CHAPTER IV

NORMED LINEAR SPACES AND BANACH SPACES

DEFINITION A Banach space is a real normed linear space that is a
complete metric space in the metric defined by its norm. A complex
Banach space is a complex normed linear space that is, as a real normed
linear space, a Banach space. If X is a normed linear space, x is an
element of X, and § is a positive number, then Bs(x) is called the ball
of radius ¢ around x, and is defined by Bs(z) = {y € X : |ly — z| < ¢}
The closed ball Bs(z) of radius ¢ around z is defined by Bs(z) = {y €
X : |ly — || £ 6}. By Bs and Bs we shall mean the (open and closed)
balls of radius ¢ around 0.

Two normed linear spaces X and Y are isometrically isomorphic if
there exists a linear isomorphism 7" : X — Y which is an isometry of X
onto Y. In this case, T is called an isometric isomorphism.

If Xi,...X,, are n normed linear spaces, we define a norm on the
(algebraic) direct sum X = €., X; by

Nor,- - @)l = mib ]|

This is frequently called the max norm.

Our first order of business is to characterize those locally convex topo-
logical vector spaces whose topologies are determined by a norm, i.e.,
those locally convex topological vector spaces that are normable.

DEFINITION. Let X be a topological vector space. A subset S C
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X is called bounded if for each neighborhood W of 0 there exists a
positive scalar ¢ such that S C cW.

THEOREM 4.1. (Characterization of Normable Spaces) Let X be
a locally convex topological vector space. Then X is a normable vector
space if and only if there exists a bounded convex neighborhood of 0.

PROOF. If X is a normable topological vector space, let || - || be a
norm on X that determines the topology. Then B is clearly a bounded
convex neighborhood of 0.

Conversely, let U be a bounded convex neighborhood of 0 in X. We
may assume that U is symmetric, since, in any event, U N (=U) is also
bounded and convex. Let p be the seminorm (Minkowski functional) on
X associated to U as in Theorem 3.6. We show first that p is actually a
norm.

Thus, let  # 0 be given, and choose a convex neighborhood V of 0
such that = ¢ V. Note that, if tx € V, then |t/ < 1. Choose ¢ > 0 so
that U C ¢V, and note that if tx € U, then tz € ¢V, whence |t| < c.
Therefore, recalling the definition of p(z),

1

()= ———
Supt>0,tz€Ut’

we see that p(z) > 1/c > 0, showing that p is a norm.

We must show finally that the given topology agrees with the one
defined by the norm p. Since, by Theorem 3.6, p is continuous, it fol-
lows immediately that B. = p~!(—oc,¢€) is open in the given topol-
ogy, showing that the topology defined by the norm is contained in the
given topology. Conversely, if V' is an open subset of the given topol-
ogy and x € V, let W be a neighborhood of 0 such that x + W C V.
Choose ¢ > 0 so that U C ¢W. Again using Theorem 3.6, we see that
By = p~*(—00,1) CU C cW, whence By, = p~!(—00,(1/c)) € W, and
x + By, € V. This shows that V' is open in the topology defined by the
norm. Q.E.D.

EXERCISE 4.1. (a) (Characterization of Banach Spaces) Let X be
a normed linear space. Show that X is a Banach space if and only if
every absolutely summable infinite series in X is summable in X. (An
infinite series ) @, is absolutely summable in X if > ||, || < co.) HINT:
If {y, } is a Cauchy sequence in X, choose a subsequence {ys, } for which
Hynk ~ Ynpga H <27k

(b) Use part a to verify that all the spaces LP(R), 1 < p < oo, are
Banach spaces, as is Cp(A).
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(c) If ¢o is the set of all sequences {a,}, n = 0,1,..., satisfying
lima,, = 0, and if we define ||{a, }|| = max |a,|, show that ¢ is a Banach
space.

(d) Let X be the set of all continuous functions on [0, 1], which are
differentiable on (0,1). Set ||f|| = sup,ep 1 |f(#)]. Show that X is a
normed linear space but is not a Banach space.

(e) If Xy,...,X, are normed linear spaces, show that the direct sum
@D."_, X, equipped with the max norm, is a normed linear space. If each
X; is a Banach space, show that @, X; is a Banach space.

