
PREFACE

The marriage of algebra and topology has produced many beautiful
and intricate subjects in mathematics, of which perhaps the broadest
is functional analysis. My aim has been to write a textbook with which
graduate students can master at least some of the powerful tools of this
subject. Because I think that one learns best by doing, I believe that it is
critical that the students using this book in a course work the exercises.
As an integral part of the book, they have been designed to provide prac-
tice in mimicking the techniques that are presented here in the proofs,
as well as to lead the novice through fairly elaborate arguments that es-
tablish important additional results. The instructor is encouraged and
expected to add theorems and examples from his or her own experiences
and preferences, for I have quite deliberately restricted this presentation
according to my own. My style is to state relatively few theorems, each
having a fairly substantial proof, rather than to present a long series of
lemmas. The student should read these substantial proofs with pencil
in hand, making sure how each step follows from the previous ones and
filling in any details that have been left to the reader.

I propose this text for a one-year course. The first six chapters consti-
tute a general study of topological vector spaces, Banach spaces, duality,
convexity, etc., concluding with a chapter that contains a number of ap-
plications to classical analysis, e.g., convolution, Green’s functions, the
Fourier transform, and the Hilbert transform.

I assume that the students studying from this book have completed a
course in general measure theory, so that terms such as outer measure,
σ-algebra, measurability, Lp spaces (including the Riesz representation
theorem for (Lp)∗), product measures, etc. should be familiar. In ad-
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dition, I freely use concepts such as separability and completeness from
metric space theory (making particular use of the Baire category theo-
rem at several points in Chapter IV), and I employ the general Stone-
Weierstrass theorem on several occasions. I also think that many aspects
of general topology were in fact invented to support the concepts in func-
tional analysis, and I draw on these results in some rather deep ways.
Thinking that those aspects of general topology that are most critical
to this subject, e.g., product topologies, weak topologies, convergence
of nets, etc., may not be covered in sufficient detail in many elementary
topology courses, I go to some effort to explain these notions carefully
throughout the text.

I do not intend to include here the most general cases of theorems and
definitions, believing that my versions are both hard enough and deep
enough for a student’s first go at this subject. For example, I consider
only locally compact topological spaces that are second countable, mea-
sures that are σ-finite, and Hilbert spaces that are separable. Chapter 0
is a kind of catalog for the basic results from linear algebra and topology
that will be assumed.

The second half of the book centers on the Spectral Theorem in
Hilbert space, the most important theorem of functional analysis in my
view. Students with some elementary knowledge of Banach space the-
ory and the Riesz Representation Theorem for (C(X))∗ can in fact begin
with Chapter VIII, referring to the earlier chapters on those few occa-
sions when more delicate results from locally convex analysis and dual
topologies are required. I introduce early on the notion of projection-
valued measures and spend some time studying operators that can be
expressed as integrals against such a measure. I present the Gelfand ap-
proach to the Spectral Theorem for a bounded normal operator, for my
sense is that the beauty of that approach is so spectacular that it should
be experienced by every analyst, hard or soft. In Chapter XI I spend
some time studying the standard classes of operators ordinarily encoun-
tered in analysis: compact, Hilbert-Schmidt, trace class, and unbounded
selfadjoint. I include only a few of the large number of examples from dif-
ferential and integral equations that spawned these classes of operators,
leaving this addition to the instructor’s choice. Indeed, my choice has
been to present an introduction to the connection between operator the-
ory and the foundations of quantum mechanics. Thus I devote Chapter
VII to a brief presentation of a set of axioms for a mathematical model
of experimental science. These axioms are a minor perturbation of those
first introduced by G. W. Mackey for Quantum Mechanics, and my aim
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is to motivate the notions of projection-valued measures and unbounded
selfadjoint operators by using them as models of the question-valued
measures and observables of this set of axioms. However, this chapter
and all references to it can be omitted without any effect on the rest of
the material.

Finally, Chapter XII is devoted primarily to a development of the
Implicit Function Theorem in infinite dimensions. My experience is that
most beginning graduate students can well use another trek through the
ideas surrounding this theorem, and what is presented here also provides
a basic introduction to nonlinear functional analysis.

The bibliography includes two texts on measure theory and real anal-
ysis for reference purposes, several of the standard volumes on functional
analysis for different points of view, and a number of books the interested
student should consider reading after finishing this one.

It has been said that many functional analysis books are too big.
They are encyclopedic; they have everything in them. Having tried to
study from them, a student often leaves the course more baffled by the
tool box than by the tasks to be solved. I expect students of this small
textbook to be masters of the most powerful and commonly used tools.

Three classes of functional analysis students have helped my class
notes evolve into a book. I valued and welcomed their compliments,
their complaints, and their true partnership in developing this material.
I thank them all. Many of my faculty colleagues have provided me with
alternate proofs, interesting examples, and novel exercises, all of which
have enriched the book, and I thank them all, too. Special thanks go
to my daughter Molly for her diligent help with the indexing. Finally, I
thank my wife Christy for her love, her support, and her true partnership
in developing this material. More particularly, I am extremely grateful
for her considerable editorial expertise, which has been of continuous
help. I count myself extremely lucky to have had such encouragement
and support.

As a blind person, I am incredibly indebted to many kinds of elec-
tronic and software products, for without them I could not in all proba-
bility have prepared this text at all. Confessing that I am neglecting to
mention many such items, I especially thank Professor Donald Knuth for
his program TEXand the American Mathematical Society for its macro
package AMS-TEX. Also I am in daily debt to the ECHO and ACCENT
speech synthesizers as well as to the two computer programs PROTERM
(MicroTalk) and JAWS (Henter-Joyce).

Lawrence W. Baggett
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2 CHAPTER 0

CHAPTER 0

PRELIMINARIES

We include in this preliminary chapter some of the very basic concepts
and results of set theory, linear algebra, and topology. We do this so
that precise definitions and theorems will be at hand for reference. The
exercises given here contain some of the main results. Although they
should be routine for the student of this subject, we recommend that
they be done carefully. The main theorems of Functional Analysis fre-
quently rely on the Axiom of Choice, and in some cases are equivalent
to this axiom from abstract set theory. The version of the Axiom of
Choice that is ordinarily used in Functional Analysis is the Hausdorff
maximality principle, which we state here without proof.

HAUSDORFF MAXIMALITY PRINCIPLE. Let S be a non-
empty set, and let < denote a partial ordering on S, i.e., a transitive
relation on S. Then there exists a maximal linearly ordered subset of S.

Frequently encountered in our subject is the notion of an infinite prod-
uct.

DEFINITION. Let I be a set, and for each i ∈ I let Xi be a set. By
the Cartesian product of the sets {Xi}, we mean the set of all functions
f defined on I for which f(i) ∈ Xi for each i ∈ I. We denote this set of
functions by

∏
i∈I Xi or simply by

∏
Xi.

Ordinarily, a function f ∈
∏
i∈I Xi is denoted by {xi}, where xi = f(i).

Fundamental to Functional Analysis are the notions of vector spaces and
linear transformations.

DEFINITION. Let F denote either the field R of real numbers or the
field C of complex numbers. A vector space over F is an additive abelian
group X, on which the elements of F act by scalar multiplication:

(1) a(x + y) = ax + ay, a(bx) = (ab)x, and (a + b)x = ax + bx for
all x, y ∈ X and a, b ∈ F.

(2) 1x = x for all x ∈ X.
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The elements of F are called scalars. If F = R, then X is called a real
vector space, and if F = C, then X is called a complex vector space.
Obviously, a complex vector space can also be regarded as a real vector
space, but not every real vector space is a complex vector space. See
Exercise 0.1 below.

A subset Y of a vector space X is called a subspace if it is closed under
addition and scalar multiplication.

A nonempty finite set {x1, . . . , xn} of nonzero elements of a vector space
X is called linearly dependent if there exist elements {a1, . . . , an} of
F, not all 0, such that

∑n
i=1 aixi = 0. An arbitrary set S of nonzero

elements of X is called linearly dependent if some nonempty finite subset
of S is linearly dependent. A subset S ⊆ X of nonzero vectors is called
linearly independent if it is not linearly dependent.

A subset B of a vector space X is said to be a spanning set for X if
every element of X is a finite linear combination of elements of B. A
basis of X is a linearly independent spanning subset of X.

