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Abstract. In this article we introduce new bounds on the effective condition number of deflated
and preconditioned-deflated symmetric positive definite linear systems. For the case of a subdomain
deflation such as that of Nicolaides [SIAM J. Numer. Anal., 24 (1987), pp. 355–365], these theorems
can provide direction in choosing a proper decomposition into subdomains. If grid refinement is
performed, keeping the subdomain grid resolution fixed, the condition number is insensitive to the
grid size. Subdomain deflation is very easy to implement and has been parallelized on a distributed
memory system with only a small amount of additional communication. Numerical experiments for
a steady-state convection-diffusion problem are included.
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1. Background: Preconditioning and deflation. It is well known that the
convergence rate of the conjugate gradient method is bounded as a function of the
condition number of the system matrix to which it is applied. Let A ∈ R

n×n be
symmetric positive definite. We assume that the vector f ∈ R

n represents a discrete
function on a grid Ω and that we are searching for the vector u ∈ R

n on Ω which
solves the linear system

Au = f.

Such systems are encountered, for example, when a finite volume/difference/element
method is used to discretize an elliptic partial differential equation (PDE) defined on
the continuous analogue of Ω. In particular our goal is to develop efficient serial and
parallel methods for applications in incompressible fluid dynamics; see [28, 27].

Let us denote the spectrum of A by σ(A) and the ith eigenvalue in nondecreasing
order by λi(A) or simply by λi when it is clear to which matrix we are referring. After
k iterations of the conjugate gradient method, the error is bounded by (cf. [10, Thm.
10.2.6]

‖u− uk‖A ≤ 2 ‖u− u0‖A
(√

κ− 1√
κ+ 1

)k

,(1.1)

where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of u
is given by ‖u‖A = (uTAu)1/2. The error bound (1.1) does not tell the whole story,
however, because the convergence may be significantly faster if the eigenvalues of A
are clustered [23].
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When A is the discrete approximation of an elliptic PDE, the condition number
can become very large as the grid is refined, thus slowing down convergence. In this
case it is advisable to solve, instead, a preconditioned system K−1Au = K−1f , where
the symmetric positive definite preconditioner K is chosen such that K−1A has a
more clustered spectrum or a smaller condition number than that of A. Furthermore,
K must be cheap to solve relative to the improvement it provides in convergence rate.
A final desirable property in a preconditioner is that it should parallelize well, espe-
cially on distributed memory computers. Probably the most effective preconditioning
strategy in common use is to take K = LLT to be an incomplete Cholesky (IC)
factorization of A [18]. For discretizations of second order PDEs in two dimensions,
defined on a grid with spacing h, one finds, with IC factorization, κ ∼ h−2; with a
modified IC factorization [11, 1], κ ∼ h−1; and with a multigrid cycle, κ ∼ 1. Precon-
ditioners such as multigrid and some domain decomposition methods, for which the
condition number of the preconditioned system is independent of the grid size, are
termed optimal.

Another preconditioning strategy that has proven successful when there are a few
isolated extremal eigenvalues is deflation [20, 16, 17]. Let us define the projection P
by

P = I −AZ(ZTAZ)−1ZT , Z ∈ R
n×m,(1.2)

where Z is the deflation subspace, i.e., the space to be projected out of the residual,
and I is the identity matrix of appropriate size. We assume that m � n and that
Z has rank m. Under this assumption Ac ≡ ZTAZ may be easily computed and
factored and is symmetric positive definite. Since u = (I − PT )u+ PTu and because

(I − PT )u = Z(ZTAZ)−1ZTAu = ZA−1
c ZT f(1.3)

can be immediately computed, we need only compute PTu. In light of the identity
APT = PA, we can solve the deflated system

PAũ = Pf(1.4)

for ũ using the conjugate gradient method and premultiply this by PT . Obviously
(1.4) is singular, and this raises a few questions. First, the solution ũ may contain an
arbitrary component in the null space of PA, i.e., in span{Z}.1 This is not a problem,
however, because the projected solution PT ũ is unique. Second, what consequences
does the singularity of (1.4) imply for the conjugate gradient method?

Kaasschieter [14] notes that a positive semidefinite system can be solved as long as
the right-hand side is consistent (i.e., as long as f = Au for some u). This is certainly
true for (1.4), where the same projection is applied to both sides of the nonsingular
system. Furthermore, he notes (with reference to [23]) that because the null space
never enters the iteration, the corresponding zero-eigenvalues do not influence the
convergence. Motivated by this fact, we define the effective condition number of a
positive semidefinite matrix C ∈ R

n×n with corank m to be the ratio of its largest to
smallest positive eigenvalues:

κeff(C) =
λn

λm+1
.

1We will use the notation span{Z} to denote the column space of Z.
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Example. To see that the condition number of PA may be better than that
of A, consider the case in which Z is the invariant subspace of A corresponding to
the smallest eigenvalues. Note that PAZ = 0, so that PA has m zero-eigenvalues.
Furthermore, since A is symmetric positive definite, we may choose the remaining
eigenspace Y in the orthogonal complement of span{Z}, i.e., Y TZ = 0 so that PY =
Y . However, AY = Y B for some invertible B; therefore, PAY = PY B = Y B, and
span{Y } is an invariant subspace of PA. Evidently, when Z is an invariant subspace
of A,

κeff(PA) =
λn(A)

λm+1(A)
.

In summary, deflation of an invariant subspace cancels the corresponding eigenvalues,
leaving the rest of the spectrum untouched.

This idea has been exploited by several authors. For nonsymmetric systems,
approximate eigenvectors can be extracted from the Krylov subspace produced by
GMRES. Morgan [19] uses this approach to improve the convergence after a restart.
In this case, deflation is not applied as a preconditioner, but the deflation vectors are
augmented with the Krylov subspace, and the minimization property of GMRES en-
sures that the deflation subspace is projected out of the residual. For more discussion
on deflation methods for nonsymmetric systems, see [15, 8, 6, 21, 5, 2]. Other authors
have attempted to choose a subspace a priori that effectively represents the slowest
modes. In [29] deflation is used to remove a few stubborn but known modes from
the spectrum. Mansfield [16] shows how Schur-complement-type domain decomposi-
tion methods can be seen as a series of deflations. Nicolaides [20] chooses Z to be
a piecewise constant interpolation from a set of m subdomains and points out that
deflation might be effectively used with a conventional preconditioner. Mansfield [17]
uses the same “subdomain deflation” in combination with damped Jacobi smoothing,
obtaining a preconditioner which is related to the two-grid method.

