, 0) subject
to the constraint f(x, 0) = 0. If the problem is unbounded on the x-axis then, of course,
we are done. So, assume a point (x*, 0) has been produced. Without loss of generality
assume x ¥ = 0 (otherwise, translate the x-coordinate accordingly). The test relies only
on the inequalities which are tight at (0, 0). Formally, we define subsets I ¥al
(j=1,2,3) as follows. An index iel, belongs to IT if ¢;=g(0,0) (.e., ¢=
max {c;: jel;}). An index iel, belongs to I% if ¢;=h(0,0) provided f(0,0)=
g(0,0)~h(0,0)=0. Note that I3 = & if either f(0, 0) <0 or £(0, 0)>g(0, 0)— 4 (0, 0).
Finally, an index i € I; belongs to I% if ¢; =¢(0, 0) provided f(0, 0)=¢(0,0) = 0.

Distinguish two cases according to the circumstances of producing the point (x*, 0)
(which is now assumed to be equal to (0, 0)):

Case 1. (0, 0)=0. In this case we have found a feasible point and are interested
in decreasing the value of the function g (subject to f(x, y) =0). The test is based on
the following:

PrOPOSITION 1. The existence of a point (x,y) such that y >0, g(x,y)<g(0,0)
and f(x, y) =0 is equivalent to the existence of a A such that

() max {aA +b;: i e IT}<0,
(ii) max {aA +b;:icIf}=min{aA +b;:iel¥}, and

(iii) max {aA +b;:ie[¥}=0.



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 771

Proof. Suppose there is such a point (x,v). Let A =x/y. It follows that
max {aAy +b;y +ciiieIT Y=gy, y)<g(0, 0) = max {ci:iel?}

so that (i) holds. If I = then (ii) is trivial. Thus, assume I3 # 0. This implies
£(0,0)=g(0, 0)—k(0,0)=0. Here for every i € I¥ andjel}, ci =c; Since

max {ay + by +ciiielf =gy, y)Sh(Ay, y)

_ =min {aAy +b;y +ci:i€lF},
it follows that (ii) holds. The validity of (iii) is proved analogously. Conversely, suppose -
that there is A which satisfies (i), (i), and (iii). If y> 0 is sufficiently small, then
obviously g(Ay, y) <g(0,0) and f (Ay, y) =0. This completes the proof.

PROPOSITION 2. The existence of a point (x,y) such that y <0, g(x, y)<g(0,0)
and f(x, y) =0 is equivalent to the existence of a number A such that

(1) min{a,-/\+b,r:i€I’1k}>0,
(i) min{ai/\+b,-:ieIi“}émax{a,-A%—buieI%‘}, and
(iii) min {a;A +b;: jel¥}=0.

The proof is analogous to that of Proposition 1.
We can now describe the rest of the test in the case where £(0,0)=0. Given the
sets IF (j=1,2,3), we solve the following problem:

minAiLx,lize n

s.t. nZaA +b (ielf),
nsar+b  (el¥),
aA +b:=0 (ieI¥).

If a negative n is obtained then the half plane {(x,y):y >0} is the proper one.
Otherwise, we need to solve the following problem:

minimize 7
A

s.t, n=al +b (iel¥),
nzai/\+bi (IEI;‘),
ar+b;=z0 (ieI’g").

If a positive 1 is obtained then the half plane {(x, y): y <0} is the proper one. In the
remaining case the constraint y =0 does not affect the global minimum and hence
the point (0, 0) (i.e., (x*, 0)) is an optimal solution.

Case 2. f(0,0)>0. Weare then interested in decreasing the value of f by entering
one of the half planes. The conclusions in this case are based on the following
propositions whose proofs are similar to that of Proposition 1.

PROPOSITION 3. The existence of a point (x,y) such thaty >0 and f(x, y)<f(0, 0)
is equivalent to the existence of a number A such that

i) max{a,-/\+b,-:ieIi“}<min{a,-A+b,-:ieI’2“} and

(ii) max {aA +b;: i e [5}<0.