EXERCISE 0.1. (a) Prove that every nontrivial vector space has a
basis. HINT: The Hausdorff maximality principle.

(b) If B is a basis of a vector space X, show that each element x ∈ X
can be written uniquely as a finite linear combination x =

∑n
i=1 aixi,

where each xi ∈ B.
(c) Show that any two bases of a vector space have the same cardinality,
i.e., they can be put into 1-1 correspondence.

(d) Show that the set Fn of all n-tuples (x1, x2, . . . , xn) of elements of
F is a vector space with respect to coordinatewise addition and scalar
multiplication.

(e) Prove that every complex vector space is automatically a real vector
space. On the other hand, show that R3 is a real vector space but that
scalar multiplication cannot be extended to C so that R3 is a complex
vector space. HINT: What could ix possibly be?

DEFINITION. The dimension of a vector space X is the cardinality
of a basis of X.

DEFINITION. Let I be a set, and let {Xi}, for i ∈ I, be a collection
of vector spaces over F. By the vector space direct product

∏
i∈I Xi, we

mean the cartesian product of the sets {Xi}, together with the opera-
tions:

(1) {xi}+ {yi} = {xi + yi}
(2) a{xi} = {axi}.
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The (algebraic) direct sum ⊕
i∈I

Xi

is defined to be the subset of
∏
i∈I Xi consisting of the elements {xi}

for which xi = 0 for all but a finite number of i’s.

EXERCISE 0.2. (a) Prove that
∏
i∈I Xi is a vector space.

(b) Show that
⊕

i∈I Xi is a subspace of
∏
i∈I Xi.

(c) Prove that

Fn =
∏

i∈{1,... ,n}

F =
∑

i∈{1,... ,n}

F.

DEFINITION. A linear transformation from a vector space X into a
vector space Y is a function T : X → Y for which

T (a1x1 + a2x2) = a1T (x1) + a2T (x2)

for all x1, x2 ∈ X and a1, a2 ∈ F.
A linear transformation T : X → Y is called a linear isomorphism if it
is 1-1 and onto.
By the kernel ker(T ) of a linear transformation T, we mean the set of
all x ∈ X for which T (x) = 0, and by the range of T we mean the set of
all elements of Y of the form T (x).

EXERCISE 0.3. Let X and Y be vector spaces, and letB be a basis
for X.
(a) Suppose T and S are linear transformations of X into Y. Show that
T = S if and only if T (x) = S(x) for every x ∈ B.
(b) For each b ∈ B let yb be an element of Y. Show that there exists a
(unique) linear transformation T : X → Y satisfying T (b) = yb for all
b ∈ B.
(c) Let T be a linear transformation of X into Y. Prove that the kernel
of T is a subspace of X and the range of T is a subspace of Y.
(d) Let T : X → Y be a linear isomorphism. Prove that T−1 : Y → X
is a linear isomorphism.

DEFINITION. A linear functional on a vector space X over F is a
linear transformation of X into F ≡ F 1.

EXERCISE 0.4. Let f be a linear functional on a vector space X, and
let M be the kernel of f.
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(a) If x is an element of X, which is not in M, show that every element
y ∈ X can be written uniquely as y = m+ax, where m ∈M and a ∈ F.
(b) Let f and g be linear functionals on X. Show that f is a nonzero
multiple f = ag of g if and only if ker(f) = ker(g).
(c) Let T be a linear transformation of a vector space X onto the vector
space Fn. Show that there exist elements {x1, . . . , xn} of X, none of
which belongs to ker(T ), such that each element y ∈ X can be written
uniquely as y = m+

∑n
i=1 aixi, where m ∈ ker(T ) and each ai ∈ F.

DEFINITION. If X is a vector space and M is a subspace of X, we
define the quotient space X/M to be the set of all cosets x + M of M
together with the following operations:

(x+M) + (y +M) = (x+ y) +M,

and
a(x+M) = ax+M

for all x, y ∈ X and a ∈ F.

EXERCISE 0.5. Let M be a subspace of a vector space X.
(a) Prove that the quotient space X/M is a vector space.
(b) Define π : X → X/M by π(x) = x + M. Show that π is a linear
transformation from X onto X/M. This transformation π is called the
natural map or quotient map of X onto X/M.
(c) If T is a linear transformation of X into a vector space Y, and if
M ⊆ ker(T ), show that there exists a unique linear transformation S :
X/M → Y such that T = S ◦ π, where π is the natural map of X onto
X/M.

Perhaps the most beautiful aspect of Functional Analysis is in its com-
bining of linear algebra and topology. We give next the fundamental
topological ideas that we will need.

DEFINITION. A topology on a set X is a collection T of subsets of
X satisfying:

(1) X ∈ T .
(2) ∅ ∈ T .
(3) The intersection of any finite number of elements of T is an

element of T .
(4) The union of an arbitrary collection of elements of T is an ele-

ment of T .
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The set X, or the pair (X, T ), is called a topological space.
The elements of a topology T are called open subsets of X, and their
complements are called closed sets. An open set containing a point
x ∈ X is called an open neighborhood of x, and any set that contains
an open neighborhood of x is itself called a neighborhood of x.
If A is a subset of a topological space (X, T ) and x is a point of A, then
x is called an interior point of A if A contains a neighborhood of x. The
interior of A is the set of all interior points of A.
If Y is a subset of a topological space (X, T ), then the relative topology
on Y is the collection T ′ of subsets of Y obtained by intersecting the
elements of T with Y. The collection T ′ is a topology on Y, and the pair
(Y, T ′) is called a topological subspace of X.
A subset B of a topology T is called a base for T if each element U ∈ T
is a union of elements of B.
A topological space (X, T ) is called second countable if there exists a
countable base B for T .
A topological space (X, T ) is called a Hausdorff space if for each pair
of distinct points x, y ∈ X there exist open sets U, V ∈ T such that
x ∈ U, y ∈ V, and U ∩ V = ∅. X is called a regular topological space if,
for each closed set A ⊆ X and each point x /∈ A, there exist open sets
U and V such that A ⊆ U, x ∈ V, and U ∩ V = ∅. X is called a normal
topological space if, for each pair A,B of disjoint closed subsets of X,
there exist open sets U, V such that A ⊆ U, B ⊆ V, and U ∩ V = ∅.
By an open cover of a subset Y of a topological space X, we mean a
collection U of open subsets of X for which Y ⊆ ∪U∈UU. A subset Y of
a topological space X is called compact if every open cover U of Y has
a finite subcover; i.e., there exist finitely many elements U1, . . . , Un of
U such that Y ⊆ ∪n1Ui.
A topological space X is called σ-compact if it is a countable union of
compact subsets.
A topological space X is called locally compact if, for every x ∈ X and
every open set U containing x, U contains a compact neighborhood of
x.
A function F from one topological space X into another topological
space Y is called continuous if f−1(U) is an open subset of X whenever
U is an open subset of Y.
A metric on a set X is a function d : X ×X → R that satisfies:

(1) d(x, y) ≥ 0 for all x, y ∈ X.
(2) d(x, y) = 0 if and only if x = y.
(3) (Triangle inequality) d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z ∈ X.
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If X is a set on which a metric d is defined, then X (or the pair (X, d))
is called a metric space.
If d is a metric on a set X, x is an element of X, and ε > 0, then the
ball Bε(x) of radius ε around x is defined to be the set of all y ∈ X for
which d(x, y) < ε. A point x is called an interior point of a subset A of
a metric space (X, d) if there exists an ε > 0 such that Bε(x) ⊆ A, and
a set A is called open relative to a metric d if every point of A is an
interior point of A.
The topological space (X, T ) is called metrizable if there exists a metric
d on X for which the elements of T coincide with the sets that are open
sets relative to the metric d.

EXERCISE 0.6. (a) Let A be a collection of subsets of a set X. Prove
that there is a smallest topology T on X that contains A, and verify
that a base for this topology consists of the collection of all sets B of
the form

B = ∩ni=1Ai,

where each Ai ∈ A.
(b) Let A be a subset of a topological space (X, T ). Prove that the
interior of A is an open set. Prove that the intersection of all closed sets
containing A is closed. This closed set is called the closure of A and is
denoted by Ā.
(c) Let Y be a subset of a topological space (X, T ), and write T ′ for the
collection of subsets V of Y of the form V = U ∩ Y for U ∈ T . Prove
that T ′ is a topology on Y.
(d) Let d be a metric on a set X. Show that the collection of all sets
that are open relative to d forms a topology on X.
(e) Let X and Y be topological spaces. Prove that a function f : X →
Y is continuous if and only if for every open set U ⊆ Y and every
x ∈ f−1(U) there exists an open set V ⊆ X such that x ∈ V and
f(V ) ⊆ U.

