
CHAPTER II

THE HAHN-BANACH EXTENSION THEOREMS
AND EXISTENCE OF LINEAR FUNCTIONALS

In this chapter we deal with the problem of extending a linear functional
on a subspace Y to a linear functional on the whole space X. The quite
abstract results that the Hahn-Banach Theorem comprises (Theorems
2.1, 2.2, 2.3, and 2.6) are, however, of significant importance in analysis,
for they provide existence proofs. Applications are made already in
this chapter to deduce the existence of remarkable mathematical objects
known as Banach limits and translation-invariant measures. One may
wish to postpone these applications as well as Theorems 2.4 and 2.5 to a
later time. However, the set of exercises concerning convergence of nets
should not be omitted, for they will be needed later on.

Let X be a real vector space and let B = {xα}, for α in an index set
A, be a basis for X. Given any set {tα} of real numbers, also indexed
by A, we may define a linear transformation φ : X → R by

φ(x) = φ(
∑

cαxα) =
∑

cαtα,

where x =
∑

cαxα. Note that the sums above are really finite sums,
since only finitely many of the coefficients cα are nonzero for any given
x. This φ is a linear functional.

EXERCISE 2.1. Prove that if x and y are distinct vectors in a
real vector space X, then there exists a linear functional φ such that
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φ(x) 6= φ(y). That is, there exist enough linear functionals on X to
separate points.

More interesting than the result of the previous exercise is whether
there exist linear functionals with some additional properties such as
positivity, continuity, or multiplicativity. As we proceed, we will make
precise what these additional properties should mean. We begin, moti-
vated by the Riesz representation theorems of the preceding chapter, by
studying the existence of positive linear functionals. See Theorem 2.1
below. To do this, we must first make sense of the notion of positivity
in a general vector space.

DEFINITION. Let X be a real vector space. By a cone or positive
cone in X we shall mean a subset P of X satisfying

(1) If x and y are in P, then x + y is in P.
(2) If x is in P and t is a positive real number, then tx is in P.

Given vectors x1, x2 ∈ X, we say that x1 ≥ x2 if x1 − x2 ∈ P.

Given a positive cone P ⊆ X, we say that a linear functional f on X
is positive, if f(x) ≥ 0 whenever x ∈ P.

EXERCISE 2.2. (a) Prove that the set of nonnegative functions in
a vector space of real-valued functions forms a cone.

(b) Show that the set of nonpositive functions in a vector space of
real-valued functions forms a cone.

(c) Let P be the set of points (x, y, z) in R3 for which x >
√

y2 + z2.
Prove that P is a cone in the vector space R3.

(d) Let X be the vector space R2, and let P be the positive cone in
X comprising the points (x, y) for x ≥ 0 and y ≥ 0. Suppose Y is the
subspace of X comprising the points (t, t) for t real. Show that every
linear functional on Y is a positive linear functional. Show also that
there exists a linear functional f on Y for which no extension g of f to
all of X is a positive linear functional.

THEOREM 2.1. (Hahn-Banach Theorem, Positive Cone Version)
Let P be a cone in a real vector space X, and let Y be a subspace of X
having the property that for each x ∈ X there exists a y ∈ Y such that
y ≥ x; i.e., y−x ∈ P. Suppose f is a positive linear functional on Y, i.e.,
f(y) ≥ 0 if y ∈ P ∩ Y. Then there exists a linear functional g on X such
that

(1) For each y ∈ Y, g(y) = f(y); i.e., g is an extension of f.
(2) g(x) ≥ 0 if x ∈ P ; i.e., g is a positive linear functional on X.
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PROOF. Applying the hypotheses both to x and to −x, we see that:
Given x ∈ X, there exists a y ∈ Y such that y − x ∈ P, and there exists
a y′ ∈ Y such that y′ − (−x) = y′ + x ∈ P. We will use the existence of
these elements of Y later on.

Let S be the set of all pairs (Z, h), where Z is a subspace of X that
contains Y, and where h is a positive linear functional on Z that is an
extension of f. Since the pair (Y, f) is clearly an element of S, we have
that S is nonempty.

