
CHAPTER VI

APPLICATIONS TO ANALYSIS

We include in this chapter several subjects from classical analysis to
which the notions of functional analysis can be applied. Some of these
subjects are essential to what follows in this text, e.g., convolution, ap-
proximate identities, and the Fourier transform. The remaining subjects
of this chapter are highly recommended to the reader but will not specif-
ically be referred to later.

Integral Operators
Let (S, µ) and (T, ν) be σ-finite measure spaces, and let k be a µ× ν-

measurable, complex-valued function on S×T. We refer to the function
k as a kernel, and we are frequently interested in when the formula

[K(f)](s) =
∫

T

k(s, t)f(t) dν(t) (6.1)

determines a bounded operator K from Lp(ν) into Lr(µ), for some 1 ≤
p ≤ ∞ and some 1 ≤ r ≤ ∞. Ordinarily, formula (6.1) is only defined for
certain functions f, the so-called domain D(K) of K, i.e., the functions
f for which s → k(s, t)f(t) is ν-integrable for µ almost all s ∈ S. In
any event, D(K) is a vector space, and on this domain, K is clearly a
linear transformation. More precisely, then, we are interested in when
formula (6.1) determines a linear transformation K that can be extended
to a bounded operator on all of Lp(ν) into Lr(µ). Usually, the domain
D(K) is a priori dense in Lp(ν), and the question above then reduces to
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whether K is a bounded operator from D(K) into Lr(µ). That is, does
there exist a constant M such that

‖K(f)‖r = (
∫

S

|
∫

T

k(s, t)f(t) dν(t)|r dµ(s))1/r ≤ M‖f‖p

for all f ∈ D(K). In such a case, we say that K is a bounded integral
operator. In general, we say that the linear transformation K is an
integral operator determined by the kernel k(s, t).

The elementary result below is basically a consequence of Hoelder’s
inequality and the Fubini theorem.

THEOREM 6.1. Suppose p, r are real numbers strictly between 1
and ∞, and let p′ and r′ satisfy

1/p + 1/p′ = 1/r + 1/r′ = 1.

Suppose that k(s, t) is a µ×ν-measurable function on S×T, and assume
that the set D(K) of all f ∈ Lp(ν) for which Equation (6.1) is defined
is a dense subspace of Lp(ν). Then:

(1) If the function b defined by s →
∫

T
|k(s, t)|p′

dν(t) is an element
of Lr/p′

(µ), then K is a bounded integral operator from Lp(ν)
into Lr(µ).

(2) Suppose p = r and that there exists an α ∈ [0, 1] for which
the function s →

∫
T
|k(s, t)|αp′

dν(t) is an element of L∞(µ)
with L∞ norm c1, and the function t →

∫
S
|k(s, t)|(1−α)p dµ(s)

is an element of L∞(ν) with L∞ norm c2. Then K is a bounded
integral operator from Lp(ν) into Lp(µ). Moreover, we have that

‖K(f)‖p ≤ c
1/p′

1 c
1/p
2 ‖f‖p

for all f ∈ Lp(ν).

PROOF. Let f ∈ D(K) be fixed. We have that

|
∫

T

k(s, t)f(t) dν(t)| ≤
∫

T

|k(s, t)f(t)| dν(t)

≤ (
∫

T

|k(s, t)|p
′
dν(t))1/p′

× (
∫

T

|f(u)|p dν(u))1/p

= b(s)1/p′
‖f‖p,
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from which it follows that D(K) is all of Lp(ν) for part 1, and

‖K(f)‖r = (
∫

S

|
∫

T

k(s, t)f(t) dν(t)|r dµ(s))1/r ≤ ‖b‖1/p′

r/p′‖f‖p.

This proves part 1.
Again, for f ∈ D(K) we have that

|
∫

T

k(s, t)f(t) dν(t)| ≤
∫

T

|k(s, t)|α|k(s, t)|1−α|f(t)| dν(t)

≤ (
∫

T

|k(s, t)|αp′
dν(t))1/p′

× (
∫

T

|k(s, u)|(1−α)p|f(u)|p dν(u))1/p

≤ c
1/p′

1 (
∫

T

|k(s, u)|(1−α)p|f(u)|p dν(u))1/p,

from which it follows that

‖K(f)‖p = (
∫

S

|
∫

T

k(s, t)f(t) dν(t)|p dµ(s))1/p

≤ c
1/p′

1 (
∫

S

∫
T

|k(s, u)|(1−α)p|f(u)|p dν(u) dµ(s))1/p

= c
1/p′

1 (
∫

T

∫
S

|k(s, u)|(1−α)p|f(u)|p dµ(s) dν(u))1/p

≤ c
1/p′

1 c
1/p
2 ‖f‖p,

and this proves part 2.

EXERCISE 6.1. (a) Restate part 1 of the above theorem for p = r.
(b) Restate part 1 of the above theorem for r = p′. Restate both parts

of the theorem for p = r = 2.
(c) As a special case of part 2 of the theorem above, reprove it for

p = r = 2 and α = 1/2.
(d) How can we extend the theorem above to the case where p or r

is 1 or ∞?

EXERCISE 6.2. Suppose both µ and ν are finite measures.
(a) Show that if the kernel k(s, t) is a bounded function on S × T,

then (6.1) determines a bounded integral operator K for all p and r.
(b) Suppose S = T = [a, b] and that µ and ν are both Lebesgue

measure. Define k to be the characteristic function of the set of all pairs



102 CHAPTER VI

(s, t) for which s ≥ t. Show that (6.1) determines a bounded integral
operator K from L1(µ) into L1(ν). Show further that K(f) is always
differentiable almost everywhere, and that [K(f)]′ = f.

(c) Suppose k is an element of L2(µ × ν). Use Theorem 6.1 to show
that (6.1) determines a bounded integral operator K from L2(ν) into
L2(µ).