EXERCISE 0.7. Let X be a set, and let {Xi}, for i in a set I, be a
collection of topological spaces. For each i, let fi be a map of X into
Xi.
(a) Prove that there exists a smallest topology T on X for which each
function fi is continuous.
(b) Let T be as in part a. Show that, for each index i and each open
subset Ui ⊆ Xi, the set f−1

i (Ui) belongs to T .
(c) Let T be as in part a. Show that, for each finite set i1, . . . , in of
elements of I, and for each n-tuple Ui1 , . . . , Uin , for Uij an open subset
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of Xij , the set

∩nj=1f
−1
ij

(Uij )

is in T .
(d) Let T be as in part a. Show that each element of T is a union of sets
of the form described in part c; i.e., the sets described in part c form a
base for T .

DEFINITION. Let X be a set, and for each i in a set I let fi be a
function from X into a topological space Xi. The smallest topology on
X, for which each fi is continuous, is called the weak topology generated
by the fi’s.
If {Xi}, for i ∈ I, is a collection of topological spaces, write

X =
∏
i∈I

Xi,

and define fi : X → Xi by

fi({xj}) = xi.

The product topology on X =
∏
i∈I Xi is defined to be the weak topol-

ogy generated by the fi’s.

EXERCISE 0.8. Let X be a set, let {Xi} for i ∈ I, be a collection of
topological spaces, and for each i ∈ I let fi be a map of X into Xi. Let
T denote the weak topology on X generated by the fi’s.
(a) Prove that T is Hausdorff if each Xi is Hausdorff and the functions
{fi} separate the points of X. (The fi’s separate the points of X if
x 6= y ∈ X implies that there exists an i ∈ I such that fi(x) 6= fi(y).)
(b) Show that T is second countable if the index set I is countable and
each topological space Xi is second countable.
(c) Conclude that the product space Y =

∏
i∈I Xi is second countable

if I is countable and each Xi is second countable.
(d) Suppose the index set I is countable, that the fi’s separate the points
of X, and that each Xi is metrizable. Prove that (X, T ) is metrizable.
HINT: Identify I with the set {1, 2, . . . }. If di denotes the metric on Xi,
define d on X by

d(x, y) =

∞∑
i=1

2−i min(1, di(fi(x), fi(y))),
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and show that d is a metric whose open sets coincide with the elements
of T .
(e) Let Y be the topological product space Y =

∏
i∈I Xi, and define

F : X → Y by [F (x)]i = fi(x). Suppose that the fi’s separate the
points of X. Prove that F is a homeomorphism of (X, T ) into Y.

EXERCISE 0.9. (a) Prove that a topological space X is compact if
and only if it satisfies the finite intersection property ; i.e., if F is a
collection of closed subsets of X, for which the intersection of any finite
number of elements of F is nonempty, then the intersection of all the
elements of F is nonempty.
(b) Prove that a compact Hausdorff space is normal.
(c) Prove that a regular space, having a countable base, is normal.
(d) Prove Urysohn’s Lemma: If X is a normal topological space, and if
A and B are nonempty disjoint closed subsets of X, then there exists a
continuous function f : X → [0, 1] such that f(A) = {0} and f(B) =
{1}.
(e) Let X be a regular space having a countable base. Show that there
exists a sequence {fn} of continuous real-valued functions on X, such
that for each closed set A ⊆ X and each point x /∈ A, there exists an
n for which fn(x) /∈ fn(A). HINT: For each pair U, V of elements of
the countable base, for which U ⊆ Ū ⊂ V, use Urysohn’s lemma on the
sets Ū and Ṽ , where Ṽ denotes the complement of V. Conclude that
the topology on X coincides with the weak topology generated by the
resulting fn’s.
(f) Prove that a regular space X, having a countable base, is metrizable.
HINT: Use part e to construct a homeomorphism between X and a
subset of a countable product of real lines.
(g) Prove that a locally compact Hausdorff space is regular and hence
that a locally compact, second countable, Hausdorff space is metrizable.

DEFINITION. Let (X, T ) be a topological space, and let f be a func-
tion from X onto a set Y. The largest topology Q on Y for which f is
continuous is called the quotient topology on Y.

EXERCISE 0.10. Let (X, T ) be a topological space, let f : X → Y be
a map of X onto a set Y, and let Q be the quotient topology on Y.
(a) Prove that a subset U ⊆ Y belongs to Q if and only if f−1(U)
belongs to T . That is, Q = {U ⊆ Y : f−1(U) ∈ T }.
(b) Suppose Z is a topological space and that g is a function from (Y,Q)
into Z. Prove that g is continuous if and only if g ◦ f is continuous from
(X, T ) into Z.
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CHAPTER I

THE RIESZ REPRESENTATION THEOREM

We begin our study by identifying certain special kinds of linear func-
tionals on certain special vector spaces of functions. We describe these
linear functionals in terms of more familiar mathematical objects, i.e.,
as integrals against measures. We have labeled Theorem 1.3 as the Riesz
Representation Theorem. However, each of Theorems 1.2, 1.3, 1.4 and
1.5 is often referred to by this name, and a knowledge of this nontrivial
theorem, or set of theorems, is fundamental to our subject. Theorem
1.1 is very technical, but it is the cornerstone of this chapter.

DEFINITION. A vector lattice of functions on a set X is a vector
space L of real-valued functions on X which is closed under the binary
operations of maximum and minimum. That is:

(1) f, g ∈ L and α, β ∈ R implies that αf + βg ∈ L.
(2) f, g ∈ L implies that max(f, g) ∈ L and min(f, g) ∈ L.

REMARKS. The set of all continuous real-valued functions on a topo-
logical space X clearly forms a vector lattice, indeed the prototypical
one. A nontrivial vector lattice certainly contains some nonnegative
functions (taking maximum of f and 0 ). If a vector lattice does not
contain any nonzero constant function, it does not follow that the min-
imum of an f ∈ L and the constant function 1 must belong to L. The
set of all scalar multiples of a fixed positive nonconstant function is a
counterexample.
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Stone’s axiom for a vector lattice L is as follows: If f is a nonnegative
function in L, then min(f, 1) is an element of L.

EXERCISE 1.1. Let L be a vector lattice of functions on a set X, and
suppose L satisfies Stone’s axiom.

(a) Show that min(f, c) ∈ L whenever f is a nonnegative function in L
and c ≥ 0.

(b) (A Urysohn-type property) Let E and F be disjoint subsets of X,
0 ≤ a < b, and let f ∈ L be a nonnegative function such that f(x) ≥ b
on F and f(x) ≤ a on E. Show that there exists an element g ∈ L such
that 0 ≤ g(x) ≤ 1 for all x ∈ X, g(x) = 0 on E, and g(x) = 1 on F.

(c) Let 0 ≤ a < b < c < d be real numbers, let f ∈ L be nonnegative,
and define E = f−1([0, a]), F = f−1([b, c]), and G = f−1([d,∞)). Show
that there exists an element g of L such that 0 ≤ bg(x) ≤ f(x) for all
x ∈ X, g(x) = 1 on F, and g(x) = 0 on E ∪G.
(d) Let µ be a measure defined on a σ-algebra of subsets of the set X, and
suppose L = L1(µ) is the set of all (absolutely) integrable real-valued
functions on X with respect to µ. Show that L is a vector lattice that
satisfies Stone’s axiom.

(e) Let µ and L be as in part d. Define φ : L → R by φ(f) =
∫
f dµ.

Prove that φ is a positive linear functional on L, i.e., φ is a linear func-
tional for which φ(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X.

We come now to our fundamental representation theorem for linear func-
tionals.

THEOREM 1.1. Let L be a vector lattice on a set X, and assume that
L satisfies Stone’s axiom, i.e., that if f is a nonnegative function in L,
then min(f, 1) ∈ L. Suppose I is a linear functional on the vector space
L that satisfies:

(1) I(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X. (I is a positive linear
functional.)

