
CHAPTER IV

NORMED LINEAR SPACES AND BANACH SPACES

DEFINITION A Banach space is a real normed linear space that is a
complete metric space in the metric defined by its norm. A complex
Banach space is a complex normed linear space that is, as a real normed
linear space, a Banach space. If X is a normed linear space, x is an
element of X, and δ is a positive number, then Bδ(x) is called the ball
of radius δ around x, and is defined by Bδ(x) = {y ∈ X : ‖y − x‖ < δ}.
The closed ball Bδ(x) of radius δ around x is defined by Bδ(x) = {y ∈
X : ‖y − x‖ ≤ δ}. By Bδ and Bδ we shall mean the (open and closed)
balls of radius δ around 0.

Two normed linear spaces X and Y are isometrically isomorphic if
there exists a linear isomorphism T : X → Y which is an isometry of X
onto Y. In this case, T is called an isometric isomorphism.

If X1, . . . Xn are n normed linear spaces, we define a norm on the
(algebraic) direct sum X =

⊕n
i=1 Xi by

‖(x1, . . . , xn)‖ =
n

max
i=1

‖xi‖.

This is frequently called the max norm.

Our first order of business is to characterize those locally convex topo-
logical vector spaces whose topologies are determined by a norm, i.e.,
those locally convex topological vector spaces that are normable.

DEFINITION. Let X be a topological vector space. A subset S ⊆

65



66 CHAPTER IV

X is called bounded if for each neighborhood W of 0 there exists a
positive scalar c such that S ⊆ cW.

THEOREM 4.1. (Characterization of Normable Spaces) Let X be
a locally convex topological vector space. Then X is a normable vector
space if and only if there exists a bounded convex neighborhood of 0.

PROOF. If X is a normable topological vector space, let ‖ · ‖ be a
norm on X that determines the topology. Then B1 is clearly a bounded
convex neighborhood of 0.

Conversely, let U be a bounded convex neighborhood of 0 in X. We
may assume that U is symmetric, since, in any event, U ∩ (−U) is also
bounded and convex. Let ρ be the seminorm (Minkowski functional) on
X associated to U as in Theorem 3.6. We show first that ρ is actually a
norm.

Thus, let x 6= 0 be given, and choose a convex neighborhood V of 0
such that x /∈ V. Note that, if tx ∈ V, then |t| < 1. Choose c > 0 so
that U ⊆ cV, and note that if tx ∈ U, then tx ∈ cV, whence |t| < c.
Therefore, recalling the definition of ρ(x),

ρ(x) =
1

supt>0,tx∈U t
,

we see that ρ(x) ≥ 1/c > 0, showing that ρ is a norm.
We must show finally that the given topology agrees with the one

defined by the norm ρ. Since, by Theorem 3.6, ρ is continuous, it fol-
lows immediately that Bε = ρ−1(−∞, ε) is open in the given topol-
ogy, showing that the topology defined by the norm is contained in the
given topology. Conversely, if V is an open subset of the given topol-
ogy and x ∈ V, let W be a neighborhood of 0 such that x + W ⊆ V.
Choose c > 0 so that U ⊆ cW. Again using Theorem 3.6, we see that
B1 = ρ−1(−∞, 1) ⊆ U ⊆ cW, whence B1/c = ρ−1(−∞, (1/c)) ⊆ W, and
x + B1/c ⊆ V. This shows that V is open in the topology defined by the
norm. Q.E.D.

EXERCISE 4.1. (a) (Characterization of Banach Spaces) Let X be
a normed linear space. Show that X is a Banach space if and only if
every absolutely summable infinite series in X is summable in X. (An
infinite series

∑
xn is absolutely summable in X if

∑
‖xn‖ < ∞.) HINT:

If {yn} is a Cauchy sequence in X, choose a subsequence {ynk
} for which

‖ynk
− ynk+1‖ < 2−k.

(b) Use part a to verify that all the spaces Lp(R), 1 ≤ p ≤ ∞, are
Banach spaces, as is C0(∆).
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(c) If c0 is the set of all sequences {an}, n = 0, 1, . . . , satisfying
lim an = 0, and if we define ‖{an}‖ = max |an|, show that c0 is a Banach
space.