(f) Let X3,..., X, be normed linear spaces. Let = (x1,... ,2,) be
in @, X;, and define ||z[/; and ||z|]2 by

n
el = llill,
i=1

and
n
lzlla = | D sl
i=1
Prove that both || - ||y and | - ||2 are norms on @, X;. Show further
that

[zl < llzlle < [lzlly < nz]]

(g) Let {X;} be an infinite sequence of nontrivial normed linear
spaces. Prove that the direct product [ X; is a metrizable, locally con-
vex, topological vector space, but that there is no definition of a norm on
[T X; that defines its topology. HINT: In a normed linear space, given
any bounded set A and any neighborhood U of 0, there exists a number
t such that A C tU.

EXERCISE 4.2. (Schwartz Space S is Not Normable) Let S denote
Schwartz space, and let {p,,} be the seminorms (norms) that define the
topology on S :

— 3 £(@)
palf) =sup max o’ f(z)].
(a) If V is a neighborhood of 0 in S, show that there exists an integer
n and an € > 0 such that p, !(—o0,€) C V;i.e., if p,(h) <€, then h € V.
(b) Given the nonnegative integer n from part a, show that there
exists a C function g such that g(z) = 1/2"+/2 for x > 2. Note that

Ja®(2)] <
St;poggénlwg (z)| < oo.
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(Of course, g is not an element of S.)

(c) Let n be the integer from part a and let f be a C*° function with
compact support such that |f(z)] < 1 for all  and f(0) = 1. For each
integer M > 0, define gps(x) = g(x)f(x — M), where g is the function
from part b. Show that each gy € & and that there exists a positive
constant ¢ such that p,(gar) < ¢ for all M; i.e., (e/c)gn € V for all M.
Further, show that for each M > 2, p,1(gar) > VM.

(d) Show that the neighborhood V of 0 from part a is not bounded
in S. HINT: Define W to be the neighborhood p;, ;,(—00,1), and show
that no multiple of W contains V.

(e) Conclude that S is not normable.

THEOREM 4.2. (Subspaces and Quotient Spaces) Let X be a Ba-
nach space and let M be a closed linear subspace.

(1) M is a Banach space with respect to the restriction to M of the
norm on X.
(2) If x + M is a coset of M, and if ||z + M|| is defined by

|z + M| = inf [yl = inf [z+m],
yex+M meM

then the quotient space X/M is a Banach space with respect to
this definition of norm.

(3) The quotient topology on X/M agrees with the topology deter-
mined by the norm on X/M defined in part 2.

PROOF. M is certainly a normed linear space with respect to the
restricted norm. Since it is a closed subspace of the complete metric
space X, it is itself a complete metric space, and this proves part 1.

We leave it to the exercise that follows to show that the given defini-
tion of ||z + M|| does make X/M a normed linear space. Let us show
that this metric space is complete. Thus let {z, + M} be a Cauchy
sequence in X/M. It will suffice to show that some subsequence has a
limit in X/M. We may replace this Cauchy sequence by a subsequence
for which

[@ass + M) = 0+ M) = (s —20) + M| < 270D,
Then, we may choose elements {y,} of X such that for each n > 1 we

have
Yn S (xn+1 - xn) + Ma
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and [ly,|| < 2=*+D. We choose yo to be any element of z; + M. If

N = Zﬁ;o Yn, then it follows routinely that {zx} is a Cauchy sequence
in X, whence has a limit z. We claim that z + M is the limit of the
sequence {zx + M}. Indeed,

1z + M) = (zn + M)[| = [[(z — zn) + M|

inf y]l.
—IN)+M

ye(z

Since z = Yo% yn, and since Y0 yn € ay + M, It follows that
>0 N Yn € (2 —xn) + M. Therefore,

Iz + M) = (ax + M <11 D wal
n=N

(oo}
Z 9—(n+1)
N

n=
_9—N
=2 ,

IA

completing the proof of part 2.
We leave part 3 to the exercise that follows.

EXERCISE 4.3. Let X and M be as in the preceding theorem.

(a) Verify that the definition of ||z + M]||, given in the preceding
theorem, makes X /M into a normed linear space.

(b) Prove that the quotient topology on X/M agrees with the topol-
ogy determined by the norm on X/M.