(d) Is part c valid if µ and ν are only assumed to be σ-finite measures?
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Convolution Kernels

THEOREM 6.2. (Young’s Inequality) Let f be a complex-valued
measurable function on Rn, and define k ≡ kf on Rn × Rn by

k(x, y) = f(x− y).

If f ∈ L1(Rn) and 1 ≤ p ≤ ∞, then (6.1) determines a bounded integral
operator K ≡ Kf from Lp(Rn) into itself, where we equip each space
Rn with Lebesgue measure. Moreover, ‖Kf (g)‖p ≤ ‖f‖1‖g‖p for every
g ∈ Lp(Rn).

PROOF. Suppose first that p = ∞. We have that

‖Kf (g)‖∞ = sup
x
|
∫

Rn

f(x− y)g(y) dy|

≤ sup
x

∫
Rn

|f(x− y)|‖g‖∞ dy

= ‖f‖1‖g‖∞,

as desired.
Now, suppose 1 ≤ p < ∞. Let g be in Lp(Rn) and h be in Lp′

(Rn),
(1/p + 1/p′ = 1). By Tonelli’s Theorem, we have that∫

Rn

∫
Rn

|f(x− y)g(y)h(x)| dydx =
∫

Rn

∫
Rn

|f(−y)g(x + y)h(x)| dydx

≤ ‖f‖1 sup
y

∫
Rn

|g(x + y)h(x)| dx

≤ ‖f‖1 sup
y
‖g‖p‖h‖p′ ,

which shows that the function f(x−y)g(y)h(x) is integrable on Rn×Rn.
Therefore, for almost all x, the function y → f(x− y)g(y) is integrable
on Rn. Because the inequality above holds for every h ∈ Lp′

(Rn), the
resulting function Kf (g) of x belongs to Lp(Rn). Moreover,

‖Kf (g)‖p ≤ ‖f‖1‖g‖p,

and the proof is complete.

By T we shall mean the half-open interval [0,1), and we shall refer
to T as the circle. By Lp(T) we shall mean the set of all Lebesgue
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measurable functions on R, which are periodic with period 1, satisfying∫ 1

0
|f(x)|p dx < ∞.

EXERCISE 6.3. (a) Use part 2 of Theorem 6.1 to give an alternative
proof of Theorem 6.2 in the case 1 < p < ∞.

(b) (Convolution on the circle) If f ∈ L1(T), define k = kf on T× T
by kf (x, y) = f(x − y). Prove that Kf is a bounded integral operator
from Lp(T) into itself for all 1 ≤ p ≤ ∞. In fact, prove this two ways:
Use Theorem 6.1, and then mimic the proof of Theorem 6.2.

DEFINITION. If f ∈ L1(Rn) (L1(T)), then the bounded integral
operator Kf of the preceding theorem (exercise) is called the convolution
operator by f, and we denote Kf (g) by f ∗ g. The kernel kf (x, y) =
f(x− y) is called a convolution kernel.

EXERCISE 6.4. (a) Suppose f ∈ Lp(Rn) and g ∈ Lp′
(Rn). Show

that the function f ∗ g, defined by

(f ∗ g)(x) =
∫

Rn

f(x− y)g(y) dy,

is everywhere well-defined. Show further that f ∗ g is continuous and
vanishes at infinity. Show finally that f ∗ g = g ∗ f.

(b) If f, g, h ∈ L1, show that f∗g = g∗f and that (f∗g)∗h = f∗(g∗h).

The next result is a useful generalization of Theorem 6.2.

THEOREM 6.3. Let f be an element of Lp(Rn). Then, for any
1 ≤ q ≤ p′, convolution by f is a bounded operator from Lq(Rn) into
Lr(Rn), where 1/p + 1/q − 1/r = 1.

EXERCISE 6.5. Use the Riesz Interpolation Theorem, Theorem
6.2, and Exercise 6.4 to prove Theorem 6.3.

REMARK. Later, we will be interested in convolution kernels kf

where the function f does not belong to any Lp space. Such kernels are
called singular kernels. Though the arguments above cannot be used
on such singular kernels, nevertheless these kernels often define bounded
integral operators.

Reproducing Kernels and Approximate Identities

DEFINITION. Let (S, µ) be a σ-finite measure space and let k(x, y)
be a µ × µ-measurable kernel on S × S. Suppose that the operator K,
defined by (6.1), is a bounded integral operator from Lp(µ) into itself.
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Then K is called a reproducing kernel for a subspace V of Lp(µ) if
K(g) = g for all g ∈ V. A parameterized family {kt} of kernels is called an
approximate identity for a subspace V of Lp(µ) if all the corresponding
operators Kt are bounded integral operators, and limt→0 Kt(g) = g for
every g ∈ V, where the limit is taken in Lp(µ).

THEOREM 6.4. Let S be the closed unit disk in C. Using the Riesz
Representation Theorem (Theorem 1.5), let µ be the measure on S whose
corresponding integral is defined on the space C(S) of continuous func-
tions on S by ∫

S

f(z) dµ(z) =
∫ 2π

0

f(eiθ) dθ.

Let p = 1, and let H be the subspace of L1(µ) consisting of the (complex-
valued) functions that are continuous on S and analytic on the interior
of S. Let k(z, ζ) be the kernel on S × S defined by

k(z, ζ) =
1
2π

1
1− (z/ζ)

,

if z 6= ζ, and
k(z, z) = 0

for all z ∈ S. Then k is a reproducing kernel for H.

EXERCISE 6.6. Prove Theorem 6.4. HINT: Cauchy’s formula.

REMARK. Among the most interesting reproducing kernels and ap-
proximate identities are the ones that are convolution kernels.

THEOREM 6.5. Let k be a nonnegative Lebesgue-measurable func-
tion on Rn for which

∫
k(x) dx = 1. For each positive t, define

kt(x) = (1/tn)k(x/t),

and set
K(x) =

∫
‖x‖≤‖y‖

k(y) dy.