(d) Let X be the set of all continuous functions on [0, 1], which are
differentiable on (0, 1). Set ‖f‖ = supx∈[0,1] |f(x)|. Show that X is a
normed linear space but is not a Banach space.

(e) If X1, . . . , Xn are normed linear spaces, show that the direct sum⊕n
i=1 Xi, equipped with the max norm, is a normed linear space. If each

Xi is a Banach space, show that
⊕n

i=1 Xi is a Banach space.
(f) Let X1, . . . , Xn be normed linear spaces. Let x = (x1, . . . , xn) be

in
⊕n

i=1 Xi, and define ‖x‖1 and ‖x‖2 by

‖x‖1 =
n∑

i=1

‖xi‖,

and

‖x‖2 =

√√√√ n∑
i=1

‖xi‖2.

Prove that both ‖ · ‖1 and ‖ · ‖2 are norms on
⊕n

i=1 Xi. Show further
that

‖x‖ ≤ ‖x‖2 ≤ ‖x‖1 ≤ n‖x‖.

(g) Let {Xi} be an infinite sequence of nontrivial normed linear
spaces. Prove that the direct product

∏
Xi is a metrizable, locally con-

vex, topological vector space, but that there is no definition of a norm on∏
Xi that defines its topology. HINT: In a normed linear space, given

any bounded set A and any neighborhood U of 0, there exists a number
t such that A ⊆ tU.

EXERCISE 4.2. (Schwartz Space S is Not Normable) Let S denote
Schwartz space, and let {ρn} be the seminorms (norms) that define the
topology on S :

ρn(f) = sup
x

max
0≤i,j≤n

|xjf (i)(x)|.

(a) If V is a neighborhood of 0 in S, show that there exists an integer
n and an ε > 0 such that ρ−1

n (−∞, ε) ⊆ V ; i.e., if ρn(h) < ε, then h ∈ V.
(b) Given the nonnegative integer n from part a, show that there

exists a C∞ function g such that g(x) = 1/xn+1/2 for x ≥ 2. Note that

sup
x

max
0≤i,j≤n

|xjg(i)(x)| < ∞.
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(Of course, g is not an element of S.)
(c) Let n be the integer from part a and let f be a C∞ function with

compact support such that |f(x)| ≤ 1 for all x and f(0) = 1. For each
integer M > 0, define gM (x) = g(x)f(x −M), where g is the function
from part b. Show that each gM ∈ S and that there exists a positive
constant c such that ρn(gM ) < c for all M ; i.e., (ε/c)gM ∈ V for all M.

Further, show that for each M ≥ 2, ρn+1(gM ) ≥
√

M.
(d) Show that the neighborhood V of 0 from part a is not bounded

in S. HINT: Define W to be the neighborhood ρ−1
n+1(−∞, 1), and show

that no multiple of W contains V.
(e) Conclude that S is not normable.

THEOREM 4.2. (Subspaces and Quotient Spaces) Let X be a Ba-
nach space and let M be a closed linear subspace.

(1) M is a Banach space with respect to the restriction to M of the
norm on X.

(2) If x + M is a coset of M, and if ‖x + M‖ is defined by

‖x + M‖ = inf
y∈x+M

‖y‖ = inf
m∈M

‖x + m‖,

then the quotient space X/M is a Banach space with respect to
this definition of norm.

(3) The quotient topology on X/M agrees with the topology deter-
mined by the norm on X/M defined in part 2.

PROOF. M is certainly a normed linear space with respect to the
restricted norm. Since it is a closed subspace of the complete metric
space X, it is itself a complete metric space, and this proves part 1.

We leave it to the exercise that follows to show that the given defini-
tion of ‖x + M‖ does make X/M a normed linear space. Let us show
that this metric space is complete. Thus let {xn + M} be a Cauchy
sequence in X/M. It will suffice to show that some subsequence has a
limit in X/M. We may replace this Cauchy sequence by a subsequence
for which

‖(xn+1 + M)− (xn + M)‖ = ‖(xn+1 − xn) + M‖ < 2−(n+1).

