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Abstract—In recent years, ISP RAS has been developing a
system for machine code deductive verification. The motivation
is rather clear: modern compilers, such as GCC and Clang/L-
LVM, are not free of bugs; thereby, it is not superfluous (at
least for safety- and security-critical components) to check the
correctness of the generated binary code. The key feature of
the suggested approach is the ability to reuse source-code-level
formal specifications (pre- and postconditions, loop invariants,
lemma functions, etc.) at the machine code level. The tool is
highly automated and allows a user not to interact directly
with the compiler output: provided that the target instruction
set is formalized, it disassembles the machine code, extracts its
semantics, adapts the high-level specifications, and generates the
verification conditions. The system utilizes a number of compo-
nents including static analysis and verification platforms (Frama-
C and Why3), a machine code analyzer (MicroTESK), and
an SMT solver (CVC4). The modular design enables replacing
one component with another when switching an input format
and/or a verification engine. In this paper, we discuss the tool
architecture, describe our implementation, and present a case
study on verifying the memset C library function.

Index Terms—formal methods, deductive verification, binary
code analysis, equivalence checking, instruction set architecture,
machine code, compiler testing

I. INTRODUCTION

The role of software in safety- and security-critical infras-
tructure grows continuously and at an ever-increasing speed.
As a result, there is a high demand in practical methods and
tools to ensure correctness of the most important components.
There are a number of research projects in the area: some of
them confine themselves to checking the absence of specific
kinds of bugs (e.g., run-time errors), while the others try to
prove fotal correctness of the software under analysis. The
total correctness typically means that each possible execution
of the software component terminates and meets the functional
contract expressed in the form of pre- and postconditions on
the component’s interfaces. To prove such kind of properties,
deductive verification methods are usually applied.

While the first ideas of the methods appeared in the works
of R.W. Floyd [1] and C.A.R. Hoare [2] at the end of 1960s
(inductive assertions, axiomatic semantics, etc.), deductive
verification of production software became realistic just re-
cently [3]-[7]. All the examples of deductive verification tools
for the imperative programming paradigm follow the similar
approach [8]:

« all statements of the programming language get formal
semantics;

« functional requirements to the software component are
formalized as pre- and postconditions of the functions
(or methods) in a specification language;

o additional hints to a verification framework such as loop
invariants, ghost code, and lemma functions are provided
by a user;

o verification conditions (VCs) are generated by the frame-
work and are discharged either automatically with a
solver or with an interactive proof assistant;

o proof of all the VCs means that all possible execu-
tions of the software component satisfy the functional
requirements under a set of assumptions on execution
environment, development tools, etc.

A usual assumption is that the machine code (or binary
code) generated by a compiler follows the formal semantics of
the programming language defined by the verification frame-
work. It would be reasonable if the compiler transformations
were formally verified. Though there is ongoing research and
development of such tools (a good example is CompCert [9]),
the industry is still bound to high-end optimizing compil-
ers, like GCC and Clang/LLVM. Unfortunately, they are too
complex to be thoroughly verified, and bugs in the generated
machine code are not uncommon [10].

As an alternative approach dismissing the unwarranted trust
to a compiler, we propose to prove that the produced binary
code still satisfies the functional properties expressed in the
pre- and postconditions of the source code functions. The
idea looks attractive because it should be much easier to
check the correctness of one particular code transformation
than to verify the entire compiler (in a sense, this is a test
oracle that determines whether the compiler behavior is correct
or not). Moreover, it makes it possible to enable aggressive
optimizations that are unsafe in general but are acceptable for
a given component and its functional contract. At the same
time, there are a lot of difficulties to overcome:

« the target instruction set architecture (ISA) — the registers,
the memory, the addressing modes, and the instructions —
should be formally specified (there is no other way to
reason about the machine code’s semantics);



o the high-level specifications should be adapted to the
binary code (in particular, one needs to find a correspon-
dence between the variables in the source code and the
registers and memory locations in the machine code);

o the verification hints, including loop invariants, ghost
code, and, probably, lemma functions, should be reused
at the binary code level or there should be an alternative
way to provide them for the machine code;

« the tool should be capable of verifying functional proper-
ties of the resulting binary code in presence of arbitrary
compiler optimizations.

The rest of this paper is organized as follows. Section 2
overviews the works addressing deductive verification of soft-
ware components at the binary code level. Section 3 describes
the proposed architecture of a machine code deductive verifi-
cation system. Section 4 contains experimental evaluation of
the suggested approach on the example of the memset library
function being compiled to the RISC-V ISA. Finally, Section 5
concludes the paper and outlines future work directions.