(2) Suppose {fn} is a sequence of nonnegative elements of L, which
increases pointwise to an element f of L, i.e., f(x) = lim fn(x)
for every x, and fn(x) ≤ fn+1(x) for every x and n. Then I(f) =
lim I(fn). (I satisfies the monotone convergence property.)

Then there exists a (not necessarily finite) measure µ defined on a σ-
algebra M of subsets of X such that every f ∈ L is µ-measurable, µ-
integrable, and

I(f) =

∫
f dµ.
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PROOF. We begin by defining an outer measure µ∗ on all subsets of
X. Thus, if E ⊆ X, put

µ∗(E) = inf
∑

I(hm),

where the infimum is taken over all sequences {hm} of nonnegative func-
tions in L for which

∑
hm(x) ≥ 1 for each x ∈ E. Note that if, for some

set E, no such sequence {hm} exists, then µ∗(E) = ∞, the infimum
over an empty set being +∞. In particular, if L does not contain the
constant function 1, then µ∗(X) could be ∞, although not necessarily.
See Exercise 1.2 below.
It follows routinely that µ∗ is an outer measure. Again see Exercise 1.2
below.
We let µ be the measure generated by µ∗, i.e., µ is the restriction of
µ∗ to the σ-algebra M of all µ∗-measurable subsets of X. We wish to
show that each f ∈ L is µ-measurable, µ-integrable, and then that
I(f) =

∫
f dµ. Since L is a vector lattice, and both I and

∫
· dµ are

positive linear functionals on L, we need only verify the above three
facts for nonnegative functions f ∈ L.
To prove that a nonnegative f ∈ L is µ-measurable, it will suffice to
show that each set f−1[a,∞), for a > 0, is µ∗-measurable; i.e., we must
show that for any A ⊆ X,

µ∗(A) ≥ µ∗(A ∩ f−1[a,∞)) + µ∗(A ∩ ˜f−1[a,∞)).

We first make the following observation.
Suppose A ⊆ X, 0 < a < b, E is a subset of X for which f(x) ≤ a if
x ∈ E, and F is a subset of X for which f(x) ≥ b if x ∈ F. Then

µ∗(A ∩ (E ∪ F )) ≥ µ∗(A ∩ E) + µ∗(A ∩ F ).

Indeed, let g be the element of L defined by

g =
min(f, b)−min(f, a)

b− a
.

Then g = 0 on E, and g = 1 on F. If ε > 0 is given, and {hm} is
a sequence of nonnegative elements of L for which

∑
hm(x) ≥ 1 on

A ∩ (E ∪ F ), and
∑
I(hm) < µ∗(A ∩ (E ∪ F )) + ε, set fm = min(hm, g)

and gm = hm −min(hm, g). Then:

hm = fm + gm
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on X, ∑
fm(x) ≥ 1

for x ∈ A ∩ F, and ∑
gm(x) ≥ 1

for x ∈ A ∩ E. Therefore:

µ∗(A ∩ (E ∪ F )) + ε ≥
∑

I(hm)

=
∑

I(fm) +
∑

I(gm)

≥ µ∗(A ∩ F ) + µ∗(A ∩ E).

It follows now by induction that if {I1, ..., In} is a finite collection of
disjoint half-open intervals (aj , bj ], with 0 < b1 and bj < aj+1 for 1 ≤
j < n, and if Ej = f−1(Ij), then

µ∗(A ∩ (∪Ej)) ≥
∑

µ∗(A ∩ Ej)

for any subset A of X. In fact, using the monotonicity of the outer
measure µ∗, the same assertion is true for any countable collection {Ij}
of such disjoint half-open intervals. See Exercise 1.3.
Now, Let A be an arbitrary subset of X, and let a > 0 be given. Write
E = f−1[a,∞). We must show that

µ∗(A ∩ E) + µ∗(A ∩ Ẽ) ≤ µ∗(A).

We may assume that µ∗(A) is finite, for otherwise the desired inequality
is obvious. Let {c1, c2, . . . } be a strictly increasing sequence of posi-
tive numbers that converges to a. We write the interval (−∞, a) as the
countable union ∪∞j=0Ij of the disjoint half-open intervals {Ij}, where
I0 = (−∞, c1], and for j > 0, Ij = (cj , cj+1], whence

Ẽ = ∪∞j=0Ej ,

where Ej = f−1(Ij). Also, if we set Fk = ∪kj=0Ej , then Ẽ is the increas-
ing union of the Fk’s. Then, using Exercise 1.3, we have:

µ∗(A ∩ (∪∞j=0E2j)) ≥
∞∑
j=0

µ∗(A ∩ E2j),
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whence the infinite series on the right is summable.

Similarly, the infinite series
∑∞
j=0 µ

∗(A∩E2j+1) is summable. Therefore,

µ∗(A ∩ Fk) ≤ µ∗(A ∩ Ẽ)

= µ∗((A ∩ Fk) ∪ (A ∩ (∪∞j=k+1Ej)))

≤ µ∗(A ∩ Fk) +

∞∑
j=k+1

µ∗(A ∩ Ej),

and this shows that µ∗(A ∩ Ẽ) = limk µ
∗(A ∩ Fk).

So, recalling that Fk = f−1(−∞, ck+1], we have

µ∗(A ∩ E) + µ∗(A ∩ Ẽ) = µ∗(A ∩ E) + lim
k
µ∗(A ∩ Fk)

= lim
k

(µ∗(A ∩ E) + µ∗(A ∩ Fk))

= lim
k
µ∗(A ∩ (E ∪ Fk))

≤ µ∗(A),

as desired. Therefore, f is µ-measurable for every f ∈ L.

It remains to prove that each f ∈ L is µ-integrable, and that I(f) =∫
f dµ. It will suffice to show this for f ’s which are nonnegative, bounded,

and 0 outside a set of finite µ measure. See Exercise 1.4. For such an f,
let φ be a nonnegative measurable simple function, with φ(x) ≥ f(x) for
all x, and such that φ is 0 outside a set of finite measure. (We will use the
fact from measure theory that there exists a sequence {φn} of such simple

functions for which
∫
f dµ = lim

∫
φn dµ. ) Write φ =

∑k
i=1 aiχEi , where

each ai ≥ 0, and let ε > 0 be given. For each i, let {hi,m} be a sequence
of nonnegative elements in L for which

∑
m hi,m(x) ≥ 1 on Ei, and
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m I(hi,m) < µ∗(Ei) + ε. Then∫

φdµ+ ε

k∑
i=1

ai =

k∑
i=1

aiµ(Ei) + ε

k∑
i=1

ai

>

k∑
i=1

ai
∑
m

I(hi,m)

=
∑
m

k∑
i=1

aiI(hi,m)

= lim
M

M∑
m=1

k∑
i=1

aiI(hi,m)

= lim
M
I(hM ),

where

hM =

M∑
m=1

k∑
i=1

aihi,m.

Observe that {hM} is an increasing sequence of nonnegative elements
of L, and that limhM (x) ≥ φ(x) for all x ∈ X, whence the sequence
{min(hM , f)} increases pointwise to f. Therefore, by the monotone con-
vergence property of I, we have that∫

φdµ+ ε

k∑
i=1

ai ≥ lim
M
I(hM )

≥ lim
M
I(min(hM , f))

= I(f),

showing that
∫
φdµ ≥ I(f), for all such simple functions φ. It follows

then that
∫
f dµ ≥ I(f).

To show the reverse inequality, we may suppose that 0 ≤ f(x) < 1 for
all x, since both I and

∫
· dµ are linear. For each positive integer n and

each 0 ≤ i < 2n, define the set Ei,n by

Ei,n = f−1([i/2n, (i+ 1)/2n)),

and then a simple function φn by

φn =

2n−1∑
i=0

(i/2n)χEi,n .
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Using Exercise 1.1 part c, we choose, for each 0 ≤ i < 2n and each
m > 2n+1, a function gi,m satisfying:

(1) For x ∈ f−1([i/2n, ((i+ 1)/2n)− 1/m)),

gi,m(x) = i/2n.

(2) For x ∈ f−1([0, (i/2n) − 1/2m)) and x ∈ f−1([((i + 1)/2n) −
1/2m, 1]),

gi,m(x) = 0.

(3) For all x,
0 ≤ gi,m(x) ≤ f(x).

Then
µ(Ei,n) = lim

m
µ(f−1([i/2n , (i+ 1)/2n − 1/m))).