Then, we may choose elements {yn} of X such that for each n ≥ 1 we
have

yn ∈ (xn+1 − xn) + M,
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and ‖yn‖ < 2−(n+1). We choose y0 to be any element of x1 + M. If
zN =

∑N
n=0 yn, then it follows routinely that {zN} is a Cauchy sequence

in X, whence has a limit z. We claim that z + M is the limit of the
sequence {xN + M}. Indeed,

‖(z + M)− (xN + M)‖ = ‖(z − xN ) + M‖
= inf

y∈(z−xN )+M
‖y‖.

Since z =
∑∞

n=0 yn, and since
∑N−1

n=0 yn ∈ xN + M, It follows that∑∞
n=N yn ∈ (z − xN ) + M. Therefore,

‖(z + M)− (xN + M)‖ ≤ ‖
∞∑

n=N

yn‖

≤
∞∑

n=N

2−(n+1)

= 2−N ,

completing the proof of part 2.
We leave part 3 to the exercise that follows.

EXERCISE 4.3. Let X and M be as in the preceding theorem.
(a) Verify that the definition of ‖x + M‖, given in the preceding

theorem, makes X/M into a normed linear space.
(b) Prove that the quotient topology on X/M agrees with the topol-

ogy determined by the norm on X/M.
(c) Suppose X is a vector space, ρ is a seminorm on X, and M = {x :

ρ(x) = 0}. Prove that M is a subspace of X. Define p on X/M by

p(x + M) = inf
m∈M

ρ(x + m).

Show that p is a norm on the quotient space X/M.

EXERCISE 4.4. (a) Suppose X and Y are topologically isomorphic
normed linear spaces, and let S denote a linear isomorphism of X onto
Y that is a homeomorphism. Prove that there exist positive constants
C1 and C2 such that

‖x‖ ≤ C1‖S(x)‖

and
‖S(x)‖ ≤ C2‖x‖
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for all x ∈ X. Deduce that, if two norms ‖ · ‖1 and ‖ · ‖2 determine
identical topologies on a vector space X, then there exist constants C1

and C2 such that
‖x‖1 ≤ C1‖x‖2 ≤ C2‖x‖1

for all x ∈ X.
(b) Suppose S is a linear transformation of a normed linear space

X into a topological vector space Y. Assume that S(B1) contains a
neighborhood U of 0 in Y. Prove that S is an open map of X onto Y.

We come next to one of the important applications of the Baire cat-
egory theorem in functional analysis.

THEOREM 4.3. (Isomorphism Theorem) Suppose S is a continuous
linear isomorphism of a Banach space X onto a Banach space Y. Then
S−1 is continuous, and X and Y are topologically isomorphic.

PROOF. For each positive integer n, let An be the closure in Y of
S(Bn). Then, since S is onto, Y = ∪An. Because Y is a complete metric
space, it follows from the Baire category theorem that some An, say
AN , must have nonempty interior. Therefore, let y0 ∈ Y and ε > 0
be such that Bε(y0) ⊂ AN . Let x0 ∈ X be the unique element for
which S(x0) = y0, and let k be an integer larger than ‖x0‖. Then AN+k

contains AN − y0, so that the closed set AN+k contains Bε(0). This
implies that if w ∈ Y satisfies ‖w‖ ≤ ε, and if δ is any positive number,
then there exists an x ∈ X for which ‖S(x)−w‖ < δ and ‖x‖ ≤ N + k.
Write M = (N + k)/ε. It follows then by scaling that, given any w ∈ Y
and any δ > 0, there exists an x ∈ X such that ‖S(x) − w‖ < δ and
‖x‖ ≤ M‖w‖. We will use the existence of such an x recursively below.

We now complete the proof by showing that

‖S−1(w)‖ ≤ 2M‖w‖

for all w ∈ Y, which will imply that S−1 is continuous. Thus, let w ∈ Y
be given. We construct sequences {xn}, {wn} and {δn} as follows: Set
w1 = w, δ1 = ‖w‖/2, and choose x1 so that ‖w1 − S(x1)‖ < δ1 and
‖x1‖ ≤ M‖w1‖. Next, set w2 = w1 − S(x1), δ2 = ‖w‖/4, and choose
x2 such that ‖w2 − S(x2)‖ < δ2 and ‖x2‖ ≤ M‖w2‖ ≤ (M/2)‖w‖.
Continuing inductively, we construct the sequences {wn}, {δn} and {xn}
so that

wn = wn−1 − S(xn−1),

δn = ‖w‖/2n,
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and xn so that
‖wn − S(xn)‖ < δn

and
‖xn‖ ≤ M‖wn‖ < (M/2n−1)‖w‖.