Introduce a partial ordering on S by setting

(Z, h) ≤ (Z ′, h′)

if Z is a subspace of Z ′ and h′ is an extension of h, that is h′(z) = h(z)
for all z ∈ Z. By the Hausdorff maximality principle, let {(Zα, hα)} be
a maximal linearly ordered subset of S. Clearly, Z = ∪Zα is a subspace
of X. Also, if z ∈ Z, then z ∈ Zα for some α. Observe that if z ∈ Zα and
z ∈ Zβ , then, without loss of generality, we may assume that (Zα, hα) ≤
(Zβ , hβ). Therefore, hα(z) = hβ(z), so that we may uniquely define a
number h(z) = hα(z), whenever z ∈ Zα.

We claim that the function h defined above is a linear functional on
the subspace Z. Thus, let z and w be elements of Z. Then z ∈ Zα and
w ∈ Zβ for some α and β. Since the set {(Zγ , hγ)} is linearly ordered,
we may assume, again without loss of generality, that Zα ⊆ Zβ , whence
both z and w are in Zβ . Therefore,

h(tz + sw) = hβ(tz + sw) = thβ(z) + shβ(w) = th(z) + sh(w),

showing that h is a linear functional.
Note that, if y ∈ Y, then h(y) = f(y), so that h is an extension of f.

Also, if z ∈ Z ∩ P, then z ∈ Zα ∩ P for some α, whence

h(z) = hα(z) ≥ 0,

showing that h is a positive linear functional on Z.
We prove next that Z is all of X, and this will complete the proof of

the theorem. Suppose not, and let v be an element of X which is not
in Z. We will derive a contradiction to the maximality of the linearly
ordered subset {(Zα, hα)} of the partially ordered set S. Let Z ′ be the
set of all vectors in X of the form z + tv, where z ∈ Z and t ∈ R. Then
Z ′ is a subspace of X which properly contains Z.

Let Z1 be the set of all z ∈ Z for which z − v ∈ P, and let Z2 be the
set of all z′ ∈ Z for which z′ + v ∈ P. We have seen that both Z1 and
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Z2 are nonempty. We make the following observation. If z ∈ Z1 and
z′ ∈ Z2, then h(z′) ≥ −h(z). Indeed, z + z′ = z − v + z′ + v ∈ P. So,

h(z + z′) = h(z) + h(z′) ≥ 0,

and h(z′) ≥ −h(z), as claimed. Hence, we see that the set B of numbers
{h(z′)} for which z′ ∈ Z2 is bounded below. In fact, any number of
the form −h(z) for z ∈ Z1 is a lower bound for B. We write b = inf B.
Similarly, the set A of numbers {−h(z)} for which z ∈ Z1 is bounded
above, and we write a = supA. Moreover, we see that a ≤ b. Note that
if z ∈ Z1, then h(z) ≥ −a.

Choose any c for which a ≤ c ≤ b, and define h′ on Z ′ by

h′(z + tv) = h(z)− tc.

Clearly, h′ is a linear functional on Z ′ that extends h and hence extends
f. Let us show that h′ is a positive linear functional on Z ′. On the one
hand, if z + tv ∈ P, and if t > 0, then z/t ∈ Z2, and

h′(z + tv) = th′((z/t) + v) = t(h(z/t)− c) ≥ t(b− c) ≥ 0.

On the other hand, if t < 0 and z + tv = |t|((z/|t|) − v) ∈ P, then
z/(−t) = z/|t| ∈ Z1, and

h′(z + tv) = |t|h′((z/(−t))− v) = |t|(h(z/(−t)) + c) ≥ |t|(c− a) ≥ 0.

Hence, h′ is a positive linear functional, and therefore (Z ′, h′) ∈ S. But
since (Z, h) ≤ (Z ′, h′), it follows that the set {(Zα, hα)} together with
(Z ′, h′) constitutes a strictly larger linearly ordered subset of S, which
is a contradiction. Therefore, Z is all of X, h is the desired extension g
of f, and the proof is complete.

REMARK. The impact of the Hahn-Banach Theorem is the exis-
tence of linear functionals having specified properties. The above ver-
sion guarantees the existence of many positive linear functionals on a
real vector space X, in which there is defined a positive cone. All we
need do is find a subspace Y, satisfying the condition in the theorem,
and then any positive linear functional on Y has a positive extension to
all of X.