772 NIMROD MEGIDDO

PROPOSITION 4. The existence of a point (x, y) such that y <0 and f(x, y) <f(0, 0)
is equivalent to the existence of a number A such that

(i) min {aA +b;:iel¥f}>max{aA +b:icli} and
(ii) min {aA +b;:ieI$}>0.

Thus, in the case where f(0,0)>>0 the test proceeds as follows. Consider the
function

©(A) =max (max {@:A +b;: i e IT}—min{aA +b;:i eI5}, max{aA +b;:iel3)).

This is a convex piecewise linear function, and our methods in § 2 are applicable for
finding its minimum in O(n) time. In minimizing ¢ (A) we form pairs (i, j) of indices
only when / and j belong to the same set [ ¥(1=k =3). If ¢ attains a negative value
then the half plane {(x, y): y >0} is the correct domain wherein to look for feasible
points (see Proposition 3). Otherwise, we need to consider the function

¢(A)=min (min {aA +b;: i € IT}~max{aA +b;:iel3}, min{aA +b;:i€I3)).

Analogously, if ¢ attains a positive value then the half plane {(x,y): y <O} is the
correct one. In the remaining case f attains its global minimum on the x-axis, and
that implies that our original problem is infeasible.

This completes the statement of our test of a given straight line.

5.3. The algorithm. The algorithm is based on the following principle. Consider
two inequalities of the form z Za;x +b;y +¢;, z Za;x +byy +cpie, i, jel If (a;, b;) =
(a;, b;) then one of these constraints is redundant. Otherwise, let L;=
{(x, y): aix +b;y +c; =a;x +b;y +¢;}. If (a;, b;) #(a;, b;) then L;; is a straight line which
divides the plane into two halves. If we know that an optimal solution to our problem
(if there is any) must lie in a certain half plane determined by L; then we may discard
one of the two inequalities. A similar observation is true for pairs of inequalities
z=aix +biy+c, z=a;x +b;y +c;, i.e., when i, j € I, as well as for pairs i, j such that
i, jels.

We start the procedure by arranging the inequalities (except for at most three of
them) in disjoint pairs so that the two members of each pair belong to the same set
I, (1=k =3). For each pair, either we can drop one of the participating inequalities
right away, or we have a dividing line L;. Consider the set of lines that are generated
in this way. At this point our procedure is essentially the same as in the problem of
the smallest circle enclosing n points (see § 4.3). We review the basic ideas here in
short. Given a set of straight lines, we will in O(n) time find a subset of at least a
quarter of the lines, such that for each line in that subset, it is known which of the
two corresponding half planes may contain the solution. This is done as follows: First,
we transform the coordinate system so that half the lines will have nonnegative slope
and half the lines will have nonpositive slope. We then form pairs of lines where in
every pair we will have one line with nonnegative slope and one line with nonpositive
slope. Let the lines be redenoted Ly, - -, Ly. If L; and L; are members of one of our
pairs then let (x;, y;) denote their point of intersection if there is a unique point.
Otherwise, the two lines must be parallel to the x-axis and we define y; to be the
mean of their y-coordinates. By testing the line y =y, (where y,, is the median of the
y;’s) we identify a set of at least half the pairs whose y; values are either all greater
than the y-coordinate of an optimal solution or all smaller than that. We then test
the line x = x,, (Where x,, is the median of the x;;’s of those pairs of nonparallel lines,
that have been identified after the test at y=y,,). For at least a quarter of the pairs



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 773

we will be able to find a line and a corresponding half plane in which the optimal
solution cannot lie. This enables us to drop one inequality per pair for at least a
quarter of the pairs, i.e., at least 1¢ of the inequalities are dropped. This establishes
the linearity of the run time of our algorithm. Again, the details are given in § 4.3.