It follows that the infinite series
∑

xn converges in X, its sequence
of partial sums being a Cauchy sequence, to an element x and that
‖x‖ ≤ 2M‖w‖. Also, wn = w −

∑n−1
i=1 S(xi). So, since S is continuous

and 0 = lim wn, we have that S(x) = S(
∑∞

n=1 xn) =
∑∞

n=1 S(xn) = w.
Finally, for any w ∈ Y, we have that

‖S−1(w)‖ = ‖x‖ ≤ 2M‖w‖,

and the proof is complete.

THEOREM 4.4. (Open Mapping Theorem) Let T be a continuous
linear transformation of a Banach space X onto a Banach space Y. Then
T is an open map.

PROOF. Since T is continuous, its kernel M is a closed linear sub-
space of X. Let S be the unique linear transformation of X/M onto Y
satisfying T = S ◦ π, where π denotes the natural map of X onto X/M.
Then, by Theorems 3.4 and 4.2, S is a continuous isomorphism of the
Banach space X/M onto the Banach space Y. Hence, S is an open map,
whence T is an open map.

THEOREM 4.5. (Closed Graph Theorem) Suppose T is a linear
transformation of a Banach space X into a Banach space Y, and assume
that the graph G of T is a closed subset of the product Banach space
X × Y = X ⊕ Y. Then T is continuous.

PROOF. Since the graph G is a closed linear subspace of the Banach
space X ⊕ Y, it is itself a Banach space in the restricted norm (max
norm) from X⊕Y. The map S from G to X, defined by S(x, T (x)) = x,
is therefore a norm-decreasing isomorphism of G onto X. Hence S−1 is
continuous by the Isomorphism Theorem. The linear transformation P
of X ⊕ Y into Y, defined by P (x, y) = y, is norm-decreasing whence
continuous. Finally, T = P ◦ S−1, and so is continuous.

EXERCISE 4.5. (a) Let X be the vector space of all continuous
functions on [0, 1] that have uniformly continuous derivatives on (0, 1).
Define a norm on X by ‖f‖ = sup0<x<1 |f(x)| + sup0<x<1 |f ′(x)|. Let
Y be the vector space of all uniformly continuous functions on (0, 1),
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equipped with the norm ‖f‖ = sup0<x<1 |f(x)|. Define T : X → Y by
T (f) = f ′. Prove that X and Y are Banach spaces and that T is a
continuous linear transformation.

(b) Now let X be the vector space of all absolutely continuous func-
tions f on [0, 1], for which f(0) = 0 and whose derivative f ′ is in Lp

(for some fixed 1 ≤ p ≤ ∞). Define a norm on X by ‖f‖ = ‖f‖p. Let
Y = Lp, and define T : X → Y by T (f) = f ′. Prove that T is not
continuous, but that the graph of T is closed in X × Y. How does this
example relate to the preceding theorem?

(c) Prove analogous results to Theorems 4.3, 4.4, and 4.5 for locally
convex, Fréchet spaces.

DEFINITION. Let X and Y be normed linear spaces. By L(X, Y )
we shall mean the set of all continuous linear transformations from X
into Y. We refer to elements of L(X, Y ) as operators from X to Y.

If T ∈ L(X, Y ), we define the norm of T, denoted by ‖T‖, by

‖T‖ = sup
‖x‖≤1

‖T (x)‖.

EXERCISE 4.6. Let X and Y be normed linear spaces.
(a) Let T be a linear transformation of X into Y. Verify that T ∈

L(X, Y ) if and only if

‖T‖ = sup
‖x‖≤1

‖T (x)‖ < ∞.

(b) Let T be in L(X, Y ). Show that the norm of T is the infimum of
all numbers M for which ‖T (x)‖ ≤ M‖x‖ for all x ∈ X.

(c) For each x ∈ X and T ∈ L(X, Y ), show that ‖T (x)‖ ≤ ‖T‖‖x‖.

THEOREM 4.6. Let X and Y be normed linear spaces.
(1) The set L(X, Y ) is a vector space with respect to pointwise addi-

tion and scalar multiplication. If X and Y are complex normed
linear spaces, then L(X, Y ) is a complex vector space.