And,

2n−1∑
i=0

(i/2n)µ(f−1([i/2n , (i+ 1)/2n − 1/m))) ≤
2n−1∑
i=0

I(gi,m)

= I(hm),

where

hm =

2n−1∑
i=0

gi,m.

Observe that hm(x) ≤ f(x) for all x. It follows that

∫
φn dµ =

2n−1∑
i=0

(i/2n)µ(Ei,n)

= lim
m

2n−1∑
i=0

(i/2n)µ(f−1([i/2n , (i+ 1)/2n − 1/m)))

≤ lim sup
m

I(hm)

≤ I(f),

whence, by letting n tend to ∞, we see that
∫
f dµ ≤ I(f).

The proof of the theorem is now complete.
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EXERCISE 1.2. (a) Give an example of a vector lattice L of functions
on a set X, such that the constant function 1 does not belong to L,
but for which there exists a sequence {hn} of nonnegative elements of L
satisfying

∑
hn(x) ≥ 1 for all x ∈ X.

(b) Verify that the µ∗ in the preceding proof is an outer measure on X
by showing that:

(1) µ∗(∅) = 0.
(2) If E and F are subsets of X, with E contained in F, then µ∗(E) ≤

µ∗(F ).
(3) µ∗ is countably subadditive, i.e.,

µ∗(∪En) ≤
∑

µ∗(En)

for every sequence {En} of subsets of X.

HINT: To prove the countable subadditivity, assume that each µ∗(En)
is finite. Then, given any ε > 0, let {hn,i} be a sequence of nonnegative
functions in L for which

∑
i hn,i(x) ≥ 1 for all x ∈ En and for which∑

i I(hn,i) ≤ µ∗(En) + ε/2n.

EXERCISE 1.3. Let {I1, I2, ...} be a countable collection of half-open
intervals (aj , bj ], with 0 < b1 and bj < aj+1 for all j. Let f be a non-
negative element of the lattice L of the preceding theorem, and set
Ej = f−1(Ij). Show that for each A ⊆ X we have

µ∗(A ∩ (∪Ej)) =
∑

µ∗(A ∩ Ej).

HINT: First show this, by induction, for a finite sequence I1, . . . , In,
and then verify the general case by using the properties of the outer
measure.

EXERCISE 1.4. Let L be the lattice of the preceding theorem.
(a) Show that there exist sets of finite µ-measure. In fact, if f is a
nonnegative element of L, show that f−1([ε,∞)) has finite measure for
every positive ε.
(b) Let f ∈ L be nonnegative. Show that there exists a sequence {fn}
of bounded nonnegative elements of L, each of which is 0 outside some
set of finite µ-measure, which increases to f. HINT: Use Stone’s axiom.
(c) Conclude that, if I(f) =

∫
f dµ for every f ∈ L that is bounded,

nonnegative, and 0 outside a set of finite µ-measure, then I(f) =
∫
f dµ

for every f ∈ L.
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REMARK. One could imagine that all linear functionals defined on a
vector lattice of functions on a set X are related somehow to integration
over X. The following exercise shows that this is not the case; that is,
some extra hypotheses on the functional I are needed.

EXERCISE 1.5. (a) Let X be the set of positive integers, and let L
be the space of all functions f (sequences) on X for which limn→∞ f(n)
exists. Prove that L is a vector lattice that satisfies Stone’s axiom.
(b) Let X and L be as in part a, and define I : L → R by I(f) =
limn→∞ f(n). Prove that I is a positive linear functional.
(c) Let I be the positive linear functional from part b. Prove that there
exists no measure µ on the set X for which I(f) =

∫
f dµ for all f ∈ L.

HINT: If there were such a measure, there would have to exist a sequence
{µn} such that I(f) =

∑
f(n)µn for all f ∈ L. Show that each µn must

be 0, and that this would lead to a contradiction.
(d) Let X,L, and I be as in part b. Verify by giving an example that I
fails to satisfy the monotone convergence property of Theorem 1.1.

DEFINITION. If ∆ is a Hausdorff topological space, then the smallest
σ-algebra B of subsets of ∆, which contains all the open subsets of ∆,
is called the σ-algebra of Borel sets. A measure which is defined on this
σ-algebra, is called a Borel measure. A function f from ∆ into another
topological space ∆′ is called a Borel function if f−1(U) is a Borel subset
of ∆ whenever U is an open (Borel) subset of ∆′.
A real-valued (or complex-valued) function f on ∆ is said to have com-
pact support if the closure of the set of all x ∈ ∆ for which f(x) 6= 0
is compact. The set of all continuous functions having compact support
on ∆ is denoted by Cc(∆).
A real-valued (or complex-valued) function f on ∆ is said to vanish at
infinity if, for each ε > 0, the set of all x ∈ ∆ for which |f(x)| ≥ ε
is compact. The set of all continuous real-valued functions vanishing
at infinity on ∆ is denoted here by C0(∆). Sometimes, C0(∆) denotes
the complex vector space of all continuous complex-valued functions on
∆ that vanish at ∞. Hence, the context in which this symbol occurs
dictates which meaning it has.
If ∆ is itself compact, then every continuous function vanishes at infinity,
and we write C(∆) for the space of all continuous real-valued (complex-
valued) functions on ∆. That is, if ∆ is compact, then C(∆) = C0(∆).

EXERCISE 1.6. (a) Prove that a second countable locally compact
Hausdorff space ∆ is metrizable. (See Exercise 0.9.) Conclude that if
K is a compact subset of a second countable locally compact Hausdorff
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space ∆, then there exists an element f ∈ Cc(∆) that is identically 1 on
K.
(b) Let ∆ be a locally compact Hausdorff space. Show that every element
of Cc(∆) is a Borel function, and hence is µ-measurable for every Borel
measure µ on ∆.
(c) Show that, if ∆ is second countable, Hausdorff, and locally compact,
then the σ-algebra of Borel sets coincides with the smallest σ-algebra
that contains all the compact subsets of ∆.
(d) If ∆ is second countable, Hausdorff, and locally compact, show that
the σ-algebra B of Borel sets coincides with the smallest σ-algebraM of
subsets of ∆ for which each f ∈ Cc(∆) satisfies f−1(U) ∈ M whenever
U is open in R.
(e) Suppose µ and ν are finite Borel measures on a second countable,
locally compact, Hausdorff space ∆, and assume that

∫
f dµ =

∫
f dν

for every f ∈ Cc(∆). Prove that µ = ν. HINT: Show that µ and ν agree
on compact sets, and hence on all Borel sets.
(f) Prove that a second countable locally compact Hausdorff space ∆
is σ-compact. In fact, show that ∆ is the increasing union ∪Kn of a
sequence of compact subsets {Kn} of ∆ such that Kn is contained in
the interior of Kn+1. Note also that this implies that every closed subset
F of ∆ is the increasing union of a sequence of compact sets.

EXERCISE 1.7. Prove Dini’s Theorem: If ∆ is a compact topological
space and {fn} is a sequence of continuous real-valued functions on
∆ that increases monotonically to a continuous function f, then {fn}
converges uniformly to f on ∆.

THEOREM 1.2. Let ∆ be a second countable locally compact Hausdorff
space. Let I be a positive linear functional on Cc(∆). Then there exists
a unique Borel measure µ on ∆ such that, for all f ∈ Cc(∆), f is µ-
integrable and I(f) =

∫
f dµ.

PROOF. Of course Cc(∆) is a vector lattice that satisfies Stone’s ax-
iom. The given linear functional I is positive, so that this theorem will
follow immediately from Theorem 1.1 and Exercise 1.6 if we show that
I satisfies the monotone convergence property. Thus, let {fn} be a se-
quence of nonnegative functions in Cc(∆) that increases monotonically
to an element f ∈ Cc(∆). If K denotes a compact set such that f(x) = 0
for x /∈ K, Then fn(x) = 0 for all x /∈ K and for all n. We let g be a
nonnegative element of Cc(∆) for which g(x) = 1 on K. On the compact
set K, the sequence {fn} is converging monotonically to the continu-
ous function f, whence, by Dini’s Theorem, this convergence is uniform.
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Therefore, given an ε > 0, there exists an N such that

f(x)− fn(x) = |f(x)− fn(x)| < ε

for all x if n ≥ N. Hence f − fn ≤ εg everywhere on X, whence

|I(f − fn)| = I(f − fn) ≤ I(εg) = εI(g).