5.4. Quadratic programming in R>. Our results can be extended to solve the
problem of minimizing a convex quadratic function, subject to linear constraints, in
R? in linear time. Formally, the problem is

Coe T
minimize v’ A -v+b
veR?

s.t. aiT-véﬁ,- (i=1,--,n)

where A is a 33 positive semidefinite matrix and b, ay, - - - ,a,€R> If A is not
identically zero then by an appropriate affine transformation of R*® (which can be
found in constant time) we can transform our problem (in linear time) to the following:

minimize ax’ +8y*+ yxy +z°

x,v,z
s.t. zZZa;x +by+¢; (iely),
z=aix +biy+c; (iel,),
aix+biy+ci§0 (1613)

where v’ =4ag, a, B >0. The algorithm for linear programming can be extended to
solve a problem of this kind along the same lines. That includes a routine for solving
quadratic programming problems in the plane. The latter can be modeled as

minimize ax’+Bx +y>
X,y

s.t. yZax+b; (iel),
y=Eax +b (i ely),
as=x=sb

where a, 3 2 0. Let g(x) and & (x) be defined as in § 2.1. Also, let g *(x) = Max (0, g{x))
and &~ (x) =Min (0, 4 (x)). Consider the following problems:

(1) minimize ax’+Bx +(g*(x))?
s.t. g (x)=h(x),
as=x=bh;
) minimize ax’+Bx + (A~ (x))*
s.t. gx)=h (x),
a=x=bh.

It can be verified that our problem reduces to solving both these problems. A solution
for our problem is then produced as follows: Select the problem whose minimum is
smaller and let x be its minimizer. We then let y be equal to either g (x) or h™(x),
accordmg to the case. The solution of either problem is analogous to linear program-
ming in R. A similar observation holds for the variable z in the three-dimensional case.



774 NIMROD MEGIDDO

6. Conclusion. We have demonstrated a powerful computational method for
solving different problems which is based on successive reductions of the input of the
given problem. The method yields linear-time algorithms. The natural question now
is whether the general linear programming problem is solvable in linear time in any
fixed number of variables. We already know that the answer is in the affirmative [M3];
however, this requires a nontrivial extension of the present paper, as we argue below.

Consider any pair of constraints

d—1

— [¢
y= Y ax+by, y=
j=1 i

i -1
Z aziX; +b2
=1

in a linear programming problem where we seek to minimize y. In the space of the
x;'s we have the hyperplane Hix=Y ay;x; +b1 =} as;x; + b, which defines two half
spaces; in each of these half spaces we have one of the two constraints dominated by
the other one. Thus, it may be useful to know on which side of H;, the solution lies.
Attempting to generalize what we know from the case where d = 3, we do the following:
Let H,, be represented by an equation of the form ) a;x;=5b, and for any S <
{1, --,d—1} denote

RS={xeR* " x;=0ifjeS and x; =0if j¢S}.

Alsolet T={j:a;=0}and T ={1,- - -,d —I}\T. It can be easily verified that at least
one of the two orthants, R” and R7, lies entirely on one side of H;, (depending on
the sign of b). For example, if 5 =0 then R lies entirely on one side of Hj,. In this
case, if we knew that our solution lay in R then we could drop one of our two
constraints mentioned above. *

For the case where d =3 we found a way to exploit this useful observation. We
will now review that method from a somewhat different point of view.

First, the lines are grouped in disjoint pairs in a manner which takes their slopes
into account. Then a single point (x,,, y.») is found with the following property: If the
origin is translated into (x,., y.), and if a certain linear transformation is applied, then,
relative to the new coordinate system, the solution lies in an orthant which lies entirely
on one side of each line, for § of the set of all lines. This is based on the property
that if the solution lies in the orthant R then at least a quarter of the pairs of lines
intersect in R”, and each pair is guaranteed to contain a line whose coefficients suit
the sign type of R7T. This idea works in the case where d =3, since then there are
only two pairs of “opposing” orthants (recall that the space of x;’s is of dimension
d—-1): (R“'Z},RQ) and (Rm, R™). Thus if, for example, the solution is known to
belong to R then we also have a quarter of our pairs intersecting in R™ and at
least one line per such pair has the orthant R lying on one side of it.