(2) L(X, Y ), equipped with the norm defined above, is a normed lin-
ear space.

(3) If Y is a Banach space, then L(X, Y ) is a Banach space.

PROOF. We prove part 3 and leave parts 1 and 2 to the exercises.
Thus, suppose Y is a Banach space, and let {Tn} be a Cauchy sequence
in L(X, Y ). Then the sequence {‖Tn‖} is bounded, and we let M be a
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number for which ‖Tn‖ ≤ M for all n. For each x ∈ X, we have that
‖(Tn(x)− Tm(x))‖ ≤ ‖Tn − Tm‖‖x‖, whence the sequence {Tn(x)} is a
Cauchy sequence in the complete metric space Y. Hence there exists an
element T (x) ∈ Y such that T (x) = lim Tn(x). This mapping T, being
the pointwise limit of linear transformations, is a linear transformation,
and it is continuous, since ‖T (x)‖ = lim ‖Tn(x)‖ ≤ M‖x‖. Consequently,
T is an element of L(X, Y ).

We must show finally that T is the limit in L(X, Y ) of the sequence
{Tn}. To do this, let ε > 0 be given, and choose an N such that ‖Tn −
Tm‖ < ε/2 if n, m ≥ N. If x ∈ X and ‖x‖ ≤ 1, then

‖T (x)− Tn(x)‖ ≤ lim sup
m

‖T (x)− Tm(x)‖+ lim sup
m

‖Tm(x)− Tn(x)‖

≤ 0 + lim sup
m

‖Tm − Tn‖‖x‖

≤ ε/2,

whenever n ≥ N. Since this is true for an arbitrary x for which ‖x‖ ≤ 1,
it follows that

‖T − Tn‖ ≤ ε/2 < ε

whenever n ≥ N, as desired.

EXERCISE 4.7. Prove parts 1 and 2 of Theorem 4.6.

The next theorem gives another application to functional analysis of
the Baire category theorem.

THEOREM 4.7. (Uniform Boundedness Principle) Let X be a Ba-
nach space, let Y be a normed linear space, and suppose {Tn} is a
sequence of elements in L(X, Y ). Assume that, for each x ∈ X, the se-
quence {Tn(x)} is bounded in Y. (That is, the sequence {Tn} is pointwise
bounded.) Then there exists a positive constant M such that ‖Tn‖ ≤ M
for all n. (That is, the sequence {Tn} is uniformly bounded.)

PROOF. For each positive integer j, let Aj be the set of all x ∈
X such that ‖Tn(x)‖ ≤ j for all n. Then each Aj is closed (Aj =
∩nT−1

n (Bj)), and X = ∪Aj . By the Baire category theorem, some Aj ,
say AJ , has nonempty interior. Let ε > 0 and x0 ∈ X be such that AJ

contains Bε(x0). It follows immediately that AJ −x0 ⊆ A2J , from which
it follows that A2J contains Bε. Hence, if ‖z‖ < ε, then ‖Tn(z)‖ ≤ 2J
for all n.
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Now, given a nonzero x ∈ X, we write z = (ε/2‖x‖)x. So, for any n,

‖Tn(x)‖ = (2‖x‖/ε)‖Tn(z)‖
≤ (2‖x‖/ε)(2J)

= M‖x‖,

where M = 4J/ε. It follows then that ‖Tn‖ ≤ M for all n, as desired.

THEOREM 4.8. Let X be a Banach space, let Y be a normed lin-
ear space, let {Tn} be a sequence of elements of L(X, Y ), and suppose
that {Tn} converges pointwise to a function T : X → Y. Then T is a
continuous linear transformation of X into Y ; i.e., the pointwise limit
of a sequence of continuous linear transformations from a Banach space
into a normed linear space is continuous and linear.

PROOF. It is immediate that the pointwise limit (when it exists) of
a sequence of linear transformations is again linear. Since any convergent
sequence in Y, e.g., {Tn(x)}, is bounded, it follows from the preceding
theorem that there exists an M so that ‖Tn‖ ≤ M for all n, whence
‖Tn(x)‖ ≤ M‖x‖ for all n and all x ∈ X. Therefore, ‖T (x)‖ ≤ M‖x‖
for all x, and this implies that T is continuous.