In this article we introduce new bounds on the effective condition number of
deflated and preconditioned-deflated symmetric positive definite linear systems. For
the case of a subdomain deflation such as that of Nicolaides [20], these theorems
can provide direction in choosing a proper decomposition into subdomains. If grid
refinement is done keeping the subdomain grid resolution fixed, the condition number
is insensitive to the grid size. Subdomain deflation is very easy to implement and
has been parallelized on a distributed memory system with only a small amount
of additional communication. Numerical experiments for a steady-state convection-
diffusion problem are included.

2. A condition number bound for deflation. Nicolaides [20] proves the fol-
lowing bound on the spectrum of PA:

λm+1(PA) = min
vT v

vTA−1v
, λn(PA) = max

vT v

vTA−1v
,

where v is taken in span{Z}⊥. In this section we give a bound of a different flavor
which will be used in the subsequent sections to construct a preconditioning strategy
with an optimal convergence property.

First we need the following result on the preservation of positive semidefiniteness
under deflation.

Lemma 2.1. Let R be positive semidefinite and P be a projection (P 2 = P ); then
if PR is symmetric, it is positive semidefinite.
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Proof. By hypothesis, 0 ≤ uTRu for all u. In particular, 0 ≤ (PTu)TR(PTu) =
uTPRPTu so that PRPT = P 2R = PR is positive semidefinite.

The next theorem provides a bound on the condition number of PA and is our
main result.

Theorem 2.2. Let A be symmetric positive definite, let P be defined by (1.2),
and suppose there exists a splitting A = C + R such that C and R are symmetric
positive semidefinite with N (C) = span{Z} the null space of C. Then

λi(C) ≤ λi(PA) ≤ λi(C) + λmax(PR).(2.1)

Moreover, the effective condition number of PA is bounded by

κeff(PA) ≤ λn(A)

λm+1(C)
.(2.2)

Proof. From (1.2) it is obvious that PA is symmetric. Since Z is in the null space
of C, we have that PC = C and is therefore also symmetric by hypothesis. Symmetry
of PR = PA− C follows immediately; and by assumption R is positive semidefinite,
so we can apply Lemma 2.1 to arrive at λmin(PR) ≥ 0, with equality holding in any
case due to singularity of P . The bound (2.1) now follows from Theorem 8.1.5 of [10]:

λi(PC) + λmin(PR) ≤ λi(PA) ≤ λi(PC) + λmax(PR).

Furthermore, because PA = A−AZ(ZTAZ)−1(AZ)T is the difference of positive
(semi-)definite matrices, the same theorem (Theorem 8.1.5 of [10]) gives λmax(PA) ≤
λmax(A). This upper bound together with the lower bound in (2.1) proves
(2.2).

There is also a preconditioned version of the previous theorem.
Theorem 2.3. Assume the conditions of Theorem 2.2 and let K be a symmetric

positive definite preconditioner with Cholesky factorization K = LLT . Then

λi(L
−1CL−T ) ≤ λi(L

−1PAL−T ) ≤ λi(L
−1CL−T ) + λmax(L

−1PRL−T ),(2.3)

and the effective condition number of L−1PAL−T is bounded by

κeff(L
−1PAL−T ) ≤ λn(L

−1AL−T )

λm+1(L−1CL−T )
.(2.4)

Proof. Define Â = L−1AL−T , Ĉ = L−1CL−T , R̂ = L−1RL−T (all congruence
transformations), Ẑ = LTZ, and

P̂ = I − ÂẐ(ẐT ÂẐ)−1ẐT = L−1PL.

Note that P̂ is a projection and P̂ Â is symmetric, and also that Ẑ is in the null
space of Ĉ so that P̂ Ĉ = Ĉ. Thus, Theorem 2.2 applies directly to the deflated
system matrix P̂ Â. The conclusions follow immediately from the definitions of Â
and Ĉ.

Remark. Experience with discretized PDEs indicates that the greatest improve-
ment in convergence is obtained by removing the smallest eigenvalues from the spec-
trum. It is therefore the lower bounds of (2.1) and (2.3) which are of most concern.
Theorem 2.3 suggests that it might be better to construct a preconditioner for C
rather than for A in this case. However, care should be taken that a good precon-
ditioner for C does not increase the upper bound in (2.3) when applied to A. See
Kaasschieter [14] for a discussion about preconditioning indefinite systems.

In the next section we consider applications of Theorems 2.2 and 2.3 in lieu of a
specific choice of the subspace of deflation Z.
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3. Subdomain deflation. The results of the previous section are independent
of the choice of deflation subspace Z in (1.2). As mentioned in section 1, deflation
of an eigenspace cancels the corresponding eigenvalues without affecting the rest of
the spectrum. This has led some authors to try to deflate with “nearly invariant”
subspaces obtained during the iteration, and led others to try to choose in advance
subspaces which represent the extremal modes.

For the remainder of this article we make a specific choice for the subspace Z in
(1.2), based on a decomposition of the domain Ω with index set I = {i |ui ∈ Ω} into
m nonoverlapping subdomains Ωj , j = 1, . . . ,m, with respective index sets Ij = {i ∈
I |ui ∈ Ωj}. We assume that the Ωj are simply connected graphs covering Ω. Define
Z by

zij =

{
1, i ∈ Ij ,
0, i �∈ Ij .(3.1)

With this choice of Z, the projection (1.2) will be referred to as subdomain deflation.
Such a deflation subspace has been used by Nicolaides [20] and Mansfield [16, 17].

This choice of deflation subspace is related to domain decomposition and
multigrid methods. The projection P can be seen as a subspace correction in which
each subdomain is agglomerated into a single cell; see, for example, [13]. Within
the multigrid framework, P can be seen as a coarse grid correction using a piecewise
constant interpolation operator with very extreme coarsening.

Note that the matrix Ac = ZTAZ, the projection of A onto the deflation subspace
Z, has sparsity pattern similar to that of A. We will see that the effective condition
number of PA improves as the number of subdomains is increased (for a fixed problem
size). However, this implies that the dimension of Ac also increases, making direct
solution expensive. By analogy with multigrid, it might be advantageous in some
applications to solve Ac recursively.