Then:
(1) If f is uniformly continuous and bounded on Rn, then kt ∗ f

converges uniformly to f on Rn as t approaches 0.
(2) If K ∈ Lp(Rn) (1 ≤ p < ∞), then kt∗f converges to f in Lp(Rn)

for every f ∈ Lp(Rn) as t approaches 0.
(3) If k ∈ Lp′

(Rn), f ∈ Lp(Rn) (1 ≤ p < ∞ and 1/p + 1/p′ = 1),
and f is continuous at a point x, then (kt ∗ f)(x) converges to
f(x) as t approaches 0.
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PROOF. To prove part 1, we must show that for each ε > 0 there
exists a δ > 0 such that if t < δ then |(kt ∗ f)(x) − f(x)| < ε for all x.
Note first that

∫
kt(x) dx = 1 for all t. Write

(kt ∗ f)(x) =
∫

kt(x− y)f(y) dy =
∫

kt(y)f(x− y) dy.

So, we have that

|(kt ∗ f)(x)− f(x)| = |
∫

kt(y)f(x− y) dy − f(x)
∫

kt(y) dy|

≤
∫

kt(y)|f(x− y)− f(x)| dy

=
∫
‖y‖≤h

kt(y)|f(x− y)− f(x)| dy

+
∫
‖y‖>h

kt(y)|f(x− y)− f(x)| dy

for any positive h. Therefore, given ε > 0, choose h so that |f(w) −
f(z)| < ε/2 if ‖w − z‖ < h, and set M = ‖f‖∞. Then

|(kt ∗ f)(x)− f(x)| ≤
∫
‖y‖≤h

kt(y)(ε/2) dy +
∫
‖y‖>h

kt(y)2M dy

≤ (ε/2)
∫

kt(y) dy + 2M

∫
‖y‖>h

kt(y) dy

= (ε/2) + 2M

∫
‖y‖>h/t

k(y) dy

for all x. Finally, since k ∈ L1(Rn), there exists a ρ > 0 such that∫
‖y‖>ρ

k(y) dy < ε/(4M),

whence
|(kt ∗ f)(x)− f(x)| < ε

for all x if t < δ = h/ρ. This proves part 1.
By Theorem 6.2 we have that ‖kt ∗ f‖p ≤ ‖f‖p for all t. Hence, if

f ∈ Lp(Rn) and {fj} is a sequence of continuous functions with compact
support that converges to f in Lp norm, then

‖kt ∗ f − f‖p ≤ ‖kt ∗ (f − fj)‖p + ‖kt ∗ fj − fj‖p + ‖fj − f‖p.
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Given ε > 0, choose j so that the first and third terms are each bounded
by ε/3. Hence, we need only verify part 2 for an f ∈ Lp(Rn) that is
continuous and has compact support. Suppose the support of such an
f is contained in the ball of radius a around 0. From the proof above
for part 1, we see that |(kt ∗ f)(x)− f(x)| ≤ 2M for all x. Moreover, if
‖x‖ ≥ 2a and t < 1/2, then

|(kt ∗ f)(x)− f(x)| = |
∫

kt(y)(f(x− y)− f(x)) dy|

≤
∫

kt(y)|f(x− y)| dy

=
∫
‖x‖−a≤‖y‖≤‖x‖+a

kt(y)|f(x− y)| dy

≤ M

∫
‖x‖−a≤‖y‖

kt(y) dy

≤ M

∫
‖x/2‖≤‖y‖

kt(y) dy

= M

∫
‖x/2t‖≤‖y‖

k(y) dy

≤ M

∫
‖x‖≤‖y‖

k(y) dy

= MK(x).

Hence, |(kt ∗ f)(x) − f(x)| is bounded for all t < 1/2 by a fixed func-
tion in Lp(Rn), so that part 2 follows from part 1 and the dominated
convergence theorem.

We leave part 3 to the exercises.

EXERCISE 6.7. (a) Prove part 3 of the preceding theorem.
(b) (Poisson Kernel on the Line) For each t > 0 define a kernel kt on

R× R by
kt(x, y) = (t/π)(1/(t2 + (x− y)2)).

Prove that {kt} is an approximate identity for Lp(R) for 1 ≤ p < ∞.
HINT: Note that the theorem above does not apply directly. Alter the
proof.

(c) (Poisson Kernel in Rn) Let c =
∫

Rn 1/(1 + ‖x‖2)(n+1)/2 dx. For
each positive t, define a kernel kt on Rn × Rn by

kt(x, y) =
t/c

(t2 + ‖x− y‖2)(n+1)/2
.
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Prove that {kt} is an approximate identity for Lp(Rn) for 1 ≤ p < ∞.
(d) (Poisson Kernel on the Circle) For each 0 < r < 1 define a function

kr on T by

kr(x) =
1− r2

1 + r2 − 2r cos(2πx)
.

Show that kr(x) ≥ 0 for all r and x, and that

kr(x) =
∞∑

n=−∞
r|n|e2πinx,

whence
∫ 1

0
kr(x) dx = 1 for every 0 < r < 1. Prove that {kr} is an

approximate identity for Lp(T) (1 ≤ p < ∞) in the sense that

f = lim
r→1

kr ∗ f,

where the limit is taken in Lp(T).

EXERCISE 6.8. (Gauss Kernel) (a) Define g on R by

g(x) = (1/
√

2π)e−x2/2,

and set
gt(x) = (1/

√
t)g(x/

√
t) = (1/

√
2πt)e−x2/2t.

Prove that {gt} is an approximate identity for Lp(R) for 1 ≤ p < ∞.
(b) Define g on Rn by

g(x) = (1/(2π)n/2)e−‖x‖
2/2,

and set
gt(x) = (1/tn/2)g(x/

√
t) = (2πt)−n/2e−‖x‖

2/2t.

Prove that {gt} is an approximate identity for Lp(Rn) for 1 ≤ p < ∞.