Therefore I(f) = lim I(fn), as desired.

DEFINITION. If f is a bounded real-valued function on a set X, we
define the supremum norm or uniform norm of f, denoted by ‖f‖, or
‖f‖∞, by

‖f‖ = ‖f‖∞ = sup
x∈X
|f(x)|.

A linear functional φ on a vector space E of bounded functions is called
a bounded linear functional if there exists a positive constant M such
that |φ(f)| ≤M‖f‖ for all f ∈ E.

THEOREM 1.3. (Riesz Representation Theorem) Suppose ∆ is a sec-
ond countable locally compact Hausdorff space and that I is a positive
linear functional on C0(∆). Then there exists a unique finite Borel mea-
sure µ on ∆ such that

I(f) =

∫
f dµ

for every f ∈ C0(∆). Further, I is a bounded linear functional on C0(∆).
Indeed, |I(f)| ≤ µ(∆)‖f‖∞.

PROOF. First we show that the positive linear functional I on the
vector lattice C0(∆) satisfies the monotone convergence property. Thus,
let {fn} be a sequence of nonnegative functions in C0(∆), which increases
to an element f, and let ε > 0 be given. Choose a compact subset K ⊆ ∆
such that f(x) ≤ ε2 if x /∈ K, and let g ∈ C0(∆) be nonnegative and
such that g = 1 on K. Again, by Dini’s Theorem, there exists an N such
that

|f(x)− fn(x)| ≤ ε/(1 + I(g))

for all x ∈ K and all n ≥ N. For x /∈ K, we have:

|f(x)− fn(x)| = f(x)− fn(x)

≤ f(x)

= (
√
f(x))2

≤ ε
√
f(x),
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so that, for all x ∈ ∆ and all n ≥ N, we have

|f(x)− fn(x)| ≤ (ε/(1 + I(g)))g(x) + ε
√
f(x).

Therefore,

|I(f)− I(fn)| = I(f − fn) ≤ ε(1 + I(
√
f)).

This proves that I(f) = lim I(fn), as desired.
Using Theorem 1.1 and Exercise 1.6, let µ be the unique Borel measure
on ∆ for which I(f) =

∫
f dµ for every f ∈ C0(∆). We show next

that there exists a positive constant M such that |I(f)| ≤ M‖f‖∞ for
each f ∈ C0(∆); i.e., that I is a bounded linear functional on C0(∆). If
there were no such M, there would exist a sequence {fn} of nonnegative
elements of C0(∆) such that ‖fn‖∞ = 1 and I(fn) ≥ 2n for all n. Then,
defining f0 =

∑
n fn/2

n, we have that f0 ∈ C0(∆). (Use the Weierstrass
M -test.) On the other hand, since I is a positive linear functional, we
see that

I(f0) ≥
N∑
n=1

I(fn/2
n) ≥ N

for all N, which is a contradiction. Therefore, I is a bounded linear
functional, and we let M be a fixed positive constant satisfying |I(f)| ≤
M‖f‖∞ for all f ∈ C0(∆).
Observe next that if K is a compact subset of ∆, then there exists a
nonnegative function f ∈ C0(∆) that is identically 1 on K and ≤ 1
everywhere on ∆. Therefore,

µ(K) ≤
∫
f dµ = I(f) ≤M‖f‖∞ = M.

Because ∆ is second countable and locally compact, it is σ-compact, i.e.,
the increasing union ∪Kn of a sequence of compact sets {Kn}. Hence,
µ(∆) = limµ(Kn) ≤ M, showing that µ is a finite measure. Then,
|I(f)| = |

∫
f dµ| ≤ µ(∆)‖f‖∞, and this completes the proof.

THEOREM 1.4. Let ∆ be a second countable locally compact Haus-
dorff space, and let φ be a bounded linear functional on C0(∆). That is,
suppose there exists a positive constant M for which |φ(f)| ≤ M‖f‖∞
for all f ∈ C0(∆). Then φ is the difference φ1−φ2 of two positive linear
functionals φ1 and φ2, whence there exists a unique finite signed Borel
measure µ such that φ(f) =

∫
f dµ for all f ∈ C0(∆).
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PROOF. For f a nonnegative element in C0(∆), define φ1(f) by

φ1(f) = sup
g
φ(g),

where the supremum is taken over all nonnegative functions g ∈ C0(∆)
for which 0 ≤ g(x) ≤ f(x) for all x. Define φ1(f), for an arbitrary
element f ∈ C0(∆), by φ1(f) = φ1(f+)− φ1(f−), where f+ = max(f, 0)
and f− = −min(f, 0). It follows from Exercise 1.8 below that φ1 is well-
defined and is a linear functional on C0(∆). Since the 0 function is one
of the g’s over which we take the supremum when evaluating φ1(f) for
f a nonnegative function, we see that φ1 is a positive linear functional.
We define φ2 to be the difference φ1 − φ. Clearly, since f itself is one of
the g’s over which we take the supremum when evaluating φ1(f) for f a
nonnegative function, we see that φ2 also is a positive linear functional,
so that the existence of a signed measure µ satisfying φ(f) = φ1(f) −
φ2(f) =

∫
f dµ follows from the Riesz Representation Theorem. The

uniqueness of µ is a consequence of the Hahn decomposition theorem.

EXERCISE 1.8. Let L be a vector lattice of bounded functions on a
set ∆, and let φ be a bounded linear functional on L. That is, suppose
that M is a positive constant for which |φ(f)| ≤ M‖f‖∞ for all f ∈ L.
For each nonnegative f ∈ L define, in analogy with the preceding proof,

φ1(f) = sup
g
φ(g),

where the supremum is taken over all g ∈ L for which 0 ≤ g(x) ≤ f(x)
for all x ∈ ∆.
(a) If f is a nonnegative element of L, show that φ1(f) is a finite real
number.
(b) If f and f ′ are two nonnegative functions in L, show that φ1(f+f ′) =
φ1(f) + φ1(f ′).
(c) For each real-valued f = f+ − f− ∈ L, define φ1(f) = φ1(f+) −
φ1(f−). Suppose g and h are nonnegative elements of L and that f =
g − h. Prove that φ1(f) = φ1(g)− φ1(h). HINT: f+ + h = g + f−.
(d) Prove that φ1, as defined in part c, is a positive linear functional on
L.

EXERCISE 1.9. Let ∆ be a locally compact, second countable, Haus-
dorff space, and let U1, U2, . . . be a countable basis for the topology on
∆ for which the closure Un of Un is compact for every n. Let C be the
set of all pairs (n,m) for which Un ⊆ Um, and for each (n,m) ∈ C let
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fn,m be a continuous function from ∆ into [0, 1] that is 1 on Un and 0

on the complement Ũm of Um.
(a) Show that each fn,m belongs to C0(∆) and that the set of fn,m’s
separate the points of ∆.
(b) Let A be the smallest algebra of functions containing all the fn,m’s.
Show thatA is uniformly dense in C0(∆).HINT: Use the Stone-Weierstrass
Theorem.
(c) Prove that there exists a countable subset D of C0(∆) such that
every element of C0(∆) is the uniform limit of a sequence of elements
of D. (That is, C0(∆) is a separable metric space with respect to the
metric d given by d(f, g) = ‖f − g‖∞.)

EXERCISE 1.10. (a) Define I on Cc(R) by I(f) =
∫
f(x) dx. Show

that I is a positive linear functional which is not a bounded linear func-
tional.
(b) Show that there is no way to extend the positive linear functional I
of part a to all of C0(R) so that the extension is still a positive linear
functional.

EXERCISE 1.11. Let X be a complex vector space, and let f be a
complex linear functional on X. Write f(x) = u(x) + iv(x), where u(x)
and v(x) are the real and imaginary parts of f(x).
(a) Show that u and v are real linear functionals on the real vector space
X.
(b) Show that u(ix) = −v(x), and v(ix) = u(x). Conclude that a com-
plex linear functional is completely determined by its real part.
(c) Suppose a is a real linear functional on the complex vector space X.
Define g(x) = a(x)− ia(ix). Prove that g is a complex linear functional
on X.

DEFINITION. Let S be a set and let B be a σ-algebra of subsets of
S. By a finite complex measure on B we mean a mapping µ : B → C
that satisfies:

(1) µ(∅) = 0.
(2) If {En} is a sequence of pairwise disjoint elements of B, then the

series
∑
µ(En) is absolutely summable, and

µ(∪En) =
∑

µ(En).