2 In a parallel implementation this would lead to
additional idle processor time, as it does with multigrid.

3.1. Application to Stieltjes matrices. Using subdomain deflation, we can
identify matrices C and R needed for application of Theorems 2.2 and 2.3 to the class
of irreducibly diagonally dominant Stieltjes matrices (i.e., symmetric M-matrices).
Such matrices commonly arise as a result of discretization of symmetric elliptic and
parabolic PDEs. For our purposes the following characteristics are important:

• A is symmetric positive definite and irreducible.
• aii > 0, aij ≤ 0 for i �= j.
• aii +

∑
j �=i aij ≥ 0 with strict inequality holding for some i.

For a matrix A, define the subdomain block-Jacobi matrix B(A) ∈ R
n×n associated

to A by

bij =

{
aij if i, j ∈ Ik, for some k,
0 otherwise.

(3.2)

Notice that since each block Bjj is a principle submatrix of A, it is symmetric positive
definite. Also, since B is obtained from A by deleting off-diagonal blocks containing
only negative elements, the Bjj are at least as diagonally dominant as the correspond-
ing rows of A. Furthermore, the irreducibility of A implies that A itself cannot be

2A referee pointed out to us that the two-level method with direct solution of Ac has suboptimal
complexity. On the other hand, for the examples considered in this article, Ac is too small for a
second coarsening.
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written in block diagonal form, so to construct B it is necessary to delete at least
one nonzero block from each block-row. As a result, at least one row of each Bjj is
strictly diagonally dominant. We will further assume that the so-constructed Bjj are
irreducible.3 It follows from Corollary 6.4.11 of [12] that the Bjj are again Stieltjes
matrices.

Additionally, define 1 = (1, . . . , 1)T with the dimension following from the con-
text, such that A1 is the vector of row sums of A. Let the matrix C be defined
by

C = B − diag (B1) .(3.3)

Each block Cjj of C has zero row sums—so 1 is in the null space of each block—but is
further irreducible and weakly diagonally dominant and has the M-matrix property.
According to Theorem 4.16 of [3], a singular M-matrix has a null space of rank exactly
1. It follows that the matrix Z defined by (3.1) is a basis for the null space of C.

Putting these ideas together we formulate the following.

Theorem 3.1. If A is an irreducibly diagonally dominant Stieltjes matrix and
C defined by (3.3) has only irreducible blocks, then the hypotheses of Theorem 2.2 are
met.

Example. Consider a Poisson equation on the unit square with homogeneous
Dirichlet boundary conditions

−∆u = f, u = 0, u ∈ ∂Ω, Ω = [0, 1]× [0, 1].(3.4)

The problem is discretized using central finite differences on a 9× 9 grid, and subdo-
main deflation is applied with a 3 × 3 decomposition into blocks of resolution 3 × 3.
The system matrix A is pre- and postmultiplied by the inverse square root of its
diagonal. Figure 3.1 shows the eigenvalues of A, PA, and C. The extreme positive
eigenvalues of these three matrices are

λmin λmax

A 0.06 1.94
PA 0.27 1.91
C 0.25 1.50

Both the table and the figure support the conclusions of Theorem 2.2; namely,
that the largest eigenvalue of A and the smallest nonzero eigenvalue of C bound the
spectrum of PA. (Note that each eigenvalue of C has multiplicity equal to the number
of blocks—9 in this case.) We observe also that the bounds are reasonably sharp.

Each diagonal block Cjj of the matrix C as defined by (3.3) can be interpreted as
the discretization of a related Neumann problem on the jth subdomain. By Theorem
2.2, the effective condition number of the deflated matrix PA is determined by the
smallest nonzero eigenvalue of C—in this case, the smallest nonzero eigenvalue over
the set of related Neumann problems on the subdomain grids, i.e.,

λm+1(PA) = min
j

λ2(Cjj).

3This is generally the case with matrices arising from discretization of PDEs on simply connected
domains. If a block Bii is reducible, then it may be possible to decompose Bii into additional
subdomains which are irreducible.
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Fig. 3.1. The eigenvalues of A (*), PA (◦), and C (· · · ).

Theorem 2.2 thus says that subdomain deflation effectively decouples the original sys-
tem into a set of independent Neumann problems on the subdomains, with conver-
gence governed by the “worst-conditioned” Neumann problem. This implies an opti-
mality result, since—if we can somehow refine the grid without affecting the worst-
conditioned Neumann problem—the condition number will also remain unchanged.
For an isotropic problem on a uniform grid, for example, this can be achieved by
simply fixing the subgrid resolutions and performing refinement by adding more sub-
domains. The numerical experiments of section 6 support this observation.

3.2. Application to finite element stiffness matrices. A result similar to
the above discussion on M-matrices holds for finite element stiffness matrices. We
briefly describe it here. Suppose we have a domain Ω whose boundary is given by ∂Ω =
∂ΩD ∪ ∂ΩN , with Dirichlet boundary conditions on ∂ΩD and Neumann boundary
conditions on ∂ΩN . Let Ω be decomposed into m nonoverlapping subdomains Ωj ,
j = 1, . . . ,m, and define the finite element decomposition of Ω by

Ω̄ = ∪i∈I ēi.

Let the index set I be divided into m+ 1 disjoint subsets I1, . . . , Im and Ir, defined
by

Ij =
{
i ∈ I | ei ⊂ Ωj and ēi ∩ ∂ΩD = ∅

}
,

and Ir = I\ ∪j Ij . Figure 3.2 shows an example of a domain with quadrilateral
elements and two subdomains.

The stiffness matrix A is defined as the sum of elemental stiffness matrices Aei :

A =
∑
i∈I

Aei ,

where the elemental matrices are assumed to be positive semidefinite. This is always
the case when the integrals in the element matrices are computed analytically. We
assume that A is symmetric positive definite. This is normally true if the solution
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Fig. 3.2. The domain Ω is decomposed into two subdomains (the shaded region is Ir).

is prescribed somewhere on the boundary. The matrix C needed for Theorem 2.2 is
defined by

C =
∑

i∈I\Ir

Aei .