Green’s Functions

DEFINITION. Let µ be a σ-finite Borel measure on Rn, let D be a
dense subspace of Lp(µ), and suppose L is a (not necessarily continuous)
linear transformation of D into Lp(µ). By a Green’s function for L we
shall mean a µ× µ-measurable kernel g(x, y) on Rn ×Rn, for which the
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corresponding (not necessarily bounded) integral operator G satisfies the
following: If v belongs to the range of L, then G(v), defined by

[G(v)](x) =
∫

Rn

g(x, y)v(y) dµ(y),

belongs to D, and L(G(v)) = v. That is, the integral operator G is a
right inverse for the transformation L.

Obviously, knowing a Green’s function for an operator L is of use in
solving for u in an equation like L(u) = f. Not every (even invertible)
linear transformation L has a Green’s function, although many classi-
cal transformations do. There are various techniques for determining
Green’s functions for general kinds of transformations L, but the most
important L’s are differential operators. The following exercise gives a
classical example of the construction of a Green’s function for such a
transformation.

EXERCISE 6.9. Let b be a positive real number, let f be an element
of L1([0, b]), and consider the nth order ordinary differential equation:

u(n) + an−1u
(n−1) + . . . + a1u

′ + a0u = f, 6.2)

where the coefficients a0, . . . , an−1 are constants. Let D denote the set
of all n times everywhere-differentiable functions u on [0, b] for which
u(n) ∈ L1([0, b]), and let L be the transformation of D into L1([0, b]) ⊂
L1(R) defined by

L(u) = u(n) + an−1u
(n−1) + . . . + a1u

′ + a0u.

Let A denote the n× n matrix defined by

A =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
−a0 −a1 −a2 . . . −an−1

 ,

let ~F (t) be the vector-valued function given by

~F (t) =


0
·
·
·
0

f(t)

 ,
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and consider the vector-valued differential equation

~̇U = A~U + ~F . (6.3)

(a) Show that if ~U is a solution of Equation (6.3), then u1 is a solution
of Equation (6.2), where u1 is the first component of ~U.

(b) If B is an n× n matrix, write eB for the matrix defined by

eB =
∞∑

j=0

Bj/j!.

Define ~U on [0, b] by

~U(t) =
∫ t

0

e(t−s)A × ~F (s) ds.

Prove that ~U is a solution of Equation (6.3).
(c) For 1 ≤ i, j ≤ n, write cij(t) for the ijth component of the matrix

etA. Define g(t, s) = c1n(t− s) if s ≤ t and g(t, s) = 0 otherwise. Prove
that g is a Green’s function for L.

We give next two general, but certainly not all-inclusive, results on
the existence of Green’s functions.

If h(x, y) is a function of two variables, we denote by hy the function
of x defined by hy(x) = h(x, y).

THEOREM 6.6. Let µ be a regular (finite on compact sets) σ-finite
Borel measure on Rn, let D be a dense subspace of Lp(µ) (1 ≤ p ≤ ∞),
and let L be a (not necessarily continuous) linear transformation of D
into L1(µ). Assume that:

(1) There exists a bounded integral operator K from L1(µ) into L1(µ),
determined by a kernel k(x, y), for which k is a reproducing ker-
nel for the range V of L, and such that the map y → ky is
uniformly continuous from Rn into L1(µ).

(2) There exists a bounded integral operator G from L1(µ) into Lp(µ),
determined by a kernel g(x, y), such that the map y → gy is uni-
formly continuous from Rn into D, and such that L(gy) = ky for
all y.

(3) The graph of L, thought of as a subset of Lp(µ)×L1(µ), is closed.
That is, if {uj} is a sequence of elements of D that converges to
an element u ∈ Lp, and if the sequence {L(uj)} converges in L1

to a function v, then the pair (u, v) belongs to the graph of L;
i.e., u ∈ D and v = L(u).
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Then g is a Green’s function for L.

PROOF. Let v be in the range of L, and let {φj} be a sequence of
simple functions having compact support that converges to v in L1(µ).
Because µ is regular and σ-finite, we may assume that

φj =
nj∑
i=1

ai,jχEi,j
,

where

lim
j→∞

max
i

diam(Ei,j) ≡ lim δj = 0.

For each j = 1, 2, . . . and each 1 ≤ i ≤ nj , let yi,j be an element of Ei,j ,
and define functions vj and uj by

vj(x) =
nj∑
i=1

ai,jµ(Ei,j)kyi,j (x) =
nj∑
i=1

ai,jµ(Ei,j)k(x, yi,j)

and

uj(x) =
nj∑
i=1

ai,jµ(Ei,j)gyi,j (x). =
nj∑
i=1

ai,jµ(Ei,j)g(x, yi,j).

Notice that each uj ∈ D and that vj = L(uj). Finally, for each positive
δ, define ε1(δ) and ε2(δ) by

ε1(δ) = sup
‖y−y′‖<δ

‖ky − ky′
‖1

and

ε2(δ) = sup
‖y−y′‖<δ

‖gy − gy′
‖p.

By the uniform continuity assumptions on the maps y → ky and y → gy,
we know that

0 = lim
δ→0

εi(δ).
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First, we have that v = limj vj . For

‖v − vj‖1 = ‖K(v)− vj‖1
≤ ‖K(v − φj)‖1 + ‖K(φj)− vj‖1

≤ ‖K‖‖v − φj‖1 +
∫
|[K(φj)](x)− vj(x)| dµ(x)

= ‖K‖‖v − φj‖1 +
∫
|
∫

k(x, y)
nj∑
i=1

ai,jχEi,j
(y) dy

−
nj∑
i=1

ai,jµ(Ei,j)k(x, yi,j)| dx

= ‖K‖‖v − φj‖1 +
∫
|

nj∑
i=1

[
∫

k(x, y)ai,jχEi,j (y)

− k(x, yi,j)ai,jχEi,j
(y) dy]| dx

≤ ‖K‖‖v − φj‖1

+
nj∑
i=1

|ai,j |
∫

χEi,j (y)
∫
|k(x, y)− k(x, yi,j)| dxdy

= ‖K‖‖v − φj‖1 +
nj∑
i=1

|ai,j |
∫
‖ky − kyi,j‖1χEi,j (y) dy

≤ ‖K‖‖v − φj‖1 + ε1(δj)‖φj‖1,

which tends to zero as j tends to ∞.
Similarly, we have that G(v) = limj uj . (See the following exercise.)