II. RELATED WORK

In the Why3-AVR project [11], the Why3 platform [12]
is applied to deductive verification of branch-free assembly
programs for the AVR microcontrollers. The AVR ISA is
formally specified in the WhyML language (it is supposed
to be done manually). The WhyML syntax allows defining
assembly instructions in a way that enables “reusing” AVR
programs (simple preprocessing is enough for a program
to become a valid WhyML text). A programmer is able
to annotate assembly code with pre- and postconditions in
WhyML and check its correctness using external solvers and
proof assistants. The approach seems to be useful for low-
level development as Why3 has rich capabilities for code
analysis and transformation. Our tool (and methodology) is
a bit different: it makes it possible to reuse source-code-
level specifications at the binary code level and scales well
to more complex ISAs as it uses ISA specifications in ded-
icated languages, e.g. nML [13] (such languages are called
architecture description languages or instruction set specifica-
tion languages). A crucially important distinction is that our
approach supports loops in programs and, respectively, loop
invariants in specifications.

In [14], the HOL4 proof assistant [15] is used to verify
machine-code programs for subsets of ARM, PowerPC, and
x86 (IA-32). The mentioned ISAs were specified indepen-
dently: the ARM and x86 models [16], [17] were written in
HOLA4, while the PowerPC model [18] was written in Coq [19]
(as a part of the CompCert project [9]) and then manually
translated to HOL4. The author distinguishes four levels of
abstraction. Machine code (level 1) is automatically decom-
piled into the low-level functional implementation (level 2). A
user manually develops a high-level implementation (level 3)
as well as a high-level specification (level 4). By proving the
correspondence between those levels, he/she ensures that the
machine code complies with the high-level specification. The
advantage of the solution is that it allows reusing verification

of proofs between different ISAs. Another thing to be noted
is automatic translation of loops to recursive functions. In our
opinion, the level of automation can be increased by using
specialized architecture description languages.

An interesting approach aimed at verifying machine code
against ACSL specifications [20] is presented in [21]. The
workflow is as follows: (1) the ACSL annotations are rewritten
as an inline assembly code; (2) the modified sources are
compiled into the assembly language; (3) the assembly code
is translated into WhyML; (4) the Why platform generates
the VCs and discharges them with an external solver. The
approach looks similar to the proposed one; however, there are
tangible distinctions. The main of them is that the workflow
involves a compiler: it implies that source code modifications
may be required when switching one compiler to another.
Also, verification at the assembly level does not allow aban-
doning the compiler correctness assumption as the assembly
code is an intermediate form and needs further translation.
Our goal is to make the verification tool as much compiler
and machine independent as possible; the configuration should
include only the data type sizes.

In [22], there have been demonstrated the possibility of
reusing proofs of source code correctness for verifying the
machine code. The approach is illustrated on the example of
a Java-like source language and a bytecode target language
for a stack-based abstract machine. The paper describes how
to use such a technology in the context of proof-carrying
code (PCC) and shows (in a particular setting) that non-
optimizing compilation preserves proof obligations, i.e. source
code proofs (built either automatically or interactively) can be
transformed to the machine code proofs. Although the ideas
of the approach may be useful, the problem we are solving is
different. Moreover, the solution is tied to a specific platform.

III. SUGGESTED ARCHITECTURE

This section describes the suggested architecture of a ma-
chine code deductive verification system. The purpose is to
verify the binary code of a function against the source-code-
level specifications. The tool takes the following inputs:

« the verified source code of the function and its specifica-
tions (pre- and postconditions, loop invariants, etc.);

o the non-optimized object code of the function;

o the optimized object code of the function (a subject to
verification);

o the target ISA specification (registers, addressing modes,
instructions, etc.);

o the compiler/machine configuration (data type sizes and
an application binary interface).

The tool output (report) contains the overall verdict (indicating
whether the [optimized] binary code of the function is correct)
and some auxiliary information including the verdicts for all
the generated VCs. Fig. 1 depicts components required to build
the system and how they interact each other. The subsections
below describe each of the components in brief.
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Fig. 1. The suggested architecture of a machine code deductive verification system

A. Machine Code Extractor

A machine code extractor is a simple tool that extracts the
endian-independent machine code of the function from the
given object code. An implementation relies on the object file
format and can use existing utilities (e.g. GNU Binutils [23]).
In addition to the machine code, the tool collects metadata in-
cluding the function address table (with the starting addresses
of the functions being called from the target one) and other
useful information.