Note that C is block diagonal and the blocks Cjj can be interpreted as a finite element
discretization of the original system on the subdomain Ωj with homogeneous Neumann
boundary conditions. This implies that λ1(Cjj) = 0 and that Z is in the null space
of C. Clearly C is positive semidefinite, as is

R =
∑
i∈Ir

Aei .

To ensure that λm+1(C) �= 0, it is necessary that every grid point xk ∈ Ω̄\∂ΩD be
contained in a finite element ei with i ∈ ∪m

j=1Ij ; otherwise the ith row of C contains
only zero elements.

4. Guidelines for selecting subdomains. We can use the results of the pre-
vious section to give guidance in choosing a good decomposition of the domain Ω
such that the “worst-conditioned related Neumann problem” is as well conditioned as
possible. We consider two cases: a Poisson equation on a stretched uniform grid, and
a diffusion equation with a discontinuity in the diffusion coefficient.

4.1. Large domain/grid aspect ratios. Consider the Poisson equation with
homogeneous Neumann boundary conditions on a rectangular domain Ω:

−∆u = f, ∂u/∂n̂ = 0, u ∈ ∂Ω,

where n̂ denotes the unit normal vector to the boundary. This equation is discretized
using cell-centered, central finite volumes on a uniform Nx × Ny grid having cell
dimensions hx × hy:

1

h2
x

(−uj−1,k + 2uj,k − uj+1,k) +
1

h2
y

(−uj,k−1 + 2uj,k − uj,k+1) = fj,k
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for j = 0, . . . , Nx and k = 0, . . . , Ny. Assume central discretization of the boundary
conditions

u−1,k = u0,k, etc.;

then, the eigenvalues of the discretization matrix are given by

λj,k =
4

h2
x

sin2

(
jπ

2(Nx + 1)

)
+

4

h2
y

sin2

(
kπ

2(Ny + 1)

)
.(4.1)

The largest eigenvalue is λNx,Ny
and the smallest nonzero eigenvalue is the minimum

of λ0,1 and λ1,0. Substituting into (4.1), and assuming Nx, Ny � 1, we find

λNx,Ny ≈ 4

h2
x

+
4

h2
y

,

λ0,1 ≈ 4

h2
y

(
π

2(Ny + 1)

)2

=
π2

h2
y(Ny + 1)2

,

λ1,0 ≈ 4

h2
x

(
π

2(Nx + 1)

)2

=
π2

h2
x(Nx + 1)2

.(4.2)

The decomposition problem can be stated as follows: For a fixed cell aspect ratio
Qc ≡ hx/hy and a fixed total number of cells γ ≡ NxNy = const, find the grid aspect
ratio Qg ≡ Nx/Ny minimizing the effective condition number

κeff = max

{
λNx,Ny

λ0,1
,
λNx,Ny

λ1,0

}

= 4/π2 max
{
(1 +Q−2

c )(γ/Nx + 1)2, (1 +Q2
c)(Nx + 1)2

}
.

Since both arguments of the maximum are monotone functions of positive Nx, one
increasing and the other decreasing, the condition number is minimized when these
arguments are equal:

(1 +Q−2
c )(γ/Nx + 1)2 = (1 +Q2

c)(Nx + 1)2,

1

Q2
c

=
1 +Q−2

c

1 +Q2
c

=
(Nx + 1)2

(Ny + 1)2
≈ Q2

g.

Thus, for constant coefficients and a uniform grid, one should choose a decomposition
such that the subdomain grid aspect ratio is the reciprocal of the cell aspect ratio;
that is, one should strive for a subdomain aspect ratio Qd ≡ (Nxhx)/(Nyhy) of 1:

Qd = QgQc = 1.

Example. Again take the Poisson equation on the unit square (3.4), with a grid
resolution Nx = 16, Ny = 32. We compare the condition number of PA for three
decompositions into 16 subdomains as shown in Figure 4.1:

λmin(C) λmin(PA) κ(PA)
2× 8 0.013 0.024 83.0
4× 4 0.053 0.062 32.2
8× 2 0.014 0.024 81.8
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4 x 42 x 8 8 x 2

Fig. 4.1. Three decompositions of the unit square into 16 subdomains.

The 4 × 4 decomposition yields a subdomain aspect ratio of Qd = 1, and this is
the best-conditioned case, as predicted.

The decomposition problem described above assumes that the grid size and the
number of domains is given, and that one would like to choose the decomposition for
optimal convergence rate. This would be the case, for example, if a parallel decom-
position is desired on a prescribed number of processors. For a serial computation,
or if there is an unlimited number of available processors, a better approach would
be to ask what number of domains gives the fastest solution. Suppose we decompose
into subdomains of unit aspect ratio, as described above. By comparison with (4.2),
the smallest positive eigenvalue of C scales as 1/N2

x , with Nx the number of grid cells
in the x direction for the worst-conditioned Neumann problem. Thus if we split each
subdomain horizontally and vertically into four equivalent smaller subdomains, the
condition number of C is improved by a factor of 4, roughly speaking. On the other
hand, the dimension of the coarse grid matrix Ac will be increased by a factor of 4,
causing the direct (or recursive) solution of this system to be relatively more expen-
sive. In the extreme case of one unknown per subdomain, Ac = A, so that solving Ac

is as expensive as solving A. Clearly, there must be an optimal value for the number of
subdomains; however, this will depend on the convergence of the conjugate gradients
process, and therefore also on the distribution of eigenvalues.

4.2. Discontinuous coefficients. When a problem has a large jump in coef-
ficients at some location, poor scaling may result in slow convergence. It may be
possible to improve the convergence by applying subdomain deflation, choosing the
subdomain interface at the discontinuity. Since the related Neumann problems are de-
coupled, a diagonal scaling preconditioner is sufficient to make the condition number
independent of the jump in coefficients. This is best illustrated with an example.