EXERCISE 1.12. Let µ be a finite complex measure on a σ-algebra B
of subsets of a set S.
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(a) Show that there exists a constant M such that |µ(E)| ≤ M for all
E ∈ B.
(b) Write the complex-valued function µ on B as µ1 + iµ2, where µ1 and
µ2 are real-valued functions. Show that both µ1 and µ2 are finite signed
measures on B. Show also that µ̄ = µ1− iµ2 is a finite complex measure
on B.
(c) Let X denote the complex vector space of all bounded complex-
valued B-measurable functions on S. If f ∈ X, define∫

f dµ =

∫
f dµ1 + i

∫
f dµ2.

Prove that the assignment f →
∫
f dµ is a linear functional on X and

that there exists a constant M such that

|
∫
f dµ| ≤M‖f‖∞

for all f ∈ X.
(d) Show that ∫

f dµ̄ =

∫
f̄ dµ.

HINT: Write µ = µ1 + iµ2 and f = u+ iv.

THEOREM 1.5. (Riesz Representation Theorem, Complex Version)
Let ∆ be a second countable locally compact Hausdorff space, and de-
note now by C0(∆) the complex vector space of all continuous complex-
valued functions on ∆ that vanish at infinity. Suppose φ is a linear
functional on C0(∆) into the field C, and assume that φ is a bounded
linear functional, i.e., that there exists a positive constant M such that
|φ(f)| ≤ M‖f‖∞ for all f ∈ C0(∆). Then there exists a unique fi-
nite complex Borel measure µ on ∆ such that φ(f) =

∫
f dµ for all

f ∈ C0(∆). See the preceding exercise.

EXERCISE 1.13. (a) Prove Theorem 1.5. HINT: Write φ in terms
of its real and imaginary parts ψ and η. Show that each of these is a
bounded real-valued linear functional on the real vector space C0(∆) of
all real-valued continuous functions on ∆ that vanish at infinity, and
that

ψ(f) =

∫
f dµ1



THE HAHN-BANACH EXTENSION THEOREMS 27

and

η(f) =

∫
f dµ2

for all real-valued f ∈ C0(∆). Then show that

φ(f) =

∫
f dµ,

where µ = µ1 + iµ2.

(b) Let ∆ be a second countable, locally compact Hausdorff space, and
let C0(∆) denote the space of continuous complex-valued functions on
∆ that vanish at infinity. Prove that there is a 1-1 correspondence
between the set of all finite complex Borel measures on ∆ and the set of
all bounded linear functionals on C0(∆).

REMARK. The hypothesis of second countability may be removed
from the Riesz Representation Theorem. However, the notion of mea-
surability must be reformulated. Indeed, the σ-algebra on which the
measure is defined is, from Theorem 1.1, the smallest σ-algebra for which
each element f ∈ Cc(∆) is a measurable function. One can show that
this σ-algebra is the smallest σ-algebra containing the compact Gδ sets.
This σ-algebra is called the σ-algebra of Baire sets, and a measure de-
fined on this σ-algebra is called a Baire measure. One can prove versions
of Theorems 1.2-1.5, for an arbitrary locally compact Hausdorff space ∆,
almost verbatim, only replacing the word “Borel” by the word “Baire.”

CHAPTER II

THE HAHN-BANACH EXTENSION THEOREMS

AND EXISTENCE OF LINEAR FUNCTIONALS
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In this chapter we deal with the problem of extending a linear functional
on a subspace Y to a linear functional on the whole space X. The quite
abstract results that the Hahn-Banach Theorem comprises (Theorems
2.1, 2.2, 2.3, and 2.6) are, however, of significant importance in analysis,
for they provide existence proofs. Applications are made already in
this chapter to deduce the existence of remarkable mathematical objects
known as Banach limits and translation-invariant measures. One may
wish to postpone these applications as well as Theorems 2.4 and 2.5 to a
later time. However, the set of exercises concerning convergence of nets
should not be omitted, for they will be needed later on.
Let X be a real vector space and let B = {xα}, for α in an index set A,
be a basis for X. Given any set {tα} of real numbers, also indexed by
A, we may define a linear transformation φ : X → R by

φ(x) = φ(
∑

cαxα) =
∑

cαtα,

where x =
∑
cαxα. Note that the sums above are really finite sums,

since only finitely many of the coefficients cα are nonzero for any given
x. This φ is a linear functional.

EXERCISE 2.1. Prove that if x and y are distinct vectors in a real
vector space X, then there exists a linear functional φ such that φ(x) 6=
φ(y). That is, there exist enough linear functionals on X to separate
points.

More interesting than the result of the previous exercise is whether there
exist linear functionals with some additional properties such as positiv-
ity, continuity, or multiplicativity. As we proceed, we will make precise
what these additional properties should mean. We begin, motivated by
the Riesz representation theorems of the preceding chapter, by studying
the existence of positive linear functionals. See Theorem 2.1 below. To
do this, we must first make sense of the notion of positivity in a general
vector space.

DEFINITION. Let X be a real vector space. By a cone or positive
cone in X we shall mean a subset P of X satisfying

(1) If x and y are in P, then x+ y is in P.
(2) If x is in P and t is a positive real number, then tx is in P.

Given vectors x1, x2 ∈ X, we say that x1 ≥ x2 if x1 − x2 ∈ P.
Given a positive cone P ⊆ X, we say that a linear functional f on X is
positive, if f(x) ≥ 0 whenever x ∈ P.
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EXERCISE 2.2. (a) Prove that the set of nonnegative functions in a
vector space of real-valued functions forms a cone.
(b) Show that the set of nonpositive functions in a vector space of real-
valued functions forms a cone.
(c) Let P be the set of points (x, y, z) in R3 for which x >

√
y2 + z2.

Prove that P is a cone in the vector space R3.
(d) Let X be the vector space R2, and let P be the positive cone in
X comprising the points (x, y) for x ≥ 0 and y ≥ 0. Suppose Y is the
subspace of X comprising the points (t, t) for t real. Show that every
linear functional on Y is a positive linear functional. Show also that
there exists a linear functional f on Y for which no extension g of f to
all of X is a positive linear functional.

THEOREM 2.1. (Hahn-Banach Theorem, Positive Cone Version) Let
P be a cone in a real vector space X, and let Y be a subspace of X
having the property that for each x ∈ X there exists a y ∈ Y such that
y ≥ x; i.e., y−x ∈ P. Suppose f is a positive linear functional on Y, i.e.,
f(y) ≥ 0 if y ∈ P ∩ Y. Then there exists a linear functional g on X such
that

(1) For each y ∈ Y, g(y) = f(y); i.e., g is an extension of f.
(2) g(x) ≥ 0 if x ∈ P ; i.e., g is a positive linear functional on X.

PROOF. Applying the hypotheses both to x and to −x, we see that:
Given x ∈ X, there exists a y ∈ Y such that y − x ∈ P, and there exists
a y′ ∈ Y such that y′ − (−x) = y′ + x ∈ P. We will use the existence of
these elements of Y later on.
Let S be the set of all pairs (Z, h), where Z is a subspace of X that
contains Y, and where h is a positive linear functional on Z that is an
extension of f. Since the pair (Y, f) is clearly an element of S, we have
that S is nonempty.
Introduce a partial ordering on S by setting