So, since the graph of L is closed, and since L(uj) = vj for all j, we see
that G(v) ∈ D and L(G(v)) = v, as desired.

EXERCISE 6.10. In the proof of Theorem 6.6, verify that G(v)
is the Lp limit of the sequence {uj}. HINT: Use the integral form of
Minkowski’s inequality. See Exercise 4.13.

THEOREM 6.7. Let µ,D, and L be as in the preceding theorem.
Suppose {gt(x, y)} is a parameterized family of kernels on Rn×Rn such
that, for each t, the operator Gt determined by the kernel gt is a bounded
integral operator from L1(Rn) into Lp(Rn), and the map y → gy

t is
uniformly continuous from Rn into D. Suppose that {kt(x, y)} is an
approximate identity for the range of L, that for each t the map y → ky

t

is uniformly continuous from Rn into L1(µ), and that L(gy
t ) = ky

t for
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all t and y. Suppose finally that limt→0 gt(x, y) = g(x, y) for almost all
x and y, and that limt→0 Gt(v) = G(v) for each v in the range of L,
where G is the integral operator determined by the kernel g. Then g is a
Green’s function for L.

EXERCISE 6.11. Prove Theorem 6.7. HINT: For v in the range of
L, show that Gt(v) ∈ D and that L(Gt(v)) = Kt(v). Then use again the
fact that the graph of L is closed.

EXERCISE 6.12. Let µ be Lebesgue measure on Rn, and suppose
D and L are as in the preceding two theorems. Assume that L is homo-
geneous of degree d. That is, if δt is the map of Rn into itself defined by
δt(x) = tx, then

L(u ◦ δt) = td[L(u)] ◦ δt.

(Homogeneous differential operators fall into this class.) Suppose p is a
nonnegative function on Rn of integral 1, and that u0 is an element of D
for which L(u0) = p. Define gt(x) = td−nu0(x/t), and assume that, for
each v in the range of L, limt→0 gt ∗ v exists and that gt converges, as t
approaches 0, almost everywhere to a function g. Show that g is a Green’s
function for L. HINT: Use Theorem 6.5 to construct an approximate
identity from the function p. Then verify that the hypotheses of Theorem
6.7 hold.

Fourier Transform

DEFINITION. If f is a complex-valued function in L1(R), define a
function f̂ on R by

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

The function f̂ is called the Fourier transform of f.

EXERCISE 6.13. (a) (Riemann-Lebesgue Theorem) For f ∈ L1,

show that the Fourier transform f̂ of f is continuous, vanishes at infinity,
and ‖f̂‖∞ ≤ ‖f‖1. HINT: Do this first for f the characteristic function
of a finite interval (a, b) and then approximate (in L1 norm) an arbitrary
f by step functions.

(b) If f and g are elements of L1, prove the Convolution Theorem

f̂ ∗ g = f̂ ĝ
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and the Exchange Theorem ∫
fĝ =

∫
f̂g.

(c) For f ∈ L1, define f∗ by

f∗(x) = f(−x).

Show that f̂∗ = f̂ .

(d) If |x||f(x)| ∈ L1, show that f̂ is differentiable, and

f̂ ′(ξ) = −2πi

∫
xf(x)e−2πixξ dx.

(e) If f is absolutely continuous (f(x) =
∫ x

−∞ f ′), and both f and f ′

are in L1(R), show that ξf̂(ξ) ∈ C0.
(f) Show that the Fourier transform sends Schwartz space S into itself.
(g) If f(x) = e−2π|x|, show that

f̂(ξ) = (1/π)
1

1 + ξ2
.

(h) If g(x) = e−πx2
, show that

ĝ(ξ) = e−πξ2
= g(ξ).

That is, ĝ = g. HINT: Show that ĝ satisfies the differential equation

ĝ′(ξ) = −2πξĝ(ξ),

and
ĝ(0) = 1.

Recall that ∫ ∞

−∞
e−x2/2 dx =

√
2π.

EXERCISE 6.14. (Inversion Theorem)
(a) (Fourier transform of the Gauss kernel) If gt is the function defined

by
gt(x) = (1/

√
2πt)e−x2/2t,
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use part h of the preceding exercise to show that

ĝt(ξ) = e−2π2tξ2
,

whence

gt(x) =
∫

ĝt(ξ)e2πixξ dξ.

(b) Show that for any f ∈ L1, for which f̂ also is in L1, we have that
f is continuous and

f(x) =
∫

f̂(ξ)e2πixξ dξ.

HINT: Make use of the fact that the gt’s of part a form an approximate
identity. Establish the equality

∫
f̂(ξ)e2πixξ dξ = lim

t→0

∫
f̂(ξ)ĝt(ξ)e2πixξ dξ,

and then use the convolution theorem.
(c) Conclude that the Fourier transform is 1-1 on L1.

(d) Show that Schwartz space is mapped 1-1 and onto itself by the
Fourier transform. Show further that the Fourier transform is a topo-
logical isomorphism of order 4 from the locally convex topological vector
space S onto itself.

THEOREM 6.8. (Plancherel Theorem) If f ∈ L1(R) ∩ L2(R), then

f̂ ∈ L2(R) and ‖f‖2 = ‖f̂‖2. Consequently, if f, g ∈ L1(R)∩L2(R), then

∫
f(x)g(x) dx =

∫
f̂(ξ)ĝ(ξ) dξ.