Consider a one-dimensional diffusion problem with Neumann and Dirichlet bound-
ary conditions

− d

dx
α(x)

du

dx
= f(x), x ∈ (0, 1),

du

dx
(0) = 0, u(1) = 1,

and a jump discontinuity in the coefficient

α(x) =

{
1, x ≤ 0.5,
ε, x > 0.5

for some ε > 0. Choose an even number n and define h = 1/n. The grid points
are given by xi = ih, i = 0, . . . , n and ui is the numerical approximation for u(xi).
For all i ∈ {0, 1, . . . , n − 1} \ {n/2} we use the standard central difference scheme.
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Fig. 4.2. Eigenvalues of D−1A (∗) and D−1PA (◦) for ε = 1 (left) and ε = 0.01 (right). The
spectrum of D−1C is indicated by the dotted lines.

The unknown un is eliminated from the system of equations by using the Dirichlet
boundary condition. For i = 0 the value u−1 is eliminated by a central discretization
of the Neumann boundary condition. The resulting equation is multiplied by 1/2 to
make the coefficient matrix symmetric. Finally for i = n/2 the discrete equation is

un/2−un/2−1

h − ε
un/2+1−un/2

h

h
= f(xn/2).

The domain Ω = [0, 1] is subdivided into two subdomains Ω1 = [0, 0.5] and Ω2 =
(0.5, 1]. Note that grid point xn/2 = 0.5 belongs to Ω1. The subdomain deflation
space Z is defined by (3.1).

To construct C from A we decouple the matrix A according to the subdomains,
so

cn/2+1,n/2 = cn/2,n/2+1 = 0.

The other off-diagonal elements of A and C are identical. Finally the diagonal ele-
ments of C are made equal to minus the sum of the off-diagonal elements, so

n∑
j=1

cij = 0.

Let D be the diagonal of A. The eigenvalues of D−1A and D−1PA (equivalent
to the eigenvalues of the symmetrically preconditioned case D−1/2AD−1/2, etc.) with
n = 8 are shown in Figure 4.2 for ε = 1 and ε = 0.01 with the eigenvalues of D−1C
appearing as dotted lines. Note that the smallest positive eigenvalue of D−1C bounds
from below the smallest positive eigenvalue of D−1PA, as predicted by Theorem 2.3.
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In the following table we give the effective condition numbers relevant for conver-
gence of the preconditioned conjugate gradient method.

ε λ1(D
−1A) κ(D−1A) λ3(D

−1PA) κeff(D
−1PA)

1 2.5 · 10−2 7.9 · 101 3.8 · 10−1 5.0
10−2 4.1 · 10−4 4.8 · 103 5.0 · 10−1 4.0
10−4 4.2 · 10−6 4.8 · 105 5.0 · 10−1 4.0

Due to diagonal preconditioning, the smallest nonzero eigenvalue of D−1C is inde-
pendent of ε. As predicted by Theorem 2.3, the same holds for D−1PA. The smallest
eigenvalue of D−1A, however, decreases proportionally to ε, leading to a large con-
dition number and slow convergence of the conjugate gradient method applied to
D−1Au = D−1f .

5. Additional considerations. In this section we discuss extension of deflation
methods to the nonsymmetric case and describe an efficient parallel implementation
of the subdomain deflation method.

5.1. The nonsymmetric case. A generalization of the projection P for a non-
symmetric matrix A ∈ R

n×n is used in [29]. In this case there is somewhat more
freedom in selecting the projection subspaces. Let P and Q be given by

P = I −AZ(Y TAZ)−1Y T , Q = I − Z(Y TAZ)−1Y TA,

where Z and Y are suitable subspaces of dimension n ×m. The operator Ac on the
projection subspace is given by Ac = Y TAZ.4 We have the following properties for
P and Q:

• P 2 = P , Q2 = Q.
• PAZ = Y TP = 0, Y TAQ = QZ = 0.
• PA = AQ.

To solve the system Au = f using deflation, note that u can be written as

u = (I −Q)u+Qu

and that (I−Q)u = Z(Y TAZ)−1Y TAu = Z(Y TAZ)−1Y T f can be computed imme-
diately (cf. (1.3)). Furthermore Qu can be obtained by solving the deflated system

PAũ = Pf(5.1)

for ũ (cf. (1.4)) and premultiplying the result with Q.
Also in the nonsymmetric case, deflation can be combined with precondition-

ing. Suppose K is a suitable preconditioner of A, then (5.1) can be replaced by the
following: solve ũ from

K−1PAũ = K−1Pf(5.2)

and form Qũ, or solve ṽ from

PAK−1ṽ = Pf(5.3)

and form QK−1ṽ. Both systems can be solved by one’s favorite Krylov subspace
solver, such as GMRES [22], GCR [7, 25], Bi-CGSTAB [24], etc.

The question remains how to choose Y . We consider two possibilities:

4In multigrid terminology, Z is the projection or interpolation operator, and Y T is the restriction
operator.
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1. Suppose Z consists of eigenvectors of A. Choose Y as the corresponding
eigenvectors of AT .

2. Choose Y = Z.
For both choices we can prove some results about the spectrum of PA.

Assumption 5.1. We assume that A has real eigenvalues and is nondefective.
Whenever A satisfies Assumption 5.1 there exists a matrix X ∈ R

n×n such that
X−1AX = diag(λ1, . . . , λn). For the first choice, which is related to Hotelling deflation
(see [30, p. 585]), we have the following result.

Lemma 5.1. If A satisfies Assumption 5.1, Z = [x1 · · ·xm], and Y is the matrix
composed of the first m columns of X−T , then

X−1PAX = diag(0, . . . , 0, λm+1, . . . , λn).

Proof. From the definition of P we obtain PAZ = 0, so PAxi = 0, i = 1, . . . ,m.
For the other vectors xi, i = m+ 1, . . . , n, we note that

PAxi = Axi −AZ(Y TAZ)−1Y TAxi = λixi −AZ(Y TAZ)−1λiY
Txi = λixi.

The second choice Y = Z has the following properties.
Lemma 5.2. For Y = Z one has the following:
(i) If A is positive definite and Z has full rank, Ac = ZTAZ is nonsingular.
(ii) If A satisfies Assumption 5.1 and Z = [x1 · · ·xm], the eigenvalues of PA are

{0, λm+1, . . . , λn}, where the zero-eigenvalue has multiplicity m.
Proof. (i) For Y = Z the matrix Ac = ZTAZ is nonsingular since sTAcs > 0 for

all s ∈ R
m and s �= 0.