EXERCISE 4.8. (a) Extend the Uniform Boundedness Principle
from a sequence to a set S of elements of L(X, Y ).

(b) Restate the Uniform Boundedness Principle for a sequence {fn} of
continuous linear functionals, i.e., for a sequence in L(X, R) or L(X, C).

(c) Let cc denote the vector space of all sequences {aj}, j = 1, 2, . . .
that are eventually 0, and define a norm on cc by

‖{aj}‖ = max |aj |.

Define a linear functional fn on cc by fn({aj}) = nan. Prove that the se-
quence {fn} is a sequence of continuous linear functionals that is point-
wise bounded but not uniformly bounded in norm. Why doesn’t this
contradict the Uniform Boundedness Principle?

(d) Let cc be as in part c. Define a sequence {fn} of linear functionals
on cc by fn({aj}) =

∑n
j=1 aj . Show that {fn} is a sequence of continu-

ous linear functionals that converges pointwise to a discontinuous linear
functional. Why doesn’t this contradict Theorem 4.8?

(e) Let c0 denote the Banach space of sequences a0, a1, . . . for which
lim an = 0, where the norm on c0 is given by

‖{an}‖ = max |an|.
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If α = {n1 < n2 < . . . < nk} is a finite set of positive integers, define fα

on c0 by
fα({aj}) = fn1,... ,nk

({aj}) = n1ank
.

Show that each fα is a continuous linear functional on c0.
(f) Let D denote the set consisting of all the finite sets α = {n1 < n2 <

. . . < nk} of positive integers. Using inclusion as the partial ordering on
D, show that D is a directed set, and let {fα} be the corresponding net
of linear functionals, as defined in part e, on c0. Show that limα fα = 0.
Show also that the net {fα} is not uniformly bounded in norm. Explain
why this does not contradict part a of this exercise.

DEFINITION. A Banach algebra is a Banach space A on which
there is also defined a binary operation × of multiplication that is asso-
ciative, (left and right) distributive over addition, satisfies

λ(x× y) = (λx)× y = x× (λy)

for all scalars λ and all x, y ∈ A, and for which ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A.

EXERCISE 4.9. Let X be a Banach space. Using composition of
transformations as a multiplication, show that L(X, X) is a Banach
algebra.

EXERCISE 4.10. Let X be the Banach space R2 with respect to
the usual norm

‖x‖ = ‖(x1, x2)‖ =
√

x2
1 + x2

2,

and let (1, 0) and (0, 1) be the standard basis for X. Let T be an element
of L(X, X), and represent T by a 2×2 matrix

(
a b

c d

)
. Compute the norm

of T in terms of a, b, c, d. Can you do the same for X = R3?

EXERCISE 4.11. Let X be a normed linear space, let Y be a dense
subspace of X, and let Z be a Banach space.

(a) If T ∈ L(Y, Z), show that there exists a unique element T ′ ∈
L(X, Z) such that the restriction of T ′ to Y is T. That is, T has a
unique continuous extension to all of X.

(b) Show that the map T → T ′, of part a, is an isometric isomorphism
of L(Y,Z) onto L(X, Z).

(c) Suppose {Tn} is a uniformly bounded sequence of elements of
L(X, Z). Suppose that the sequence {Tn(y)} converges for every y ∈ Y.
Show that the sequence {Tn(x)} converges for every x ∈ X.
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EXERCISE 4.12. Let X be a normed linear space, and let X denote
the completion of the metric space X (e.g., the space of equivalence
classes of Cauchy sequences in X). Show that X is in a natural way a
Banach space with X isometrically imbedded as a dense subspace.

THEOREM 4.9. (Hahn-Banach Theorem, Normed Linear Space
Version) Let Y be a subspace of a normed linear space X. Suppose
f is a continuous linear functional on Y ; i.e., f ∈ L(Y, R). Then there
exists a continuous linear functional g on X, i.e., an element of L(X, R),
such that

(1) g is an extension of f.
(2) ‖g‖ = ‖f‖.