EXERCISE 2.3. (a) Verify the details showing that the ordering
≤ introduced on the set S in the preceding proof is in fact a partial
ordering.
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(b) Verify that the function h′ defined in the preceding proof is a
linear functional on Z ′.

(c) Suppose φ is a linear functional on the subspace Z ′ of the above
proof. Show that, if φ is an extension of h and is a positive linear
functional on Z ′, then the number −φ(v) must be between the numbers
a and b of the preceding proof.

EXERCISE 2.4. Let X be a vector space of bounded real-valued
functions on a set S. Let P be the cone of nonnegative functions in X.
Show that any subspace Y of X that contains the constant functions
satisfies the hypothesis of Theorem 2.1.

We now investigate linear functionals that are, in some sense, bounded.

DEFINITION. By a seminorm on a real vector space X, we shall
mean a real-valued function ρ on X that satisfies:

(1) ρ(x) ≥ 0 for all x ∈ X,
(2) ρ(x + y) ≤ ρ(x) + ρ(y), for all x, y ∈ X, and
(3) ρ(tx) = |t|ρ(x), for all x ∈ X and all t.

If, in addition, ρ satisfies ρ(x) = 0 if and only if x = 0, then ρ is called
a norm, and ρ(x) is frequently denoted by ‖x‖ or ‖x‖ρ. If X is a vector
space on which a norm is defined, then X is called a normed linear space.

A weaker notion than that of a seminorm is that of a subadditive
functional, which is the same as a seminorm except that we drop the
nonnegativity condition (condition (1)) and weaken the homogeneity in
condition (3). That is, a real-valued function ρ on a real vector space X
is called a subadditive functional if:

(1) ρ(x + y) ≤ ρ(x) + ρ(y) for all x, y ∈ X, and
(2) ρ(tx) = tρ(x) for all x ∈ X and t ≥ 0.

EXERCISE 2.5. Determine whether or not the following are semi-
norms (subadditive functionals, norms) on the specified vector spaces.

(a) X = Lp(R), ρ(f) = ‖f‖p = (
∫
|f |p)1/p, for 1 ≤ p < ∞.

(b) X any vector space, ρ(x) = |f(x)|, where f is a linear functional
on X.

(c) X any vector space, ρ(x) = supν |fν(x)|, where {fν} is a collection
of linear functionals on X.

(d) X = C0(∆), ρ(f) = ‖f‖∞, where ∆ is a locally compact Haus-
dorff topological space.

(e) X is the vector space of all infinitely differentiable functions on
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R, n, m, k are nonnegative integers, and

ρ(f) = sup
|x|≤N

sup
0≤j≤k

sup
0≤m≤M

|xmf (j)(x)|.

(f) X is the set of all bounded real-valued functions on a set S, and
ρ(f) = sup f(x).

(g) X is the space l∞ of all bounded, real-valued sequences {a1, a2, ...},
and

ρ({an}) = lim sup an.

REMARK. Theorem 2.2 below is perhaps the most familiar version
of the Hahn-Banach theorem. So, although it can be derived as a con-
sequence of Theorem 2.1 and is in fact equivalent to that theorem (see
parts d and e of Exercise 2.6), we give here an independent proof.

THEOREM 2.2. (Hahn-Banach Theorem, Seminorm Version) Let
ρ be a seminorm on a real vector space X. Let Y be a subspace of X,
let f be a linear functional on Y, and assume that

f(y) ≤ ρ(y)

for all y ∈ Y. Then there exists a linear functional g on X, which is an
extension of f and which satisfies

g(x) ≤ ρ(x)

for all x ∈ X.

PROOF. By analogy with the proof of Theorem 2.1, we let S be the
set of all pairs (Z, h), where Z is a subspace of X containing Y, h is a
linear functional on Z that extends f, and h(z) ≤ ρ(z) for all z ∈ Z. We
give to S the same partial ordering as in the preceding proof. By the
Hausdorff maximality principle, let {(Zα, hα)} be a maximal linearly
ordered subset of S. As before, we define Z = ∪Zα, and h on Z by
h(z) = hα(z) whenever z ∈ Zα. It follows as before that h is a linear
functional on Z, that extends f, for which h(z) ≤ ρ(z) for all z ∈ Z, so
that the proof will be complete if we show that Z = X.