(c) Suppose X is a vector space, p is a seminorm on X, and M = {x :
p(z) = 0}. Prove that M is a subspace of X. Define p on X/M by

plx+M) = nirelg/[p(x—km).

Show that p is a norm on the quotient space X/M.

EXERCISE 4.4. (a) Suppose X and Y are topologically isomorphic
normed linear spaces, and let S denote a linear isomorphism of X onto
Y that is a homeomorphism. Prove that there exist positive constants
(1 and C5 such that

lz]| < C1[IS(2)]]

and
[S(@)[| < Callz|]
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for all € X. Deduce that, if two norms || - ||; and || - || determine
identical topologies on a vector space X, then there exist constants C
and C5 such that

[z][1 < Cil[zl]2 < Caf|z|x

for all x € X.

(b) Suppose S is a linear transformation of a normed linear space
X into a topological vector space Y. Assume that S(B;) contains a
neighborhood U of 0 in Y. Prove that S is an open map of X onto Y.

We come next to one of the important applications of the Baire cat-
egory theorem in functional analysis.

THEOREM 4.3. (Isomorphism Theorem) Suppose S is a continuous
linear isomorphism of a Banach space X onto a Banach space Y. Then
S~ is continuous, and X and Y are topologically isomorphic.

PROOF. For each positive integer n, let A,, be the closure in Y of
S(B,). Then, since S is onto, Y = UA,,. Because Y is a complete metric
space, it follows from the Baire category theorem that some A,, say
AN, must have nonempty interior. Therefore, let yo € ¥ and € > 0
be such that B.(yp) C An. Let zp € X be the unique element for
which S(x0) = yo, and let k be an integer larger than ||z¢||. Then An4g
contains Ay — o, so that the closed set Ay contains B.(0). This
implies that if w € Y satisfies ||w|| < ¢, and if § is any positive number,
then there exists an z € X for which ||S(z) —w|| < ¢ and ||z|| < N + k.
Write M = (N + k)/e. It follows then by scaling that, given any w € Y
and any ¢ > 0, there exists an z € X such that ||S(z) — w|| < § and
|z]] < M||w||. We will use the existence of such an x recursively below.

We now complete the proof by showing that

1S~ (w)]| < 2M |||

for all w € Y, which will imply that S~! is continuous. Thus, let w € Y’
be given. We construct sequences {x,}, {w,} and {d,} as follows: Set
wy = w, 1 = ||lw||/2, and choose 1 so that ||w; — S(z1)|| < d1 and
|z1]] < M||lwy]]. Next, set wy = wy — S(x1), d2 = ||w]||/4, and choose
x9 such that ||wy — S(x2)|| < 02 and |jza]| < Mws| < (M/2)|w]|.
Continuing inductively, we construct the sequences {w, }, {d,} and {z,}
so that
Wp = Wp—-1 — S(xn—l)a

On = [lwl|/2",
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and z,, so that
[wn — S(xn)|| < 6n

and
[zl < Mllw,|| < (M/2"1)||w].

It follows that the infinite series > x, converges in X, its sequence
of partial sums being a Cauchy sequence, to an element x and that
]| < 2M|jw|. Also, w, = w — 7= S(x;). So, since S is continuous
and 0 = limw,, we have that S(z) = S(} o &) = > ney S(z,) = w.
Finally, for any w € Y, we have that

IS~ (W)l = [lll < 2M||w],

and the proof is complete.

THEOREM 4.4. (Open Mapping Theorem) Let T be a continuous
linear transformation of a Banach space X onto a Banach space Y. Then
T is an open map.

PROOF. Since T is continuous, its kernel M is a closed linear sub-
space of X. Let S be the unique linear transformation of X/M onto Y
satisfying T' = S o, where 7 denotes the natural map of X onto X/M.
Then, by Theorems 3.4 and 4.2, S is a continuous isomorphism of the
Banach space X/M onto the Banach space Y. Hence, S is an open map,
whence T is an open map.

THEOREM 4.5. (Closed Graph Theorem) Suppose T is a linear
transformation of a Banach space X into a Banach space Y, and assume
that the graph G of T is a closed subset of the product Banach space
X xY=X®Y. Then T is continuous.