B. Machine Code Analyzer

Using binary code as-is limits the applicability of a verifi-
cation system to a single ISA. A more flexible solution is to
translate the machine code to an architecture-agnostic inter-
mediate representation (IR), a sequence of instructions whose
semantics is formally defined. A disassembler — a component
that performs such kind of translation — can be a standalone
tool implemented for a particular platform or be automatically
constructed from the target ISA specification represented in



an architecture description language. The specification defines
the microprocessor’s registers, memory, addressing modes, and
instructions. Besides the machine code IR, the disassembler
produces the assembly code. While a specialized IR is consid-
ered to be a better choice for component integration, a human-
readable assembly code is used to generate verification reports
and to make sure that the disassembler works properly.

A control flow graph (CFG) extractor searches for branch
instructions, resolves their targets, and splits the sequence
of instructions into the basic blocks (BBs). Branches with
unresolved targets and branches whose targets are out of the
sequence range are considered to be external calls/returns. The
extracted CFG is annotated with additional data gathered from
the ISA specification, e.g. the branch conditions.

An implementation model builder translates the machine
code IR to a logical form. Constructing the implementa-
tion model depends on the IR notation (and, indirectly, on
the ISA specification formalism): if the language is formal
enough [16]-[18], the IR itself may serve as a model; oth-
erwise [13], an extra effort is required. In any case, the tool
should formally represent all register and memory modifica-
tions done in the code. The output format is better to be well-
established, such as SMT-LIB [24], HOL [15] or Coq [19],
or to support translation into that kind of languages, e.g.
WhyML [12].

C. Source Code Analyzer

A source code parser gets the source code of the function
along with its specifications and produces the abstract syntax
tree (AST). Usually, static analysis platforms allow developing
custom plugins for source-to-source translation. A specifica-
tion model builder — a component that maps the specifications
to a logical form — can be implemented as such a plugin. It
may happen that a plugin for an appropriate target language
already exists; however, it is highly unlikely that that plugin is
suitable for machine code verification. The specification model
should take into account the compiler/machine configuration
including sizes of platform-dependent data types. There are
also metadata to be collected: the function arguments, the local
variables, and the loop invariants. That information is used for
generating verification conditions (VCs).

D. Correctness Checker

The main difference between the source and machine code
correctness checking lies in the stage of VC generation. When
verifying source code with the classic deductive verification
approach, we generate the VCs independently from each other
and then discharge them with a solver or an interactive proof
assistant. However, information about the function’s variables
is lost during the compilation and cannot be restored directly.
This fact makes it impracticable to reuse the high-level loop
invariants within the classical VC generation scheme. Roughly
speaking, we need to check all possible bindings between the
source code’s variables and the machine code’s registers and
memory locations. Assuming that £ is the number of variables

used in the loops and n is the number of locations, there are
k! C¥ options to check.

To overcome the issue, the system uses a special component,
called a variable-to-location linker, responsible for searching
the correspondence between the variables and the locations.
Before starting the linker, a CFG analyzer examines the
CFG and extracts the basic paths, i.e. chains of BBs (or,
more generally, acyclic subgraphs) that cover the CFG and
connect the function/loop entry/exit points; thus, each basic
path targets a loop invariant initialization, a loop invariant
preservation, or the postcondition. The linker starts from
the empty set of bindings and tries to iteratively solve the
variable-to-location assignment problem. It applies heuristics
to prioritize assignments and takes into account information
about proved/disproved invariants to prune the search.

The core of a verification system is its VC generator. It con-
structs VCs for given bindings and passes them to a theorem
prover. It requires a lot of data to generate correct VCs: the
implementation/specification models, the machine/source code
metadata, and, probably, some lemmas and axioms.

After all the VCs have been discharged, a report generator
collects all the information about the verification process and
produces a human-readable verification report.

E. Equivalence Checker

Verification of the optimized machine code is performed
by checking its equivalence to the non-optimized one. There-
fore, if the non-optimized version meets all the functional
requirements, as verified by the correctness checker, then the
optimized version also meets the criterion. This implies that
verification of a compiler-optimized binary code requires the
non-optimized counterpart. After proving the VCs for the
non-optimized code, the tool tries to prove the equivalence
of the two binaries. The approach, like many others [25],
[26], is based on semantic alignment of the implementation
models (programs) and construction of the product model
(joint transfer graph). Though the equivalence checker handles
compiler optimizations, it is compiler-independent and does
not rely on any information provided by a compiler.