PROOF. Suppose first that f is in Schwartz space S, and write f∗

for the function defined by

f∗(x) = f(−x).
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Then f ∗f∗ ∈ L1, and f̂ ∗ f∗ = |f̂ |2 ∈ L1. So, by the Inversion Theorem,

‖f‖22 =
∫

f(x)f(x) dx

=
∫

f(x)f∗(−x) dx

= (f ∗ f∗)(0)

=
∫

f̂ ∗ f∗(ξ)e2πi0×ξ dξ

=
∫

f̂ ∗ f∗(ξ) dξ

=
∫
|f̂(ξ)|2 dξ

= ‖f̂‖22.

Now, if f is an arbitrary element of L1(R) ∩ L2(R), and if {fn} is
a sequence of elements of S that converges to f in L2 norm, then the
sequence {f̂n} is a Cauchy sequence in L2(R), whence converges to an
element g ∈ L2(R). We need only show that g and f̂ agree almost every-
where. If h is any element of S we have, using part b of Exercise 6.13,
that ∫

g(ξ)h(ξ) dξ = lim
∫

f̂n(ξ)h(ξ) dξ

= lim
∫

fn(ξ)ĥ(ξ) dξ

=
∫

f(ξ)ĥ(ξ) dξ

=
∫

f̂(ξ)h(ξ) dξ,

showing that f̂ and g agree as L2 functions. (Why?) It follows then
that f̂ ∈ L2 and ‖f̂‖2 = ‖f‖2.

The final equality of the theorem now follows from the polarization
identity in L2(R). That is, for any f, g ∈ L2(R), we have∫

fg = (1/4)
3∑

k=0

ik
∫

(f + ikg)(f + ikg),

which can be verified by expanding the right-hand side.
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REMARK. The Plancherel theorem asserts that the Fourier trans-
form is an isometry in the L2 norm from L1(R)∩L2(R) into L2(R). Since
Schwartz space is in the range of the Fourier transform on L1(R)∩L2(R),
the Fourier transform maps L1(R) ∩ L2(R) onto a dense subspace of
L2(R), whence there exists a unique extension U of the Fourier trans-
form from L1(R)∩L2(R) to an isometry on all of L2(R). This U is called
the L2 Fourier transform. It is an isometry of L2(R) onto itself.

EXERCISE 6.15. (a) Suppose f(x) and xf(x) are both elements of
L2(R). Prove that U(f) is differentiable almost everywhere and compute
[U(f)]′(ξ).

(b) If f is absolutely continuous and both f and f ′ belong to L2(R),
show that f(x) =

∫ x

−∞ f ′(t) dt and that [U(f ′)](ξ) = 2πiξ[U(f)](ξ).
State and prove results for the L2 Fourier transform that are analogous
to parts b and c of Exercise 6.13.

(c) Suppose f is in L2(R) but not L1(R). Assume that for almost every
ξ, the function f(x)e−2πixξ is improperly Riemann integrable. That is,
assume that there exists a function g such that

lim
B→∞

∫ B

−B

f(x)e−2πixξ dx

exists and equals g(ξ) for almost all ξ. Prove that g = U(f).

(d) Define the function f by f(x) = sin(x)/x. Prove that f ∈ L2(R)
but not in L1(R). Show that f is improperly Riemann integrable, and
establish that

lim
B→∞

∫ B

−B

f(x) dx = π.
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HINT: Verify the following equalities:

lim
B→∞

∫ B

−B

f(x) dx = 2 lim
n

∫ π(n+1/2)

0

f(x) dx

= lim
n

∫ π

0

sin((n + 1/2)x)
x/2

dx

= lim
n

∫ π

0

sin((n + 1/2)x)
sin((1/2)x)

dx

= lim
n

∫ π

0

e−i(n+1/2)x − ei(n+1/2)x

e−i(1/2)x − ei(1/2)x
dx

= lim
n

∫ π

0

n∑
k=−n

eikx dx

= π.

(e) Fix a δ > 0, and let fδ(x) = 1/x for |x| ≥ δ. Use part c to show
that

[U(fδ)](ξ) = −isgn(ξ) lim
B→∞

∫
2πδ|ξ|≤|x|≤B

sin(x)/x dx,

where sgn denotes the signum function defined on R by

sgn(t) = 1, for t > 0

sgn(0) = 0

sgn(t) = −1, for t < 0.

Using part d, conclude that [U(fδ)](ξ) is uniformly bounded in both the
variables δ and ξ, and show that

lim
δ→0

[U(fδ)](ξ) = −πisgn(ξ).

(We may say then that the Fourier transform of the non-integrable and
non-square-integrable function 1/x is the function −πisgn.)

EXERCISE 6.16. (Hausdorff-Young Inequality) Suppose f ∈ L1 ∩
Lp for 1 ≤ p ≤ 2. Prove that f̂ ∈ Lp′

, for 1/p + 1/p′ = 1, and that
‖f̂‖p′ ≤ ‖f‖p. HINT: Use the Riesz Interpolation Theorem.

DEFINITION. If u is a tempered distribution, i.e., an element of
S ′, define the Fourier transform û of u to be the linear functional on S
given by

û(f) = u(f̂).
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EXERCISE 6.17. (a) Prove that the Fourier transform of a tem-
pered distribution is again a tempered distribution.

(b) Suppose h is a tempered function in L1(R) (L2(R)), and suppose
that u is the tempered distribution uh. Show that û = uĥ (uU(h)).

(c) If u is the tempered distribution defined by

u(f) = lim
δ→0

∫
|t|≥δ

[f(t)/t] dt,

show that û = u−πisgn. See part b of Exercise 5.8.
(d) If u is a tempered distribution, show that the Fourier transform

of the tempered distribution u′ is the tempered distribution v = mû,
where m is the C∞ tempered function given by m(ξ) = 2πiξ. That is,

û′(f) = v(f) = û(mf).

(e) Suppose u and its distributional derivative u′ are both tempered
distributions corresponding to L2 functions f and g respectively. Prove
that f is absolutely continuous and that f ′(x) = −g(x) a.e.