PROOF. Since the graph G is a closed linear subspace of the Banach
space X @Y, it is itself a Banach space in the restricted norm (max
norm) from X @Y. The map S from G to X, defined by S(z,T(z)) = =,
is therefore a norm-decreasing isomorphism of G onto X. Hence S~! is
continuous by the Isomorphism Theorem. The linear transformation P
of X @Y into Y, defined by P(z,y) = y, is norm-decreasing whence
continuous. Finally, T'= P o S~ and so is continuous.

EXERCISE 4.5. (a) Let X be the vector space of all continuous
functions on [0, 1] that have uniformly continuous derivatives on (0, 1).
Define a norm on X by || f|| = supge,o1 |f(@)| + supgeyq | f'(z)]. Let
Y be the vector space of all uniformly continuous functions on (0,1),
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equipped with the norm || f|| = supg.,.; |f(x)|. Define T : X — Y by
T(f) = f'. Prove that X and Y are Banach spaces and that T is a
continuous linear transformation.

(b) Now let X be the vector space of all absolutely continuous func-
tions f on [0,1], for which f(0) = 0 and whose derivative f’ is in LP
(for some fixed 1 < p < o0). Define a norm on X by || f|| = ||f||p- Let
Y = LP, and define T : X — Y by T(f) = f’. Prove that T is not
continuous, but that the graph of T is closed in X x Y. How does this
example relate to the preceding theorem?

(c) Prove analogous results to Theorems 4.3, 4.4, and 4.5 for locally
convex, Fréchet spaces.

DEFINITION. Let X and Y be normed linear spaces. By L(X,Y)
we shall mean the set of all continuous linear transformations from X
into Y. We refer to elements of L(X,Y) as operators from X to Y.

If T € L(X,Y), we define the norm of T, denoted by ||T||, by

IT|| = sup [|T(z)].

llzll<1

EXERCISE 4.6. Let X and Y be normed linear spaces.
(a) Let T be a linear transformation of X into Y. Verify that T €
L(X,Y) if and only if

1Tl = sup [[T(z)] < oo
el <1

(b) Let T be in L(X,Y). Show that the norm of T is the infimum of
all numbers M for which ||T'(z)|| < M||z| for all z € X.
(c) For each x € X and T € L(X,Y), show that || T(x)| < ||T||||=]-

THEOREM 4.6. Let X and Y be normed linear spaces.

(1) The set L(X,Y) is a vector space with respect to pointwise addi-
tion and scalar multiplication. If X and Y are complex normed
linear spaces, then L(X,Y) is a complex vector space.

(2) L(X,Y), equipped with the norm defined above, is a normed lin-
ear space.

(3) If Y is a Banach space, then L(X,Y) is a Banach space.

PROOF. We prove part 3 and leave parts 1 and 2 to the exercises.
Thus, suppose Y is a Banach space, and let {T},} be a Cauchy sequence
in L(X,Y). Then the sequence {||T},||} is bounded, and we let M be a
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number for which ||T,,|| < M for all n. For each x € X, we have that
(T (x) — T ()| < | Th — T |||z, whence the sequence {T,,(x)} is a
Cauchy sequence in the complete metric space Y. Hence there exists an
element T'(z) € Y such that T'(x) = lim T, (z). This mapping 7', being
the pointwise limit of linear transformations, is a linear transformation,
and it is continuous, since ||T'(z)|| = lim || T, (2)|| < M]||z||. Consequently,
T is an element of L(X,Y).

We must show finally that T is the limit in L(X,Y") of the sequence
{T,}. To do this, let € > 0 be given, and choose an N such that ||T,, —
Tl <e€/2ifn,m>N.If x € X and ||z|| <1, then

T () — Ty ()|l <limsup ||T(x) — Ton ()| + limsup || T, (z) — T (2)]|
<0+ limsup || T — Tulll|«||

< €/2,

whenever n > N. Since this is true for an arbitrary x for which ||z|| <1,
it follows that

IT-T.|<e/2<e¢
whenever n > N, as desired.
EXERCISE 4.7. Prove parts 1 and 2 of Theorem 4.6.

The next theorem gives another application to functional analysis of
the Baire category theorem.