FE. Theorem Prover

The theorem prover is an external component responsible
for proving/disproving VCs. The main requirement is that
it should support reasoning about bit vectors and bit-vector
arrays. It is quite natural to model a microprocessor as follows:
(1) the registers and memory locations are bit vectors; (2) the
register files and memory units are bit-vector arrays; (3) the
instructions are operations over bit vectors. The tool can be of
one of the two types (or a combination of both): an automatic
SMT solver or an interactive proof assistant. On the one hand,
SMT solvers enable a fully automated verification process; on
the other hand, there are situations when they are unable to
give a definitive verdict. In such situations, interactive proof
assistants may come in handy.



MODULE / 10 FORMAT

IMPLEMENTATION

NOTES

Object Code

ELF [29]

A popular format for executables, object code, shared libraries, and core dumps

Machine Code Extractor

Based on Binutils [23]

Uses readelf to extract endian-independent machine code

Machine Code Metadata

Function address table

Contains relative addresses for all functions being called from the target one

Machine Code Analyzer

MicroTESK [30], [31]

Provides a number of tools for binary code analysis: the disassembler, the CFG extractor,
and the implementation model builder

Target ISA Specification nML [13] Provides facilities for specifying assembly syntax, binary encoding, and semantics of
microprocessor instructions and addressing modes

Machine Code IR MIR An inner MicroTESK representation

Assembly Code Assembly language Format is specified in the target ISA specification

Control Flow Graph JSON Describes basic block boundaries, links to the successors, and branch conditions

Implementation Model

SMT-LIB 2.6 [24]

Static single assignment form of the basic blocks

Source Code / Specifications

C / ACSL [20]

C code annotated with pre- and postconditions and loop invariants

Compiler/Machine Configuration

JSON

Sizes of the basic C types and the application binary interface

Source Code Analyzer

Frama-C [32] / Why3 [12]

Uses Frama-C as a frontend, a custom ACSL-to-WhyML translation plugin, and Why3
for WhyML-to-SMT-LIB translation

Specification Model

SMT-LIB 2.6 [24]

Pre- and postconditions, loop invariants, etc.

Source Code Metadata

JSON

Describes signatures of the generated SMT-LIB functions

Lemmas and Axioms

SMT-LIB 2.6 [24]

Auxiliary definitions to help SMT solvers

Correctness Checker

MicroVer [33]

The main part of the tool (see Section 3)

Verification Conditions

SMT-LIB 2.6 [24]

Check the loop invariant initializations/preservations and the postcondition

Theorem Prover CVC4 [34] A powerful SMT solver that supports bit vectors and bit-vector arrays
Correctness Verdict Plain text Yes, no or unknown: if no, a counter-examples is provided

Equivalence Checker MicroTESK [31] Constructs the product of two implementation models and verifies it deductively
Equivalence Verdict Plain text see Correctness Verdict

Verification Report Plain text Summarizes information: verdicts for all VCs and counter-examples (if necessary)

TABLE T
OUR IMPLEMENTATION OF THE MACHINE CODE DEDUCTIVE VERIFICATION SYSTEM

IV. EVALUATION

In this section, we overview our implementation of the ma-
chine code deductive verification system and have a brief look
at its application to the memset C library function [6] (naive
implementation) being compiled to the RISC-V ISA [27]. Ta-
ble I shows information on the components and the input/out-
put formats used in the system. Table II represents memset’s
ACSL-annotated C code, assembly code, and binary code. The
function has been successfully verified; the results (including
the generated VCs and the tools to reproduce some steps) are
available online [28].

V. CONCLUSION

The industry needs practical methods and tools for formal
verification of software components. The majority of the ex-
isting solutions perform source-code-level analysis. However,
it is not guaranteed that compilers are error-free; therefore,
the most critical software requires verification at the binary
code level. Developing a machine code verification system
is a challenging and time-consuming task; for this reason, it
is almost imperative to reuse existing verification and static
analysis frameworks. In this work, we have identified a set
of components required to build such a system and have
shown a way how they may be composed together. We have
selected appropriate engines from among existing software,
supplemented them with the missing ones, and built a tool
that is able to automatically verify machine code against the
source-code-level ACSL specifications. It is worth noting that
the approach is relatively independent of the target platform
as it uses ISA specifications.

The work is in progress, and, certainly, many things are
subjects to improvement. Future research directions are as

follows. First, to complete the verification system, we should
fully support the ACSL language. Second, the list of avail-
able ISAs has to be extended (to date, we have specified
several popular microprocessor architectures, including RISC-
V, ARM, MIPS, and, partially, Power). Third, we are working
on industry-applicable techniques for equivalence checking of
optimized and non-optimized machine programs. Finally, the
tool requires more thorough assessment on a more representa-
tive benchmark (we have verified about 20 functions so far).
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