In higher dimensions we face the following difficulty. Suppose that in the d-
dimensional case (the dimension of the x-space is d — 1) we group the hyperplanes in
disjoint sets of cardinality d —1. Suppose that each such set is linearly independent
so that it determines a single point (the other case is even simpler). Now, it is obvious
that we can find a point (xi, - -+, x4—1) and an orthant R7T (defined relative to this
point), such that R7T contains the solution, and at least 1/2""1 of the sets intersect in
RT. However, here is the critical point. The number of pairs of opposing orthants is
2972, We need each set of d —1 hyperplanes to contain (for each pair of orthants
(R™,R")) at least one member whose coefficients match the signs pattern of (R, R™).
It is thus required that d —1=2%"? which holds only if d =3. Thus, a different
approach is needed here. It is also interesting to mention here that previous work on



LINEAR-TIME ALGORITHMS FOR LINEAR PROGRAMMING 775

the convex hull [PH] applied only for d =3. However, we already know that the
methods of the present paper do extend to higher dimensions [M3].

With regard to practical implications of the algorithms in the present paper we
can say the following: First, we do not expect the linear-time median-finding algorithm
to be useful. Thus, it is preferable to use a good practical algorithm like Floyd and
Rivest’s [FR]. Moreover, we do not have to find the exact median. Another practical
consideration is that information may be saved when starting a new iteration of the
process. A practical version of our algorithm would be very efficient for solving
problems arising in computer graphics such as hidden-line elimination by means of
linear programming (see [BS)).

Appendix. The extreme-point problem in the plane. In this Appendix we solve
the following problem: Given n points (a;, 4,), i =1, -, n, in the plane and another
point (a, b), find out whether or not (a, b) is a convex combination of the points
(ai, b1), ++ +, (an, b,). If so, then represent (a, ) as a convex combination of three
points; otherwise, find two points (a;, b;), (aj, b;) such that all the points belong to the
cone whose vertex is at (a, b) and whose extreme rays are determined by (a;, b;) and
(aj, b;). This problem can be solved by our linear programming algorithm in the plane.
However, a more straightforward method can be developed as follows:

Without loss of generality assume (a, ») = (0, 0) and (a1, b1) =(0, 1) (otherwise
apply an affine transformation accordingly). If (0, 0) is not in the convex hull of the
n given points, then there exists an a such that b, >aq, for every i. That is, there is
a separating line (as mentioned in the introduction). Thus, @ must satisfy

max {b;/a;: a; <0}<a <min {b;/a;: a; >0},

and also b; >0, for every i such that @, = 0. If this is indeed the case, then the extreme
rays are determined by a point at which the maximum on the left-hand side is attained
(or the point (0, 1) if a; = 0 for every /), and by a point at which the minimum on the
right-hand side is attained (or, again, the point (0, 1)). Otherwise, the point (0, 0) is
either a convex combination of two such points together with the point (a;, b;) = (0, 1),
or a convex combination of two points on the y-axis.

REFERENCES

[AHU] A. V. AHo, J. E. HOPCROFT AND I. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974,

[BS] R.P. BURTON AND D. R. SMITH, A hidden-line algorithm for hyperspace, this Journal, 11 (1982),
pp. 71-80.

[CP] R. CHANDRASEKARAN AND M. J. A. P. PAcCa, Weighted min-max and max-min location
problems: Finite and polynomially bounded algorithms, Oper. Res., 17 (1980), pp. 172-180.

[CR] R.COURANT AND H. ROBBINS, What is Mathematics?, Oxford Univ. Press, New York, 1941.