PROOF. If ρ is defined on X by ρ(x) = ‖f‖‖x‖, then ρ is a seminorm
on X. Clearly,

f(y) ≤ |f(y)| ≤ ‖f‖‖y‖ = ρ(y)

for all y ∈ Y. By the seminorm version of the Hahn-Banach Theorem,
there exists a linear functional g on X, which is an extension of f, such
that g(x) ≤ ρ(x) = ‖f‖‖x‖, for all x ∈ X, and this implies that g is
continuous, and ‖g‖ ≤ ‖f‖. Obviously ‖g‖ ≥ ‖f‖ since g is an extension
of f.

EXERCISE 4.13. (a) Let X be a normed linear space and let x ∈
X. Show that ‖x‖ = supf f(x), where the supremum is taken over all
continuous linear functionals f for which ‖f‖ ≤ 1. Show, in fact, that
this supremum is actually attained.

(b) Use part a to derive the integral form of Minkowski’s inequality.
That is, if (X, µ) is a σ-finite measure space, and F (x, y) is a µ × µ-
measurable function on X ×X, then

(
∫
|
∫

F (x, y) dy|p dx)1/p ≤
∫

(
∫
|F (x, y)|p dx)1/p dy,

where 1 ≤ p < ∞.
(c) Let 1 ≤ p < ∞, and let X be the complex Banach space Lp(R).

Let p′ be such that 1/p + 1/p′ = 1, and let D be a dense subspace of
Lp′

(R). If f ∈ X, show that

‖f‖p = sup
‖g‖p′=1

|
∫

f(x)g(x) dx|.
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EXERCISE 4.14. Let X and Y be normed linear spaces, and let
T ∈ L(X, Y ). Prove that the norm of T is given by

‖T‖ = sup
x

sup
f
|f(T (x))|,

where the supremum is taken over all x ∈ X, ‖x‖ ≤ 1 and all f ∈ L(Y, R)
for which ‖f‖ ≤ 1.

We close this chapter with a theorem from classical analysis.

THEOREM 4.10. (Riesz Interpolation Theorem) Let D be the lin-
ear space of all complex-valued measurable simple functions on R that
have compact support, and let T be a linear transformation of D into
the linear space M of all complex-valued measurable functions on R. Let
1 ≤ p0 < p1 < ∞ be given, and suppose that:

(1) There exist numbers q0 and m0, with 1 < q0 ≤ ∞, such that
‖T (f)‖q0 ≤ m0‖f‖p0 for all f ∈ D; i.e., T has a unique extension
to a bounded operator T0 from Lp0 into Lq0 , and ‖T0‖ ≤ m0.

(2) There exist numbers q1 and m1, with 1 < q1 ≤ ∞, such that
‖T (f)‖q1 ≤ m1‖f‖p1 for all f ∈ D; i.e., T has a unique extension
to a bounded operator T1 from Lp1 into Lq1 , and ‖T1‖ ≤ m1.

Let p satisfy p0 < p < p1, and define t ∈ (0, 1) by

1/p = (1− t)/p0 + t/p1;

i.e.,

t =
1/p− 1/p0

1/p1 − 1/p0
.

Now define q by
1/q = (1− t)/q0 + t/q1.

Then
‖T (f)‖q ≤ mp‖f‖p,

for all f ∈ D, where
mp = m1−t

0 mt
1.

Hence, T has a unique extension to a bounded operator Tp from Lp into
Lq, and ‖Tp‖ ≤ mp.

PROOF. For any 1 < r < ∞, we write r′ for the conjugate number
defined by 1/r + 1/r′ = 1. Let f ∈ D be given, and suppose that
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‖f‖p = 1. If the theorem holds for all such f, it will hold for all f ∈ D.
(Why?) Because T (f) belongs to Lq0 and to Lq1 by hypothesis, it follows
that T (f) ∈ Lq, so that it is only the inequality on the norms that we
must verify. We will show that |

∫
[T (f)](y)g(y) dy| ≤ mp, whenever

g ∈ D ∩ Lq′
with ‖g‖q′ = 1. This will complete the proof (see Exercise

4.13). Thus, let g be such a function. Write f =
∑n

j=1 ajχAj
and

g =
∑m

k=1 bkχBk
, for {Aj} and {Bk} disjoint bounded measurable sets

and aj and bk nonzero complex numbers.
For each z ∈ C, define

α(z) = (1− z)/p0 + z/p1

and
β(z) = (1− z)/q′0 + z/q′1.