THEOREM 4.7. (Uniform Boundedness Principle) Let X be a Ba-
nach space, let Y be a normed linear space, and suppose {T,} is a
sequence of elements in L(X,Y). Assume that, for each x € X, the se-
quence {T,(x)} is bounded in Y. (That is, the sequence {T,,} is pointwise
bounded.) Then there exists a positive constant M such that |T,| < M
for all n. (That is, the sequence {T},} is uniformly bounded.)

PROOF. For each positive integer j, let A; be the set of all x €
X such that ||T,(z)|| < j for all n. Then each A; is closed (4; =
N.T,, 1 (B;)), and X = UA;. By the Baire category theorem, some A;,
say Aj, has nonempty interior. Let € > 0 and zg € X be such that A,
contains Be(xg). It follows immediately that A; — 29 C Asy, from which
it follows that Aoy contains B.. Hence, if ||z| < €, then ||T,,(2)| < 2J
for all n.
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Now, given a nonzero x € X, we write z = (¢/2||z||)x. So, for any n,

ITn(2)ll = Cllzll/)NTn ()]
< (2f|=l/e)(2J)
= Mz,

where M = 4.J/e. It follows then that ||T,,|| < M for all n, as desired.

THEOREM 4.8. Let X be a Banach space, let Y be a normed lin-
ear space, let {T,} be a sequence of elements of L(X,Y), and suppose
that {T,,} converges pointwise to a function T : X — Y. Then T is a
continuous linear transformation of X into Y; i.e., the pointwise limit
of a sequence of continuous linear transformations from a Banach space
into a normed linear space is continuous and linear.

PROOF. It is immediate that the pointwise limit (when it exists) of
a sequence of linear transformations is again linear. Since any convergent
sequence in Y, e.g., {T,(z)}, is bounded, it follows from the preceding
theorem that there exists an M so that ||T,|| < M for all n, whence
|7 (z)|| < M||z|| for all n and all x € X. Therefore, ||T(z)|| < M|zl
for all x, and this implies that T is continuous.

EXERCISE 4.8. (a) Extend the Uniform Boundedness Principle
from a sequence to a set S of elements of L(X,Y).

(b) Restate the Uniform Boundedness Principle for a sequence { f,,} of
continuous linear functionals, i.e., for a sequence in L(X,R) or L(X,C).

(c) Let ¢, denote the vector space of all sequences {a;}, j=1,2,...
that are eventually 0, and define a norm on ¢, by

[[{a; }| = max|a,].

Define a linear functional f, on ¢, by f,.({a;}) = na,. Prove that the se-
quence {f,} is a sequence of continuous linear functionals that is point-
wise bounded but not uniformly bounded in norm. Why doesn’t this
contradict the Uniform Boundedness Principle?

(d) Let ¢ be as in part ¢. Define a sequence { f,,} of linear functionals
on c. by fu({a;}) = >7_; a;. Show that {f,} is a sequence of continu-
ous linear functionals that converges pointwise to a discontinuous linear
functional. Why doesn’t this contradict Theorem 4.87

(e) Let ¢y denote the Banach space of sequences ag,aq, ... for which
lim a,, = 0, where the norm on ¢ is given by

[{an}|| = max{ay|.
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If a ={n; <ng <...<ng}is a finite set of positive integers, define f,
on ¢y by

fal{a;}) = for,. e ({as}) = niay,.

Show that each f, is a continuous linear functional on cjy.

(f) Let D denote the set consisting of all the finite sets & = {n; < n2 <
... < ni} of positive integers. Using inclusion as the partial ordering on
D, show that D is a directed set, and let {f,} be the corresponding net
of linear functionals, as defined in part e, on c¢y. Show that lim,, f, = 0.
Show also that the net {f,} is not uniformly bounded in norm. Explain
why this does not contradict part a of this exercise.

DEFINITION. A Banach algebra is a Banach space A on which
there is also defined a binary operation x of multiplication that is asso-
ciative, (left and right) distributive over addition, satisfies

Az xy) = (Az) xy =2 x (\y)

for all scalars A and all z,y € A, and for which ||zy| < ||z||||y| for all
z,y € A.

EXERCISE 4.9. Let X be a Banach space. Using composition of
transformations as a multiplication, show that L(X,X) is a Banach
algebra.