(f) Suppose both u and its distributional derivative u′ are tempered
distributions corresponding to L2 functions f and g respectively. Assume
that there exists an ε > 0 such that |ξ|(3/2)+εû(ξ) is in L2(R). Prove that
f is in fact a C1 function.

DEFINITION. For vectors x and y in Rn, write (x, y) for the dot
product of x and y. If f ∈ L1(Rn), define the Fourier transform f̂ of f
on Rn by

f̂(ξ) =
∫

Rn

f(x)e−2πi(x,ξ) dx.

EXERCISE 6.18. (a) Prove the Riemann-Lebesgue theorem: If f ∈
L1(Rn), then f̂ ∈ C0(Rn).

(b) Prove the convolution theorem: If f, g ∈ L1(Rn), then

f̂ ∗ g = f̂ ĝ.

Show also that
∫

f̂g =
∫

fĝ.
(c) Let 1 ≤ j ≤ n, and suppose that both f and its partial derivative

∂f

∂xj
belong to L1(Rn). Show that

∂̂f

∂xj
(ξ) = 2πiξj f̂(ξ).
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Generalize this equality to higher order and mixed partial derivatives.
(d) For t > 0 define gt on Rn by

gt(x) = (2πt)−n/2e−‖x‖
2/2t.

Show that
ĝt(ξ) = e−2πt‖ξ‖2 .

(e) Prove the Inversion Theorem for the Fourier transform on L1(Rn);
i.e., if f, f̂ ∈ L1(Rn), show that

f(x) =
∫

Rn

f̂(ξ)e2πi(x,ξ) dξ

for almost all x ∈ Rn.
(f) Prove the Plancherel Formula for the Fourier transform on L2(Rn);

i.e., for f, g ∈ L1(Rn) ∩ L2(Rn), show that∫
fg =

∫
f̂ ĝ.

Verify that the Fourier transform has a unique extension from L1(Rn)∩
L2(Rn) to an isometry from L2(Rn) onto itself. We denote this isometry
by U and call it the L2 Fourier transform on Rn.

EXERCISE 6.19. (The Green’s Function for the Laplacian) Let L
denote the Laplacian on Rn; i.e.,

L(u) =
n∑

i=1

∂2u

∂xi
2
,

for u any almost everywhere twice differentiable function on Rn. Let D
be the space of all functions u ∈ L2(Rn), all of whose first and second
order partial derivatives are continuous and belong to L2(Rn). Think of
L as a mapping of D into L2(Rn). Let D̃ be the set of all f ∈ L2(Rn)
such that ‖ξ‖2U(f)(ξ) belongs to L2(Rn), and define L̃ : D̃ → L2(Rn)
by L̃(f) = U−1(mU(f)), where U denotes the L2 Fourier transform on
Rn, and m is the function defined by m(ξ) = −4π2‖ξ‖2.

(a) Show that D ⊆ D̃, that L̃ is an extension of L, and that the graph
of L̃ is closed.
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(b) Assume that n ≥ 5. Find a Green’s function g for L̃, and observe
that g is also a Green’s function for L. HINT: Set

p(x) = c/(1 + ‖x‖2)(n+2)/2,

find a u0 ∈ D such that L(u0) = L̃(u0) = p. Then use Exercises 6.7 and
6.12.

(c) Extrapolating from the results in part b, find a Green’s function
for the Laplacian in R3 and R4.

(d) Find a Green’s function for the Laplacian in R2 and in R. HINT:
Notice that the Green’s functions in parts b and c satisfy L(g) = 0
except at the origin.

Hilbert Transform on the Line

If m is a bounded measurable function on R, we may define a bounded
operator M on L2 by

M(f) = U−1(mU(f)),

where U denotes the L2 Fourier transform. Such an operator M is called
a multiplier operator or simply a multiplier.

EXERCISE 6.20. Suppose m = f̂ for some L1 function f. Show
that the multiplier operator M is given by

M(g) = f ∗ g.

Note, therefore, that multipliers are generalizations of L1 convolution
operators.

REMARK. Recall from Theorem 6.2 that L1 convolution operators
determine bounded operators on every Lp space (1 ≤ p ≤ ∞). If m is
not the Fourier transform of an L1 function, then the multiplier M (a
priori a bounded operator on L2(R)) may or may not have extensions to
bounded operators on Lp spaces other than p = 2, and it is frequently
important to know when it does have such extensions.

EXERCISE 6.21. Let m be a bounded measurable function on R.
(a) Suppose that the multiplier M, corresponding to the function m,

determines a bounded operator from Lp(R) into itself for every 1 <
p < ∞. Show that the multiplier corresponding to the function m is the
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adjoint M∗ of M, and hence is a bounded operator from Lq(R) into itself
for every 1 < q < ∞.

(b) Prove that the multiplier M, corresponding to the function m,
determines a bounded operator from Lp(R) into itself, for some 1 < p <

∞, if and only if M is a bounded operator from Lp′
(R) into itself, where

1/p + 1/p′ = 1.

Perhaps the most important example of a nontrivial multiplier is the
following.

DEFINITION. Let h denote the function −isgn, where sgn is the
signum function. The Hilbert transform is the multiplier operator H
corresponding to the function h; i.e., on L2(R) we have

H(f) = U−1(−isgnU(f)).

REMARK. In view of the results in Exercises 6.15 and 6.20, we
might expect the Hilbert transform to correspond somehow to convolu-
tion by the nonintegrable function 1/πx. Indeed, this is what we shall
see below.

EXERCISE 6.22. (a) Show that the Hilbert transform has no ex-
tension to a bounded operator on L1. HINT: For f ∈ L1(R)∩L2(R), we
have that U(f) = f̂ is continuous.