Suppose that Z 6= X, and let v be a vector in X which is not in Z.
Define Z ′ to be the set of all vectors of the form z + tv, for z ∈ Z and
t ∈ R. We observe that for any z and z′ in Z,

h(z) + h(z′) = h(z + z′) ≤ ρ(z + v + z′ − v) ≤ ρ(z + v) + ρ(z′ − v),
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or that
h(z′)− ρ(z′ − v) ≤ ρ(z + v)− h(z).

Let A be the set of numbers {h(z′) − ρ(z′ − v)} for z′ ∈ Z, and put
a = supA. Let B be the numbers {ρ(z + v)− h(z)} for z ∈ Z, and put
b = inf B. It follows from the calculation above that a ≤ b. Choose c to
be any number for which a ≤ c ≤ b, and define h′ on Z ′ by

h′(z + tv) = h(z) + tc.

Obviously h′ is linear and extends f. If t > 0, then

h′(z + tv) = t(h(z/t) + c)

≤ t(h(z/t) + b)

≤ t(h(z/t) + ρ((z/t) + v)− h(z/t))

= tρ((z/t) + v)

= ρ(z + tv).

And, if t < 0, then

h′(z + tv) = |t|(h(z/|t|)− c)

≤ |t|(h(z/|t|)− a)

≤ |t|(h(z/|t|)− h(z/|t|) + ρ((z/|t|)− v))

= |t|ρ((z/|t|)− v)

= ρ(z + tv),

which proves that h′(z + tv) ≤ ρ(z + tv) for all z + tv ∈ Z ′.
Hence, (Z ′, h′) ∈ S, (Z, h) ≤ (Z ′, h′), and the maximality of the

linearly ordered set {(Zα, hα)} is contradicted. This completes the proof.

THEOREM 2.3. (Hahn-Banach Theorem, Norm Version) Let Y be
a subspace of a real normed linear space X, and suppose that f is a linear
functional on Y for which there exists a positive constant M satisfying
|f(y)| ≤ M‖y‖ for all y ∈ Y. Then there exists an extension of f to a
linear functional g on X satisfying |g(x)| ≤ M‖x‖ for all x ∈ X.

EXERCISE 2.6. (a) Prove the preceding theorem.
(b) Let the notation be as in the proof of Theorem 2.2. Suppose φ is a

linear functional on Z ′ that extends the linear functional h and for which
φ(z′) ≤ ρ(z′) for all z′ ∈ Z ′. Prove that φ(v) must satisfy a ≤ φ(v) ≤ b.
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(c) Show that Theorem 2.2 holds if the seminorm ρ is replaced by the
weaker notion of a subadditive functional.

(d) Derive Theorem 2.2 as a consequence of Theorem 2.1. HINT: Let
X ′ = X ⊕R, Define P to be the set of all (x, t) ∈ X ′ for which ρ(x) ≤ t,
let Y ′ = Y ⊕ R, and define f ′ on Y ′ by f ′(y, t) = t − f(y). Now apply
Theorem 2.1.

(e) Derive Theorem 2.1 as a consequence of Theorem 2.2. HINT:
Define ρ on X by ρ(x) = inf f(y), where the infimum is taken over all
y ∈ Y for which y− x ∈ P. Show that ρ is a subadditive functional, and
then apply part c.

We devote the next few exercises to developing the notion of con-
vergence of nets. This topological concept is of great use in functional
analysis. The reader should notice how crucial the axiom of choice is in
these exercises. Indeed, the Tychonoff theorem (Exercise 2.11) is known
to be equivalent to the axiom of choice.

DEFINITION. A directed set is a nonempty set D, on which there
is defined a transitive and reflexive partial ordering ≤, satisfying the
following condition: If α, β ∈ D, then there exists an element γ ∈ D
such that α ≤ γ and β ≤ γ. That is, every pair of elements of D has an
upper bound.

If C and D are two directed sets, and h is a mapping from C into D,
then h is called order-preserving if c1 ≤ c2 implies that h(c1) ≤ h(c2).
An order-preserving map h of C into D is called cofinal if for each α ∈ D
there exists a β ∈ C such that α ≤ h(β).

A net in a set X is a function f from a directed set D into X. A net f
in X is frequently denoted, in analogy with a sequence, by {xα}, where
xα = f(α).