Note that α(t) = 1/p and β(t) = 1/q′.
We extend the definition of the signum function to the complex plane

as follows: If λ is a nonzero complex number, define sgn(λ) to be λ/|λ|.
For each complex z, define the simple functions

fz =
n∑

j=1

sgn(aj)|aj |α(z)/α(t)χAj

and

gz =
m∑

k=1

sgn(bk)|bk|β(z)/β(t)χBk
,

and finally put

F (z) =
∫

[T (fz)](y)gz(y) dy

=
n∑

j=1

m∑
k=1

sgn(aj)sgn(bk)|aj |pα(z)|bk|q
′β(z)

∫
[T (χAj

)](y)χBk
(y) dy

=
n∑

j=1

m∑
k=1

cjkedjkz,

where the cjk’s are complex numbers and the djk’s are real numbers.
Observe that F is an entire function of the complex variable z, and

that it is bounded on the closed strip 0 ≤ <z ≤ 1. Note also that
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[T (f)](y)g(y) dy, the quantity we wish to estimate, is precisely F (t).

Observe next that

sup
s∈R

|F (is)| = sup
s
|
∫

[T (fis)](y)gis(y) dy|

≤ sup
s

(
∫
|[T (fis)](y)|q0 dy)1/q0(

∫
|gis(y)|q

′
0 dy)1/q′

0

≤ sup
s

m0‖fis‖p0‖gis‖q′
0

= sup
s

m0(
∫ ∑

j

|(|aj |p0α(is)/α(t))|χAj
(y) dy)1/p0

× (
∫ ∑

k

|(|bk|q
′
0β(is)/β(t))|χBk

(y) dy)1/q′
0

= m0 sup
s

∫ ∑
j

|aj |pχAj (y) dy)1/p0

× (
∫ ∑

k

|bk|q
′
χBk

(y) dy)1/q′
0

= m0‖f‖p/p0
p ‖g‖q′/q′

0
q′

= m0.

By a similar calculation, we see that

sup
s∈R

|F (1 + is)| ≤ m1.

The proof of the theorem is then completed by appealing to the lemma
from complex variables that follows.

LEMMA. Suppose F is a complex-valued function that is bounded
and continuous on the closed strip 0 ≤ <z ≤ 1 and analytic on the open
strip 0 < <z < 1. Assume that m0 and m1 are real numbers satisfying

m0 ≥ sup
s∈R

|F (is)|

and
m1 ≥ sup

s∈R
|F (1 + is)|.

Then
sup
s∈R

|F (t + is)| ≤ m1−t
0 mt

1
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for all 0 ≤ t ≤ 1.

PROOF. We may assume that m0 and m1 are positive. Define a
function G on the strip 0 ≤ <z ≤ 1 by

G(z) = F (z)/m1−z
0 mz

1.

Then G is continuous and bounded on this strip and is analytic on the
open strip 0 < <z < 1. It will suffice to prove that

sup
s∈R

|G(t + is)| ≤ 1.

For each positive integer n, define Gn(z) = G(z)ez2/n. Then each
function Gn is continuous and bounded on the strip 0 ≤ <z ≤ 1 and
analytic on the open strip 0 < <z < 1. Also, G(z) = lim Gn(z) for all z
in the strip. It will suffice then to show that lim |Gn(z)| ≤ 1 for each z
for which 0 < <z < 1. Fix z0 = x0 + iy0 in the open strip, and choose
a Y > |y0| such that |Gn(z)| = |Gn(x + iy)| = |G(z)|e(x2−y2)/n < 1
whenever |y| ≥ Y. Let Γ be the rectangular contour determined by the
four points (0,−Y ), (1,−Y ), (1, Y ), and (0, Y ). Then, by the Maximum
Modulus Theorem, we have

|Gn(z0)| ≤ max
z∈Γ

|Gn(z)|

≤ max(1, sup
s∈R

|Gn(1 + is)| , 1, sup
s∈R

|Gn(is)|)

= e1/n,

proving that lim |Gn(z0)| ≤ 1, and this completes the proof of the lemma.

EXERCISE 4.15. Verify that the Riesz Interpolation Theorem holds
with R replaced by any regular σ-finite measure space.