EXERCISE 4.10. Let X be the Banach space R? with respect to

the usual norm
2]l = [|(z1, z2) || = \/@F + a3,

and let (1,0) and (0, 1) be the standard basis for X. Let T be an element

of L(X, X), and represent T by a 2 x 2 matrix (‘z Z) . Compute the norm

of T in terms of a, b, ¢,d. Can you do the same for X = R3?

EXERCISE 4.11. Let X be a normed linear space, let Y be a dense
subspace of X, and let Z be a Banach space.

(a) If T € L(Y, Z), show that there exists a unique element 7" €
L(X,Z) such that the restriction of 77 to Y is T. That is, T has a
unique continuous extension to all of X.

(b) Show that the map T' — T”, of part a, is an isometric isomorphism
of L(Y, Z) onto L(X, Z).

(c) Suppose {T},} is a uniformly bounded sequence of elements of
L(X,Z). Suppose that the sequence {T,,(y)} converges for every y € Y.
Show that the sequence {T;,(x)} converges for every z € X.
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EXERCISE 4.12. Let X be a normed linear space, and let X denote
the completion of the metric space X (e.g., the space of equivalence
classes of Cauchy sequences in X). Show that X is in a natural way a
Banach space with X isometrically imbedded as a dense subspace.

THEOREM 4.9. (Hahn-Banach Theorem, Normed Linear Space
Version) Let Y be a subspace of a normed linear space X. Suppose
f is a continuous linear functional on Y’ i.e., f € L(Y,R). Then there
exists a continuous linear functional g on X, i.e., an element of L(X,R),
such that

(1) g is an extension of f.

@) llgll = [I71-

PROOF. If pis defined on X by p(z) = || f||||z]|, then p is a seminorm
on X. Clearly,

F) <) < 1Flyll = ply)

for all y € Y. By the seminorm version of the Hahn-Banach Theorem,
there exists a linear functional g on X, which is an extension of f, such
that g(z) < p(z) = ||fllllz|l, for all x € X, and this implies that g is
continuous, and ||g|| < || f]|. Obviously ||g|| > || f|| since g is an extension

of f.

EXERCISE 4.13. (a) Let X be a normed linear space and let = €
X. Show that [|z|| = sup; f(z), where the supremum is taken over all
continuous linear functionals f for which || f|] < 1. Show, in fact, that
this supremum is actually attained.

(b) Use part a to derive the integral form of Minkowski’s inequality.
That is, if (X, u) is a o-finite measure space, and F(z,y) is a g X p-
measurable function on X x X, then

(1] Pl an < [( [ 1FGo)p o>y,

where 1 < p < 0.

(c¢) Let 1 < p < o0, and let X be the complex Banach space LP(R).
Let p’ be such that 1/p+ 1/p’ = 1, and let D be a dense subspace of
L (R). If f € X, show that

I£lp = sup | / f(@)g(x) da.

gl =
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EXERCISE 4.14. Let X and Y be normed linear spaces, and let
T € L(X,Y). Prove that the norm of T is given by

1T = Sup sup |f(T())l,

where the supremum is taken over all z € X, ||z|| < landall f € L(Y,R)
for which || f|| < 1.

We close this chapter with a theorem from classical analysis.

THEOREM 4.10. (Riesz Interpolation Theorem) Let D be the lin-
ear space of all complex-valued measurable simple functions on R that
have compact support, and let T be a linear transformation of D into
the linear space M of all complex-valued measurable functions on R. Let

1 < pg < p1 < oo be given, and suppose that:

(1) There exist numbers qo and mg, with 1 < g < oo, such that
1T()lgo < mollfllp, for all f € D; i.e., T has a unique extension
to a bounded operator Ty from LP° into L%, and ||Tp|| < my.

(2) There exist numbers q; and mq, with 1 < ¢; < oo, such that
IT(f)llgg < ma||fllp, for all f € D;i.e., T has a unique extension

to a bounded operator Ty from LP* into L9, and |T1|| < m;.

Let p satisty po < p < p1, and define t € (0,1) by

1/p=(1~1t)/po+t/p1;

ie.,
_ 1/p—1/po
C1/pi—1/po’
Now define q by
1/g=0—1)/q+t/q
Then
IT()llq < mpllfllp,

for all f € D, where

o1t ¢
my =my  my.

Hence, T' has a unique extension to a bounded operator T, from L? into
L9, and T, < m,.