If {xα} denotes a net in a set X, then a subnet of {xα} is determined
by an order-preserving cofinal function h from a directed set C into D,
and is the net g defined on C by g(β) = xh(β). The values h(β) of the
function h are ordinarily denoted by h(β) = αβ , whence the subnet g
takes the notation g(β) = xαβ

.
A net {xα}, α ∈ D, in a topological space X is said to converge to

an element x ∈ X, and we write x = limα xα, if For each open set U
containing x, there exists an α ∈ D such that xα′ ∈ U whenever α ≤ α′.

EXERCISE 2.7. (a) Show that any linearly ordered set is a directed
set.

(b) Let S be a set and let D be the set of all finite subsets F of S.
Show that D is a directed set if the partial ordering on D is given by
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F1 ≤ F2 if and only if F1 ⊆ F2.
(c) Let x be a point in a topological space X, and let D be the

partially-ordered set of all neighborhoods of x with the ordering U ≤ V
if and only if V ⊆ U. Prove that D is a directed set.

(d) Let D and D′ be directed sets. Show that D × D′ is a directed
set, where the ordering is given by (α, α′) ≤ (β, β′) if and only if α ≤ α′

and β ≤ β′.
(e) Verify that every sequence is a net.
(f) Let {xn} be a sequence. Show that there exist subnets of the net

{xn} which are not subsequences.

EXERCISE 2.8. (a) (Uniqueness of Limits) Let {xα} be a net in
a Hausdorff topological space X. Suppose x = lim xα and y = lim xα.
Show that x = y.

(b) Suppose {xα} and {yα} are nets (defined on the same directed
set D) in C, and assume that x = lim xα and y = lim yα. Prove that

x + y = lim(xα + yα),

xy = lim(xαyα),

and that if a ≤ xα ≤ b for all α, then

a ≤ x ≤ b.

(c) Prove that if a net {xα} converges to an element x in a topological
space X, then every subnet {xαβ

} of {xα} also converges to x.
(d) Prove that a net {xα} in a topological space X converges to an

element x ∈ X if and only if every subnet {xαβ
} of {xα} has in turn a

subnet {xαβγ
} that converges to x. HINT: To prove the “if” part, argue

by contradiction.
(e) Let A be a subset of a topological space X. We say that an element

x ∈ X is a cluster point of A if there exists a net {xα} in A such that
x = lim xα. Prove that A is closed if and only if it contains all of its
cluster points.

(f) Let f be a function from a topological space X into a topological
space Y. Show that f is continuous at a point x ∈ X if and only if for
each net {xα} that converges to x ∈ X, the net {f(xα)} converges to
f(x) ∈ Y.

EXERCISE 2.9. (a) Let X be a compact topological space. Show
that every net in X has a convergent subnet. HINT: Let {xα} be a net
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in X defined on a directed set D. For each α ∈ D, define Vα ⊆ X to
be the set of all x ∈ X for which there exists a neighborhood Ux of X
such that xβ /∈ Ux whenever α ≤ β. Show that, if x /∈ ∪Vα, then x is
the limit of some subnet of {xα}. Now, argue by contradiction.

(b) Prove that a topological space X is compact if and only if every
net in X has a convergent subnet. HINT: Let F be a collection of closed
subsets of X for which the intersection of any finite number of elements
of F is nonempty. Let D be the directed set whose elements are the
finite subsets of F .

(c) Let {xα} be a net in a metric space X. Define what it means for
the net {xα} to be a Cauchy net. Show that, if X is a complete metric
space, then a net {xα} is convergent if and only if it is a Cauchy net.

EXERCISE 2.10. Let X be a set, let {fi}, for i in an index set I,
be a collection of real-valued functions on X, and let T be the weakest
topology on X for which each fi is continuous.

(a) Show that a net {xα} in the topological space (X, T ) converges
to an element x ∈ X if and only if

fi(x) = lim
α

fi(xα)

for every i ∈ I.
(b) Let X be a set, for each x ∈ X let Yx be a topological space, and

let Y be the topological product space

Y =
∏
x∈X

Yx.

Prove that a net {yα} in Y converges if and only if, for each x ∈ X, the
net {yα(x)} converges in Yx.