(ii) Again PAxi = 0 for i = 1, . . . ,m. For the other eigenvalues we define the
vectors

vi = xi −AZA−1
c ZTxi = xi − ZDmA

−1
c ZTxi, i = m+ 1, . . . , n,

where Dm = diag(λ1, . . . , λm). These vectors are nonzero, because x1, . . . , xn form
an independent set. Multiplication of vi by PA yields

PAvi = PA(xi − ZDmA
−1
c ZTxi) = PAxi = Axi −AZA−1

c ZTAxi = λivi,

which proves the lemma.
From these lemmas we conclude that both choices of Y lead to the same spectrum

of PA. The second choice has the following advantages: when A is positive definite we
have proven that Ac is nonsingular; it is not necessary to determine (or approximate)
the eigenvectors of AT ; and finally only one set of vectors z1, . . . , zm has to be stored
in memory. This motivates us to use the choice Y = Z. In our applications Z is not
an approximation of an invariant subspace of A but is defined as in (3.1).

Theorems 2.2 and 2.3 do not apply to the nonsymmetric case. However, our
experience has shown that the convergence of (5.1) is similar to that of (1.4) as long
as the asymmetric part of A is not too dominant.

5.2. Parallel implementation. In this section we describe an efficient paral-
lel implementation of the subdomain deflation method with Z defined by (3.1). We
distribute the unknowns according to subdomain across available processors. For the
discussion we will assume one subdomain per processor. The coupling with neighbor-
ing domains is realized through the use of virtual cells added to the local grids. In



DEFLATION-BASED PRECONDITIONERS 455

this way, a block-row of Au = f corresponding to the subdomain ordering

A =



A11 · · · A1m

...
...

...
Am1 · · · Amm


(5.4)

can be represented locally on one processor: the diagonal block Aii represents coupling
between local unknowns of subdomain i, and the off-diagonal blocks of block-row i
represent coupling between local unknowns and the virtual cells.

Computation of element Acij of Ac = ZTAZ can be done locally on processor i
by summing the coefficients corresponding to block Aij of (5.4): Acij = 1TAij1.

Use of the deflation P within a Krylov subspace method involves premultiplying
a vector v by PA:

PAv = (I −AZ(ZTAZ)−1ZT )Av.

Assuming A−1
c has been stored in factored form, this operation requires two multi-

plications with A. However, the special form of Z given by (3.1) allows some sim-
plification. Since Z is piecewise constant, we can efficiently compute and store the
vectors

wj = Azj =



A1j

...
Amj


1(5.5)

corresponding to row sums of the jth block-column of A. Note that for the ith block
system the local block of wj is nonzero only if there is coupling between subdomains
i and j, and only the nonzero blocks of wj need be stored. Thus, for a five-point
stencil the number of nonzero vectors wj which have to be stored per block is five.
Furthermore, for many applications, the row sums are zero, and wj is only nonzero
on subdomain boundaries.

With the wj stored, local computation of AZẽ for a given (m-dimensional) vector
ẽ consists of scaling the nonzero wj by the corresponding ẽj and summing them up:
AZẽ =

∑
j ẽjwj . The number of vector updates is five for a five-point stencil.

In parallel, we first compute and store the (nonzero parts of the) wj and (Z
TAZ)−1

(factored) on each processor. In particular, on processor i we store the local part
wj = Aij1 for all nonzero Aij . Then to compute PAv we first perform the matrix-
vector multiplication q̃ = Av, requiring nearest neighbor communications. Next we
compute the local contribution to the restriction q = ZT q̃ (local summation over all
grid points) and distribute the result to all processes. With this done, we solve for ẽ
from Acẽ = q and finally compute AZẽ =

∑
j ẽjwj locally.

The total parallel communication involved in the matrix-vector multiplication and
deflation are a nearest neighbor communication of the length of the interfaces and a
global gather-broadcast of dimension m.

The computational and communication costs plus storage requirements of sub-
domain deflation are summarized in Table 5.1, assuming a five-point discretization
stencil on an Nx × Ny grid with Mx × My decomposition into blocks of revolution
nx × ny (Nx = nxMx, Ny = nyMy). The abbreviation GaBr (m) refers to a gather-
broadcast operation in which a set ofm distributed floating point numbers is gathered
from the participating processors and then the whole set is returned to each proces-
sor. The construction costs are incurred only once, whereas the iteration costs are in
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each conjugate gradient iteration. Also included in the table are the costs of an (in
the parallel case, blockwise) incomplete factorization preconditioner with zero fill-in,
ILU(0).

Table 5.1
Work, storage, and communication costs for deflation-based preconditioning.

Sequential Parallel
Work Storage Work Storage Comms.

Construction:
ILU(0) 6NxNy NxNy 6nxny nxny 0
Ac 5NxNy 5MxMy 5nxny 5MxMy GaBr (5MxMy)
Band-factor Ac 2M3

xMy 2M2
xMy 2M3

xMy 2M2
xMy 0

AZ 9NxNy 5NxNy 9nxny 9nxny 0

Iteration:
Backsolve IC(0): 10NxNy 10nxny 0
Restriction: q = ZTAv NxNy nxny 0
Backsolve: Acẽ = q 4M2

xMy 4M2
xMy GaBr (MxMy)

Prolongation: AZẽ 5NxNy 5nxny 0
Vector update: Av −AZẽ NxNy nxny 0

Besides the items tabulated above, there are computation and communication
costs associated with the matrix-vector multiplication and inner products as well as
computational costs of vector updates, associated with the CG method. Based on
this table, we expect the added iteration expense of deflation to be less expensive
than an ILU(0) factorization, and that the method will parallelize very efficiently on
a distributed memory computer.

6. Numerical experiments. All experiments in this section are conducted with
PDEs discretized using cell-centered, central finite volumes on Cartesian grids in
rectangular regions. The theory discussed until now makes no such assumptions,
however, and should hold in a more general, unstructured setting.

In conducting numerical experiments, we are interested in the following issues: (i)
verification of the theoretical results of this article, (ii) the properties of subdomain
deflation for nonsymmetric systems, and (iii) the parallel performance of the method.
To this end we consider three test cases:

I. Poisson equation: −∆u(x, y) = f .
II. Diffusion equation: −∇ · ν(x, y)∇u(x, y) = f .
III. Steady-state convection-diffusion equation: ∇·(a(x, y)u(x, y))−∆u(x, y) = f .