PROOF. For any 1 < r < oo, we write 7’ for the conjugate number
defined by 1/r + 1/ = 1. Let f € D be given, and suppose that
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If]l, = 1. If the theorem holds for all such f, it will hold for all f € D.
(Why?) Because T'(f) belongs to L% and to L9 by hypothesis, it follows
that T(f) € L9, so that it is only the inequality on the norms that we
must verify. We will show that | [[T'(f)](y)g(y)dy| < m,, whenever
g € DN LY with ||g|, = 1. This will complete the proof (see Exercise

4.13). Thus, let g be such a function. Write f = Z;—;l ajxa,; and

9= pqbexn,, for {A;} and {B;} disjoint bounded measurable sets
and a; and b;, nonzero complex numbers.
For each z € C, define

a(z) = (1=2)/po+ 2/p1

and
B(2) = (1 —2)/qp + 2/q1-

Note that a(t) = 1/p and 5(t) = 1/q’.

We extend the definition of the signum function to the complex plane
as follows: If A is a nonzero complex number, define sgn(\) to be A/|A|.
For each complex z, define the simple functions

n
f2 =" sen(a;)a;|*/ Wy 4,
j=1

and .
gz =Y san(by) by | " POy,
k=1

and finally put
F(z) = / () w)g- (v) dy
=3 sen(ay)sen(be) as 7|y | 4G / T (0a )| @)x, (v) dy

j=1k=1

n m
djrz
= E cjpete,

j=1k=1

where the cj;,’s are complex numbers and the d;;’s are real numbers.
Observe that F' is an entire function of the complex variable z, and
that it is bounded on the closed strip 0 < Rz < 1. Note also that
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JIT(N](y)g(y) dy, the quantity we wish to estimate, is precisely F(t).
Observe next that

sup [ (is)
seR

sup | / (T'(fis)](v)gis(y) dy|

IN

sup( / T (fis)) ()] dy) /20 / 1910 ()] % )/

< supmo| fisllpo l1gisllq
S

supmal [ 3 (a0, () dy) /7
J

A

y (/Z |([be|%85/8E [y (1) )%
k
—mosup [ 3 Jajlxa, (0) dy)
j

< I ) )
k

!’ !
= mo|| f|[2/7|g]|2/

= my.
By a similar calculation, we see that

sup |F(1 4+ is)| < my.
seR

The proof of the theorem is then completed by appealing to the lemma
from complex variables that follows.

LEMMA. Suppose F is a complex-valued function that is bounded
and continuous on the closed strip 0 < Rz < 1 and analytic on the open
strip 0 < Rz < 1. Assume that mg and mq are real numbers satisfying

mo > sup |F(is)]

seR
and
my > sup [F (1 + is)|.
seR
Then

sup |F(t +is)| < my~'m}
seR
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forall0 <t <1.

PROOF. We may assume that mg and m, are positive. Define a
function G on the strip 0 < Rz <1 by

G(2) = F(2)/m§~*m3.

Then G is continuous and bounded on this strip and is analytic on the
open strip 0 < Rz < 1. It will suffice to prove that

sup |G(t+1is)| < 1.
seR

For each positive integer n, define Gy (z) = G(z)eZQ/”. Then each
function G,, is continuous and bounded on the strip 0 < Rz < 1 and
analytic on the open strip 0 < Rz < 1. Also, G(z) = lim G,,(z) for all z
in the strip. It will suffice then to show that lim |G, (2)| < 1 for each z
for which 0 < Rz < 1. Fix z9 = xg + iyo in the open strip, and choose
aY > |yo| such that |Gn(2)| = |Gulz + iy)| = |G(z)|e"—¥)/n < 1
whenever |y| > Y. Let T' be the rectangular contour determined by the
four points (0,—Y), (1,-Y), (1,Y), and (0,Y). Then, by the Maximum
Modulus Theorem, we have

G(20)] < max |G (2)

< max(1,sup |G, (1 +is)| , 1,sup|G,(is)|)
seR seR

_ 61/77,7

proving that lim |G, (20)| < 1, and this completes the proof of the lemma.

EXERCISE 4.15. Verify that the Riesz Interpolation Theorem holds
with R replaced by any regular o-finite measure space.