EXERCISE 2.11. Prove the Tychonoff Theorem. That is, prove
that if X =

∏
i∈I Xi, where each Xi is a compact topological space,

then X is a compact topological space. HINT: Let {xα} be a net in X,
defined on a directed set D. Show that there exists a convergent subnet
as follows:

(a) Let S be the set of all triples (J,C, h), where J ⊆ I, C is a directed
set, and h is a cofinal, order-preserving map of C into D such that the
subnet xh(β) satisfies {(xh(β))i} converges for every i ∈ J. We say that

(J1, C1, h1) ≤ (J2, C2, h2)
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if J1 ⊆ J2 and the subnet determined by h2 is itself a subnet of the
subnet determined by h1. Prove that S is a nonempty partially ordered
set.

(b) Let {(Jλ, Cλ, hλ)} be a maximal linearly ordered subset of S, and
set I0 = ∪λJλ. Prove that there exists a directed set C0 and a cofinal map
h0 such that (I0, C0, h0) ∈ S and such that (Jλ, Cλ, hλ) ≤ (I0, C0, h0)
for all λ.

(c) Let I0 be as in part b. Prove that I0 = I, and then complete the
proof to Tychonoff’s Theorem.

EXERCISE 2.12. (a) Suppose {fα} is a net of linear functionals on
a vector space X, and suppose that the net converges pointwise to a
function f. Prove that f is a linear functional.

(b) Suppose ρ is a subadditive functional on a vector space X and
that x ∈ X. Prove that −ρ(−x) ≤ ρ(x).

(c) Suppose ρ is a subadditive functional on a vector space X, and
let F ρ be the set of all linear functionals f on X for which f(x) ≤ ρ(x)
for every x ∈ X. Let K be the compact Hausdorff space

K =
∏
x∈X

[−ρ(−x), ρ(x)]

(thought of as a space of functions on X). Prove that F ρ is a closed
subset of K. Conclude that F ρ is a compact Hausdorff space in the
topology of pointwise convergence on X.

THEOREM 2.4. Let ρ be a subadditive functional on a vector space
X, and let g be a linear functional on X such that g(x) ≤ ρ(x) for all
x ∈ X. Suppose γ is a linear transformation of X into itself for which
ρ(γ(x)) = ρ(x) for all x ∈ X. Then there exists a linear functional h on
X satisfying:

(1) h(x) ≤ ρ(x) for all x ∈ X.
(2) h(γ(x)) = h(x) for all x ∈ X.
(3) If x ∈ X satisfies g(x) = g(γn(x)) for all positive n, then h(x) =

g(x).

PROOF. For each positive integer n, define

gn(x) = (1/n)
n∑

i=1

g(γi(x)).

Let F ρ and K be as in the preceding exercise. Then the sequence {gn} is
a net in the compact Hausdorff space K, and consequently there exists
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a convergent subnet {gnα}. By Exercise 2.12, we know then that the
subnet {gnα

} of the sequence (net) {gn} converges pointwise to a linear
functional h on X and that h(x) ≤ ρ(x) for all x ∈ X.

Using the fact that −ρ(x) ≤ g(γi(x)) ≤ ρ(x) for all x ∈ X and all
i > 0, and the fact that the cofinal map α → nα diverges to infinity, we
have that

h(γ(x)) = lim
α

gnα
(γ(x))

= lim
α

(1/nα)
nα∑
i=1

g(γi+1(x))

= lim
α

(1/nα)
nα+1∑
i=2

g(γi(x))

= lim
α

(1/nα)[
nα∑
i=1

g(γi(x)) + g(γnα+1(x))− g(γ(x))]

= lim
α

(1/nα)
nα∑
i=1

g(γi(x))

= lim
α

gnα(x)

= h(x),

which proves the second statement of the theorem.
Finally, if x is such that g(γn(x)) = g(x) for all positive n, then

gn(x) = g(x) for all n, whence h(x) = g(x), and this completes the
proof.

EXERCISE 2.13. (Banach Means) Let X = l∞ be the vector space
of all bounded sequences {a1, a2, a3, . . . } of real numbers. A Banach
mean or Banach limit is a linear functional M on X such that for all
{an} ∈ X we have:

inf an ≤ M({an}) ≤ sup an.

and
M({an+1}) = M({an}).