In most examples we take f ≡ 1, having checked that similar results are observed
for a random right-hand side function. We use a global grid resolution Nx × Ny,
with decomposition into Mx × My subdomains, each of resolution nx × ny (thus,
Nx = nxMx and Ny = nyMy).

We solve the resulting discrete (symmetric) system using the CG method and
subdomain deflation. The initial iterate is chosen to be u(0) = 0, and convergence is
declared when, in the Jth iteration, ‖rJ‖ ≤ tol · ‖r0‖ for tol = 10−6.

When classical preconditioning is included, we solve K−1PAu = K−1Pf , where
the preconditionerK used on the blocks is the relaxed incomplete Cholesky (RIC) fac-
torization of [1], with relaxation parameter ω = 0.975. We choose this preconditioner
because it is simple to implement (for a five-point stencil, modifications occur only on
the diagonal) and is reasonably effective. Certainly, more advanced preconditioners
could be employed on the blocks of C.
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6.1. Convergence results. In this section we give convergence results with
problems I, II, and III to illustrate the insensitivity of the convergence to the number
of subdomains, the optimal decomposition on stretched grids, the effectiveness of the
method for problems with discontinuous coefficients, and the convergence behavior
for nonsymmetric problems.

6.1.1. Near grid independence. First we illustrate the sense in which subdo-
main deflation can lead to nearly grid-independent convergence. The symmetric dis-
cretization matrix of problem I on (0, 1)×(0, 1) with homogeneous Dirichlet boundary
conditions is used without preconditioning. Keeping the resolution of each subdomain
fixed, the number of subdomains is increased. In so doing, the blocks of C remain
roughly the same as the grid is refined, and the bound in (2.1) becomes insensitive to
the number of blocks m for large enough m.

Assume Mx = My and nx = ny. Figure 6.1 shows the scaled number of CG
iterations J/nx (note that nx is constant along each line in the figure) for problem I
as the grid is refined keeping the subdomain resolution nx fixed at values of 10, 50,
and 200. The lines are almost indistinguishable from one another. It is apparent from
the figure that—using only subdomain deflation—the number of iterations required
for convergence is bounded independent of the number of subdomains. The same
qualitative behavior is observed with preconditioning.
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Fig. 6.1. Number of iterations J divided by the subdomain resolution nx ≡ ny ∈ {10, 50, 200}
with and without deflation.

6.1.2. Stretched grid. We consider problem I on (0, 3) × (0, 1) with homoge-
neous Dirichlet boundary conditions, and Nx = 36 and Ny = 72. The cell aspect
ratio is Qc = hx/hy = (3/36)/(1/72) = 6. Based on the discussion of section 4.1,
the best condition number is expected for a subdomain aspect ratio Qd = 1, associ-
ated with a subdomain grid aspect ratio of Qg = Qd/Qc = 1/6. Table 6.1 gives the
number of iterations required for convergence for 5 different decompositions into 12
equally sized subdomains. The solution tolerance of the nonpreconditioned CG algo-
rithm was set to tol = 10−2, prior to the onset of superlinear convergence, to obtain
these results. The 6 × 2 decomposition with Qd = 1 gives the minimum number of
iterations, in keeping with the discussion. We note that if iteration is continued to
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high tolerance, the superlinear convergence effect may give quite different results than
shown here. This domain decomposition selection strategy is most useful when the
condition number governs the convergence rate.

Table 6.1
Iterations required for problem I for different decompositions.

Mx ×My nx × ny Qd J
2× 6 18× 12 9 73
3× 4 12× 18 4 63
4× 3 9× 24 9/4 56
6× 2 6× 36 1 48
12× 1 3× 72 1/4 50

6.1.3. Discontinuous coefficients. To further illustrate the discussion of sec-
tion 4.2 we give results for problem II on (0, 1) × (0, 1) with boundary conditions
ux(0, y) ≡ uy(x, 0) ≡ uy(x, 1) ≡ 0, u(1, y) ≡ 0. We define the diffusion coefficient
to have value ν(x, y) = 1 on the lower left subdomain, including its interfaces, and
ν(x, y) = ε elsewhere. Table 6.2 lists the iterations for the CG method with diagonal
preconditioning for Mx =My = 3 and nx = ny = 30, as ε is decreased.

One observes that this is a very effective strategy for eliminating the effect of the
jump in coefficients.

Table 6.2
Iterations for problem II with discontinuous coefficients.

ε No deflation Deflation
1 295 151
10−2 460 183
10−4 521 189
10−6 628 189

6.1.4. A nonsymmetric example. We also illustrate the convergence of the
deflation method for a convection dominated problem III on (0, 1) × (0, 1) with re-
circulating wind field a1(x, y) = −80xy(1− x), a2(x, y) = 80xy(1− y) and boundary
conditions u(x, 0) ≡ u(y, 0) ≡ u(x, 1) ≡ 0, ux(1, y) = 0. The grid parameters are
Nx = Ny, Mx =My, nx = ny with grid spacing given by

xi = (i/Nx)
2(3− 2(i/Nx)).

The resulting system is solved using GCR truncated to a subspace of 20 vectors
by dropping the vector most nearly orthogonal to the current search direction [26].
Classical preconditioning in the form of RILU(0.975) is incorporated. The restriction
matrix for deflation is chosen to be Y = Z.

Table 6.3 compares the required number of GCR iterations as the number of
subdomains is increased keeping the subdomain resolution fixed at nx = 50. Although
the number of iterations is not bounded in the deflated case, it grows much slower
than the nondeflated case.

6.2. Parallel performance. For the results in this section, problem I will be
solved on (0, 1)× (0, 1) with homogeneous Dirichlet boundary conditions everywhere.

The resulting equations are solved with CG preconditioned with RIC(0.975). Our
implementation does not take advantage of the fact that some of the row sums may



DEFLATION-BASED PRECONDITIONERS 459

Table 6.3
Scalability for a nonsymmetric problem, subdomain grid 50× 50.