(b) Suppose f ∈ L1(R) ∩ L2(R), and f̂ ∈ L1(R). Verify the following
sequence of equalities:

[H(f)](x) = [U−1(−isgnf̂)](x)

= (1/π) lim
δ→0

[U−1(U(fδ)f̂)](x)

= (1/π) lim
δ→0

∫ ∞

−∞
f̂(ξ)[U(fδ)](ξ)e2πixξ dξ

= (1/π) lim
δ→0

∫ ∞

−∞
f(x + t)f∗δ (t) dt

= lim
δ→0

∫
|t|≥δ

f(x− t)/πt dt,

where fδ is the function from part e of Exercise 6.15. Note that this
shows that the operator H can be thought of as a generalization of
convolution, in this case by the nonintegrable function 1/πx.
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(c) Verify that if f is a real-valued function in L1(R) ∩ L2(R), and if
f̂ is in L1(R), then H(f) also is real-valued.

EXERCISE 6.23. (a) For each positive real number y, define the
function gy by

gy(ξ) = e−2πy|ξ|.

Show that
sgn(ξ)gy(ξ) = (−1/2πy)g′y(ξ)

for every y > 0 and every ξ 6= 0.
(b) Let f be a Schwartz function. For any real x, let fx denote the

function defined by
fx(y) = f(x + y).

Verify the following sequence of equalities:

[H(f)](x) = lim
y→0

(i/2πy)[U−1(g′y f̂)](x)

= lim
y→0

(i/2πy)
∫ ∞

−∞
g′y(ξ)f̂(ξ)e2πixξ dξ

= lim
y→0

(−i/2πy)
∫ ∞

−∞
gy(ξ)f̂x

′
(ξ) dξ

= lim
y→0

(−i/2πy)
∫ ∞

−∞
ĝy(t)(−2πit)fx(t) dt

= lim
y→0

∫ ∞

−∞

t/π

t2 + y2
f(x− t) dt.

Note again that the Hilbert transform can be regarded as a kind of
convolution by 1/πx.

THEOREM 6.9. The Hilbert transform determines a bounded oper-
ator from Lpinto itself, for each 1 < p < ∞.

PROOF. Given a 1 < p < ∞, it will suffice to prove that there exists
a positive constant cp such that

‖H(f)‖p ≤ cp‖f‖p

for all real-valued, C∞ functions f having compact support. (Why?)
First, let n be a positive integer, and let p = 2n. For such a fixed real-
valued, C∞ function f having compact support, define a function F of
a complex variable z = x + iy by

F (z) = (1/πi)
∫ ∞

−∞
f(t)/(t− z) dt.
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Then F is analytic at each point z = x+ iy for y > 0 (it has a derivative
there). It follows easily that there exists a constant c for which

|F (x + iy)| ≤ c/y (6.4)

for all x and all y > 0, and

|F (x + iy)| ≤ c/|x| (6.5)

for all y > 0 and all sufficiently large x. (See Exercise 6.24 below.)
If we write F = U + iV, then since f is real-valued we have

U(x + iy) =
∫ ∞

−∞

y/π

y2 + (x− t)2
f(t) dt

and

V (x + iy) =
∫ ∞

−∞

(x− t)/π

(x− t)2 + y2
f(t) dt.

Then, by Exercises 6.7 and 6.23, we have that for every real x

f(x) = lim
y→0

U(x + iy),

and
[H(f)](x) = lim

y→0
V (x + iy).

We fix a sequence {yj} converging to 0 and define Uj(x) = U(x + iyj)
and Vj(x) = V (x + iyj). Then f = lim Uj and H(f) = lim Vj .

Because F is analytic in the upper half plane, and because of inequal-
ities (6.4) and (6.5), we have that∫ ∞

−∞
F 2n(x + iy) dx = 0 (6.6)

for each positive y. (See Exercise 6.24.) Hence∫ ∞

−∞
<(F 2n)(x + iy) dx = 0

for every positive y.
From trigonometry, we see that there exist positive constants an and

bn such that

sin2n(θ) ≤ an cos2n(θ) + (−1)nbn cos(2nθ)
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for all real θ. Indeed, choose bn so that this is true for θ near π/2 and
then choose an so the inequality holds for other θ’s. It follows then that
for any complex number z we have

=(z)2n ≤ an<(z)2n + (−1)nbn<(z2n).

So, we have that

V (x + iy)2n ≤ anU(x + iy)2n + (−1)nbn<(F 2n(x + iy)),

whence ∫ ∞

−∞
V (x + iy)2n dx ≤ an

∫ ∞

−∞
U(x + iy)2n dx

implying that ∫ ∞

−∞
|Vj(x)|2n dx ≤ an

∫ ∞

−∞
|Uj(x)|2n dx

for all j. So, by the dominated convergence theorem and part b of Ex-
ercise 6.7, ∫ ∞

−∞
|[H(f)](x)|p dx ≤ an

∫ ∞

−∞
|f(x)|p dx,

and
‖H(f)‖p ≤ a1/p

n ‖f‖p,

where p = 2n.
We have thus shown that the Hilbert transform determines a bounded

operator from Lp into itself, for p of the form 2n. By the Riesz Interpo-
lation Theorem, it follows then that the Hilbert transform determines a
bounded operator from Lp into itself, for 2 ≤ p < ∞. The proof can now
be completed by appealing to Exercise 6.21 for the cases 1 < p < 2.

EXERCISE 6.24. (a) Show that any constant c ≥
∫
|f(t)| dt will

satisfy inequality (6.4). Supposing that f is supported in the interval
[−a, a], show that any constant c ≥ 2

∫
|f(t)| dt will satisfy inequality

(6.5) if |x| ≥ 2a.
(b) Establish Equation (6.6) by integrating around a large square

contour.
(c) Let m be the characteristic function of an open interval (a, b),

where −∞ ≤ a < b ≤ ∞. Prove that the multiplier M, corresponding to
m determines a bounded operator on every Lp for 1 < p < ∞. HINT:
Write m as a finite linear combination of translates of −isgn.

(d) Let m be the characteristic function of the set E = ∪n[2n, 2n +
1]. Verify that the multiplier M corresponding to m has no bounded
extension to any Lp space for p 6= 2.