(a) Prove that there exists a Banach limit on X. HINT: Use Theorem
2.2, or more precisely part c of Exercise 2.6, with Y the subspace of
constant sequences, f the linear functional sending a constant sequence
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to that constant, and ρ the subadditive functional given by ρ({an}) =
lim sup an. Then use Theorem 2.4 applied to the extension g of f. (Note
that, since the proof to Theorem 2.4 depends on the Tychonoff theorem,
the very existence of Banach means depends on the axiom of choice.)

(b) Show that any Banach limit M satisfies M({an}) = L, if L =
lim an, showing that any Banach limit is a generalization of the ordinary
notion of limit.

(c) Show that any Banach limit assigns the number 1/2 to the se-
quence {0, 1, 0, 1, . . . }.

(d) Construct a sequence {bn} ∈ X which does not converge but for
which

lim(bn+1 − bn) = 0.

Show that any linear functional g on X, for which g({an}) ≤ lim sup an

for all {an} ∈ X, satisfies g({bn}) = g({bn+1}).
(e) Use the sequence {bn} of part d to prove that there exist uncount-

ably many distinct Banach limits on X. HINT: Use the Hahn-Banach
Theorem and Theorem 2.4 to find a Banach limit that takes the value
r on this sequence, where r is any number satisfying lim inf bn ≤ r ≤
lim sup bn.

EXERCISE 2.14. Prove the following generalization of Theorem
2.4. Let ρ be a subadditive functional on a vector space X, and let
g be a linear functional on X such that g(x) ≤ ρ(x) for all x ∈ X.
Suppose γ1, . . . , γn are commuting linear transformations of X into itself
for which ρ(γi(x)) = ρ(x) for all x ∈ X and all 1 ≤ i ≤ n. Then there
exists a linear functional h on X satisfying:

(1) h(x) ≤ ρ(x) for all x ∈ X.
(2) h(γi(x)) = h(x) for all x ∈ X and all 1 ≤ i ≤ n.
(3) If x ∈ X satisfies g(x) = g(γk

i (x)) for all positive k and all
1 ≤ i ≤ n, then h(x) = g(x).

HINT: Use the proof to Theorem 2.4 and mathematical induction.

THEOREM 2.5. (Hahn-Banach Theorem, Semigroup-Invariant
Version) Let ρ be a subadditive functional on a real vector space X, and
let f be a linear functional on a subspace Y of X for which f(y) ≤ ρ(y)
for all y ∈ Y. Suppose Γ is an abelian semigroup of linear transformations
of X into itself for which:

(1) ρ(γ(x)) = ρ(x) for all γ ∈ Γ and x ∈ X; i.e., ρ is invariant under
Γ.

(2) γ(Y ) ⊆ Y for all γ ∈ Γ; i.e., Y is invariant under Γ.
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(3) f(γ(y)) = f(y) for all γ ∈ Γ and y ∈ Y ; i.e., f is invariant under
Γ.

Then there exists a linear functional g on X for which
(a) g is an extension of f.
(b) g(x) ≤ ρ(x) for all x ∈ X.
(c) g(γ(x)) = g(x) for all γ ∈ Γ and x ∈ X; i.e., g is invariant under

Γ.

PROOF. For A a finite subset of Γ, we use part c of Exercise 2.6 and
then Exercise 2.14 to construct a linear functional gA on X satisfying:

(1) gA is an extension of f.
(2) gA(x) ≤ ρ(x) for all x ∈ X.
(3) gA(γ(x)) = gA(x) for all x ∈ X and γ ∈ A.

If as in Exercise 2.12 K =
∏

x∈X [−ρ(−x), ρ(x)], then {gA} can be re-
garded as a net in the compact Hausdorff space K. Let {gAβ

} be a
convergent subnet, and write h = limβ gAβ

. Then, h is a function on X,
and is in fact the pointwise limit of a net of linear functionals, and so is
itself a linear functional.

Clearly, h(x) ≤ ρ(x) for all x ∈ X, and h is an extension of f.
To see that h(γ(x)) = h(x) for all γ ∈ Γ, fix a γ0, and let A0 = {γ0}.

By the definition of a subnet, there exists a β0 such that if β ≥ β0

then Aβ ≥ A0. Hence, if β ≥ β0, then {γ0} ⊆ Aβ . So, if β ≥ β0, then
gAβ

(γ0(x)) = gAβ
(x) for all x. Hence,

h(γ0(x)) = lim
β

gAβ
(γ0(x)) = lim

β
gAβ

(x) = h(x),

as desired.