Mx No deflation Deflation
1 42 42
2 122 122
3 224 191
4 314 235
5 369 250
6 518 283
7 1007 377

Table 6.4
Speedup for problem I on a 120× 120 grid.

p J tconst titer s eff
1 38 8.7 · 10−3 1.3 – –
4 58 1.2 · 10−2 0.57 2.3 0.58
9 68 5.0 · 10−3 0.33 4.0 0.44
16 64 5.3 · 10−3 0.18 7.2 0.45
25 57 4.3 · 10−3 0.15 9.0 0.36
36 50 7.6 · 10−3 0.11 11.7 0.33
64 41 1.1 · 10−2 0.11 12.3 0.19

Table 6.5
Speedup for problem I on a 480× 480 grid.

p J tconst titer s eff
1 120 1.4 · 10−1 67.3 – –
4 137 1.3 · 10−1 21.8 3.1 0.77
9 138 6.3 · 10−2 9.65 7.0 0.78
16 139 3.6 · 10−2 5.60 12.0 0.75
25 121 2.5 · 10−2 3.21 21.0 0.84
36 118 2.2 · 10−2 2.27 29.7 0.82
64 100 1.3 · 10−2 1.19 56.6 0.88

be zero in (5.5). Each processor is responsible for exactly one subdomain. Parallel
communications were performed with MPI, using simple point-to-point and collective
communications. No exploitation of the network topology was used. Parallel results
were obtained from a Cray T3E. Wall-clock times in seconds were measured using the
MPI timing routine.

6.2.1. Speedup for fixed problem size. To measure the speedup, we choose
p = M2

x processors for Mx ∈ {1, 2, 3, 4, 5, 6, 8}. The results are given in Tables 6.4
and 6.5 for Nx = 120 and Nx = 480, respectively. The total number of iterations
is denoted by J ; the time to construct the incomplete factorization and deflation
operator is denoted by tconst; and the time spent in iterations is denoted by titer.
The speedup is determined from s = (titer|p=1) /(titer|p=M2

x
) and parallel efficiency by

eff = s/p.

In Table 6.4 the parallel efficiency decreases from 58% on 4 processors to only
19% on 64 processors, whereas in Table 6.5 efficiency increases slightly from 77%
to 88%. We expect that the poorer performance in the first table is due to both a
relatively large cost of solving the coarse operator Ac and a large communication-
to-computation ratio for small subdomains. The following factors contribute to the
parallel performance:

• As more subdomains are added, the relative size of the deflation system Ac
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increases, making it more expensive to solve, but at the same time, its solution
becomes a better approximation of the global solution.

• As the size of the subdomain grids decreases, the RILU preconditioner be-
comes a better approximation of the exact solution of the subdomain prob-
lems.

• Global communications become more expensive for many subdomains.
• Additionally there may be architecture-dependent effects in play.

6.2.2. Scaled performance for fixed subdomain size. Table 6.6 gives the
computation times in seconds obtained with and without deflation, keeping the sub-
domain size fixed at nx ∈ {5, 10, 20, 50, 100, 200} as the number of processors is
increased. It is clear that the effect of deflation is to make the parallel computation
time less sensitive to the number of processors.

We have already seen that the number of iterations levels off as a function of
the number of subdomains. The results of this table show that also the parallel
iteration time becomes relatively insensitive to an increase in the number of blocks.
Some overhead is incurred in the form of global communications and in solving the
deflation subsystem. As a result, the computation times are not bounded independent
of the number of subdomains.

Comparing the iteration counts for this problem, we note that the ratio of itera-
tions with and without deflation is very similar to that of Figure 6.1 without precon-
ditioning. Furthermore, the cost per iteration scales with n2

x for nx ≥ 20 (for smaller
nx, the cost of deflation offsets the advantage gained). The effect of preconditioning is
to reduce the necessary number of iterations in both the deflated and undeflated cases
such that the ratio of iterations remains fixed. We therefore expect that the ratio of
computation times with and without deflation should reflect the ratios of Figure 6.1
as well.

Table 6.6
Scaled performance for problem I with fixed subdomain size nx.

nx p = 1 p = 4 p = 9 p = 16 p = 25 p = 36 p = 64
5 no defl. 4 · 10−4 4 · 10−3 1 · 10−2 2 · 10−2 3 · 10−2 4 · 10−2 4 · 10−2

defl. — 5 · 10−3 1 · 10−2 1 · 10−2 2 · 10−2 3 · 10−2 4 · 10−2

10 no defl. 1 · 10−3 9 · 10−3 3 · 10−2 3 · 10−2 5 · 10−2 6 · 10−2 7 · 10−2

defl. — 1 · 10−2 3 · 10−2 4 · 10−2 5 · 10−2 6 · 10−2 6 · 10−2

20 no defl. 6 · 10−3 3 · 10−2 6 · 10−2 8 · 10−2 0.12 0.15 0.18
defl. — 3 · 10−2 7 · 10−2 8 · 10−2 0.10 0.11 0.13

50 no defl. 0.11 0.34 0.51 0.69 0.94 1.10 1.37
defl. — 0.35 0.57 0.64 0.71 0.75 0.77

100 no defl. 0.78 2.11 2.98 4.10 5.29 6.23 8.00
defl. — 2.10 3.27 3.46 3.58 3.89 3.97

200 no defl. 4.96 13.3 18.6 25.3 32.8 38.6 49.7
defl. — 12.9 17.6 20.4 20.8 22.5 23.3

7. Conclusions. In this paper we have given new effective condition number
bounds for deflated systems, both with and without conventional preconditioning.
Specifically, we show that choosing the deflation subspace to be piecewise constant
on subdomains effectively decouples the problem into a set of related Neumann prob-
lems, with the convergence governed by the “worst-conditioned” Neumann problem.
This knowledge can help to choose an effective decomposition of the domain and is
especially useful for problems with large discontinuities in the coefficients. Numerical
experiments illustrate that the convergence rate is nearly independent of the num-
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ber of subdomains for some problems, and that the method can be very efficiently
implemented on distributed memory parallel computers.

We see the deflation approach presented here as offering improved convergence
rate at a small additional cost for parallel computations using blockwise application
of conventional preconditioners. The reader is referred to [9] for a comparison of
blockwise incomplete factorization in the framework of nonoverlapping domain de-
composition. In that reference is also a comparison of blockwise incomplete factor-
ization with single-block incomplete factorization. In turn, to put these results in
perspective, Botta et al. [4] compare a number of modern strategies including ICCG
and multigrid methods.
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