[DF] P.M.DEARING AND R. L. FRANCIS, A minimax location problem on a network, Transportation
Sci., 8 (1974), pp. 333-343.

[DR] D.P. DOBKIN AND S. P. REIsS, The complexity of linear programming, Theoret. Comput. Sci.,
11 (1980), pp. 1-18.

[DW] Z. DREZNER AND G. O. WESOLOWSKY, Single Facility l,-distance minimax location, SIAM 7.
Alg. Disc. Meth., 1 (1980), pp. 315-321.

[EH] J. ELZINGA AND D. E. HEARN, Geometrical solutions for some minimax location problems,
Transportation Sci., 6 (1972), pp. 379-394.

[FR] R. W.FLoyDp anD R. L. RIVEST, Expected time bounds for selection, Comm. ACM, 8 (1975),
pp. 165-172.

[F] R. R. L. FRANCIS, Some aspects of a minimax location problem, Operat. Res., 15 (1967), pp.
1163-1168.



776 NIMROD MEGIDDO

[FW] R.L.FRANCIS AND J. A. WHITE, Facility Layout and Location, Prentice-Hall, Englewood Cliffs,
NJ, 1974.

[G] R. L. GRAHAM, An efficient algorithm for determining the convex hull of a finite planar set, Inform.
Process. Lett., 1 (1972), pp. 132-133.

[HSP] S. L. HAkiMi, E. F. SCHMEICHEL AND J. G. PIERCE, On p-centers in networks, Transportation
Sci., 12 (1978), pp. 1-15.

[HM] G. Y. HANDLER AND P. B. MIRCHANDANI, Location on Networks Theory and Algorithms, MIT
Press, Cambridge, MA, 1979.

[KH] O.KaR1v AND S. L. HAKIMI, An algorithmic approach to network location problems, Part 1. The
1-centers, STAM J. Appl. Math., 37 (1979), pp. 513-538.

[L] N. LEVIN, Location problems on weighted graphs, unpublished thesis, Tel Aviv Univ., 1977.

[Mi] N. MEGIDDO, Applying parallel computation algorithms in the design of serial algorithms, in Proc.
22nd Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Los Angeles, 1981, pp. 399-408; J. Assoc. Comput. Math., to appear.

, The weighted Euclidean 1-center problem, Math. Oper. Res., to appear.

, Linear programming in linear time when the dimension is fixed, J. Assoc. Comput. Mach.,
to appear.

[NC] K.P.K.NAIrR AND R. CHANDRASEKARAN, Optimal location of a single service center of certain
types, Naval Res. Logist. Quart., 18 (1971), pp. 503-510.

[PH] F.P.PREPARATA AND S.J. HONG, Convex hulls of finite sets of points in two and three dimensions,
Comm. ACM, 20 (1977), pp. 87-93.

[RT] H. RADEMACHER AND O. TOEPLITZ, The Enjoyment of Mathematics, Princeton Univ. Press,
Princeton, NJ, 1957.

[Sh] M. L. SHAMOS, Geometric complexity, in Proc. 7th Annual ACM Symposium on Theory of
Computing, 1975, ACM, New York, 1975, pp. 224-233.

[SkH] M. L. SHAMOs AND D. HOEY, Closest-point problems, in Proc. 16th Annual IEEE Symposium
on Foundations of Computer Science, 1975, IEEE Computer Society Press, Los Angeles, 1975,
pp. 151-162.

[Sm] R.D.SMALLWOOD, Minimax detection station placement, Opgr. Res., 13 (1965), pp. 636-646.

[Syl] J.J.SYLVESTER, A question in the geometry of situation, Quart. J. Math., 1(1857),p.79.

[Sy2] , On Poncelet’s approximate valuation of Surd forms, Philosophical Mag., XX, 4th Series
(1860), pp. 203-222.

(Y] A. C. YAO, A lower bound for finding convex hulls, J. Assoc. Comput. Mach., 28 (1981), pp.
780-787.

M2]
(M3]