DEFINITION. Let S be a set. A ring of subsets of S is a collection
R of subsets of S such that if E,F ∈ R, then both E ∪F and E∆F are
in R, where E∆F = (E ∩ F̃ ) ∪ (F ∩ Ẽ) is the symmetric difference of
E and F. By a finitely additive measure on S, we mean an assignment
E → µ(E), of a ring R of subsets of S into the extended nonnegative
real numbers, such that

µ(∅) = 0

and
µ(E1 ∪ . . . ∪ En) = µ(E1) + . . . + µ(En)

whenever {E1 . . . , En} is a pairwise disjoint collection of elements of R.
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EXERCISE 2.15. (Translation-Invariant Finitely Additive Measures)
Let X be the vector space of all bounded functions on R with compact
support, and let P be the positive cone of nonnegative functions in X.

(a) Let I be a positive linear functional on X. For each bounded
subset E ⊂ R, define µ(E) = I(χE). Show that the set of all bounded
subsets of R is a ring R of sets and that µ is a finitely additive measure
on this ring.

(b) Show that there exists a finitely additive measure ν, defined on the
ring of all bounded subsets of R, such that ν(E) is the Lebesgue measure
for every bounded Lebesgue measurable subset E of R, and such that
ν(E +x) = ν(E) for all bounded subsets E of R and all real numbers x.
(Such a measure is said to be translation-invariant.) HINT: Let Y be the
subspace of X consisting of the bounded Lebesgue measurable functions
of bounded support, let I(f) =

∫
f, and let Γ be the semigroup of linear

transformations of X determined by the semigroup of all translations of
R. Now use Theorem 2.5.

(c) Let µ be the finitely additive measure of part b. For each subset
E of R, define ν(E) = limn µ(E ∩ [−n, n]). Prove that µ is a translation-
invariant, finitely additive measure on the σ-algebra of all subsets of R,
and that µ agrees with Lebesgue measure on Lebesgue measurable sets.

(d) Prove that there exists no countably additive translation-invariant
measure µ on the σ-algebra of all subsets of R that agrees with Lebesgue
measure on Lebesgue measurable sets. HINT: Suppose µ is such a count-
ably additive measure. Define an equivalence relation on R by setting
x ≡ y if y − x ∈ Q, i.e., y − x is a rational number. Let E ⊂ (0, 1) be
a set of representatives of the equivalence classes of this relation. Show
first that ∪q∈Q∩(0,1)E + q ⊂ (0, 2), whence µ(E) must be 0. Then show
that (0, 1) ⊂ ∪q∈QE + q, whence µ(E) must be positive.

DEFINITION. Let X be a complex vector space. A seminorm on
X is a real-valued function ρ that is subadditive and absolutely homo-
geneous; i.e.,

ρ(x + y) ≤ ρ(x) + ρ(y)

for all x, y ∈ X, and
ρ(λx) = |λ|ρ(x)

for all x ∈ X and λ ∈ C. If, in addition, x 6= 0 implies that ρ(x) > 0,
then ρ is called a norm on the complex vector space X.

THEOREM 2.6. (Hahn-Banach Theorem, Complex Version) Let ρ
be a seminorm on a complex vector space X. Let Y be a subspace of X,
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and let f be a complex-linear functional on Y satisfying |f(y)| ≤ ρ(y)
for all y ∈ Y. Then there exists a complex-linear functional g on X
satisfying g is an extension of f, and |g(x)| ≤ ρ(x) for all x ∈ X.

EXERCISE 2.16. Prove Theorem 2.6 as follows:
(a) Use Theorem 2.2 to extend the real part u of f to a real linear

functional a on X that satisfies a(x) ≤ ρ(x) for all x ∈ X.
(b) Use Exercise 1.11 and part a to define a complex linear functional

g on X that extends f.
(c) For x ∈ X, choose a complex number λ of absolute value 1 such

that |g(x)| = λg(x). Then show that

|g(x)| = g(λx) = a(λx) ≤ ρ(x).

(d) State and prove a theorem for complex spaces that is analogous
to Theorem 2.3.