(Z, h) ≤ (Z ′, h′)

if Z is a subspace of Z ′ and h′ is an extension of h, that is h′(z) = h(z)
for all z ∈ Z. By the Hausdorff maximality principle, let {(Zα, hα)} be
a maximal linearly ordered subset of S. Clearly, Z = ∪Zα is a subspace
of X. Also, if z ∈ Z, then z ∈ Zα for some α. Observe that if z ∈ Zα and
z ∈ Zβ , then, without loss of generality, we may assume that (Zα, hα) ≤
(Zβ , hβ). Therefore, hα(z) = hβ(z), so that we may uniquely define a
number h(z) = hα(z), whenever z ∈ Zα.
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We claim that the function h defined above is a linear functional on
the subspace Z. Thus, let z and w be elements of Z. Then z ∈ Zα and
w ∈ Zβ for some α and β. Since the set {(Zγ , hγ)} is linearly ordered,
we may assume, again without loss of generality, that Zα ⊆ Zβ , whence
both z and w are in Zβ . Therefore,

h(tz + sw) = hβ(tz + sw) = thβ(z) + shβ(w) = th(z) + sh(w),

showing that h is a linear functional.
Note that, if y ∈ Y, then h(y) = f(y), so that h is an extension of f.
Also, if z ∈ Z ∩ P, then z ∈ Zα ∩ P for some α, whence

h(z) = hα(z) ≥ 0,

showing that h is a positive linear functional on Z.
We prove next that Z is all of X, and this will complete the proof of the
theorem. Suppose not, and let v be an element of X which is not in Z.
We will derive a contradiction to the maximality of the linearly ordered
subset {(Zα, hα)} of the partially ordered set S. Let Z ′ be the set of all
vectors in X of the form z + tv, where z ∈ Z and t ∈ R. Then Z ′ is a
subspace of X which properly contains Z.
Let Z1 be the set of all z ∈ Z for which z− v ∈ P, and let Z2 be the set
of all z′ ∈ Z for which z′+v ∈ P. We have seen that both Z1 and Z2 are
nonempty. We make the following observation. If z ∈ Z1 and z′ ∈ Z2,
then h(z′) ≥ −h(z). Indeed, z + z′ = z − v + z′ + v ∈ P. So,

h(z + z′) = h(z) + h(z′) ≥ 0,

and h(z′) ≥ −h(z), as claimed. Hence, we see that the set B of numbers
{h(z′)} for which z′ ∈ Z2 is bounded below. In fact, any number of
the form −h(z) for z ∈ Z1 is a lower bound for B. We write b = inf B.
Similarly, the set A of numbers {−h(z)} for which z ∈ Z1 is bounded
above, and we write a = supA. Moreover, we see that a ≤ b. Note that
if z ∈ Z1, then h(z) ≥ −a.
Choose any c for which a ≤ c ≤ b, and define h′ on Z ′ by

h′(z + tv) = h(z)− tc.

Clearly, h′ is a linear functional on Z ′ that extends h and hence extends
f. Let us show that h′ is a positive linear functional on Z ′. On the one
hand, if z + tv ∈ P, and if t > 0, then z/t ∈ Z2, and

h′(z + tv) = th′((z/t) + v) = t(h(z/t)− c) ≥ t(b− c) ≥ 0.
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On the other hand, if t < 0 and z + tv = |t|((z/|t|) − v) ∈ P, then
z/(−t) = z/|t| ∈ Z1, and

h′(z + tv) = |t|h′((z/(−t))− v) = |t|(h(z/(−t)) + c) ≥ |t|(c− a) ≥ 0.

Hence, h′ is a positive linear functional, and therefore (Z ′, h′) ∈ S. But
since (Z, h) ≤ (Z ′, h′), it follows that the set {(Zα, hα)} together with
(Z ′, h′) constitutes a strictly larger linearly ordered subset of S, which
is a contradiction. Therefore, Z is all of X, h is the desired extension g
of f, and the proof is complete.

REMARK. The impact of the Hahn-Banach Theorem is the existence
of linear functionals having specified properties. The above version guar-
antees the existence of many positive linear functionals on a real vector
space X, in which there is defined a positive cone. All we need do is
find a subspace Y, satisfying the condition in the theorem, and then any
positive linear functional on Y has a positive extension to all of X.

EXERCISE 2.3. (a) Verify the details showing that the ordering ≤ in-
troduced on the set S in the preceding proof is in fact a partial ordering.
(b) Verify that the function h′ defined in the preceding proof is a linear
functional on Z ′.
(c) Suppose φ is a linear functional on the subspace Z ′ of the above proof.
Show that, if φ is an extension of h and is a positive linear functional
on Z ′, then the number −φ(v) must be between the numbers a and b of
the preceding proof.

EXERCISE 2.4. Let X be a vector space of bounded real-valued func-
tions on a set S. Let P be the cone of nonnegative functions in X. Show
that any subspace Y of X that contains the constant functions satisfies
the hypothesis of Theorem 2.1.

We now investigate linear functionals that are, in some sense, bounded.

DEFINITION. By a seminorm on a real vector space X, we shall mean
a real-valued function ρ on X that satisfies:

(1) ρ(x) ≥ 0 for all x ∈ X,
(2) ρ(x+ y) ≤ ρ(x) + ρ(y), for all x, y ∈ X, and
(3) ρ(tx) = |t|ρ(x), for all x ∈ X and all t.

If, in addition, ρ satisfies ρ(x) = 0 if and only if x = 0, then ρ is called
a norm, and ρ(x) is frequently denoted by ‖x‖ or ‖x‖ρ. If X is a vector
space on which a norm is defined, then X is called a normed linear space.
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A weaker notion than that of a seminorm is that of a subadditive func-
tional, which is the same as a seminorm except that we drop the non-
negativity condition (condition (1)) and weaken the homogeneity in con-
dition (3). That is, a real-valued function ρ on a real vector space X is
called a subadditive functional if:

(1) ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ X, and
(2) ρ(tx) = tρ(x) for all x ∈ X and t ≥ 0.

EXERCISE 2.5. Determine whether or not the following are semi-
norms (subadditive functionals, norms) on the specified vector spaces.
(a) X = Lp(R), ρ(f) = ‖f‖p = (

∫
|f |p)1/p, for 1 ≤ p <∞.

(b) X any vector space, ρ(x) = |f(x)|, where f is a linear functional on
X.
(c) X any vector space, ρ(x) = supν |fν(x)|, where {fν} is a collection
of linear functionals on X.
(d) X = C0(∆), ρ(f) = ‖f‖∞, where ∆ is a locally compact Hausdorff
topological space.
(e) X is the vector space of all infinitely differentiable functions on R,
n,m, k are nonnegative integers, and

ρ(f) = sup
|x|≤N

sup
0≤j≤k

sup
0≤m≤M

|xmf (j)(x)|.

(f) X is the set of all bounded real-valued functions on a set S, and
ρ(f) = sup f(x).
(g) X is the space l∞ of all bounded, real-valued sequences {a1, a2, ...},
and

ρ({an}) = lim sup an.

REMARK. Theorem 2.2 below is perhaps the most familiar version of
the Hahn-Banach theorem. So, although it can be derived as a conse-
quence of Theorem 2.1 and is in fact equivalent to that theorem (see
parts d and e of Exercise 2.6), we give here an independent proof.

THEOREM 2.2. (Hahn-Banach Theorem, Seminorm Version) Let ρ
be a seminorm on a real vector space X. Let Y be a subspace of X, let
f be a linear functional on Y, and assume that

f(y) ≤ ρ(y)

for all y ∈ Y. Then there exists a linear functional g on X, which is an
extension of f and which satisfies

g(x) ≤ ρ(x)
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for all x ∈ X.
PROOF. By analogy with the proof of Theorem 2.1, we let S be the
set of all pairs (Z, h), where Z is a subspace of X containing Y, h is a
linear functional on Z that extends f, and h(z) ≤ ρ(z) for all z ∈ Z. We
give to S the same partial ordering as in the preceding proof. By the
Hausdorff maximality principle, let {(Zα, hα)} be a maximal linearly
ordered subset of S. As before, we define Z = ∪Zα, and h on Z by
h(z) = hα(z) whenever z ∈ Zα. It follows as before that h is a linear
functional on Z, that extends f, for which h(z) ≤ ρ(z) for all z ∈ Z, so
that the proof will be complete if we show that Z = X.
Suppose that Z 6= X, and let v be a vector in X which is not in Z.
Define Z ′ to be the set of all vectors of the form z + tv, for z ∈ Z and
t ∈ R. We observe that for any z and z′ in Z,

h(z) + h(z′) = h(z + z′) ≤ ρ(z + v + z′ − v) ≤ ρ(z + v) + ρ(z′ − v),

or that
h(z′)− ρ(z′ − v) ≤ ρ(z + v)− h(z).

Let A be the set of numbers {h(z′) − ρ(z′ − v)} for z′ ∈ Z, and put
a = supA. Let B be the numbers {ρ(z + v)− h(z)} for z ∈ Z, and put
b = inf B. It follows from the calculation above that a ≤ b. Choose c to
be any number for which a ≤ c ≤ b, and define h′ on Z ′ by

h′(z + tv) = h(z) + tc.

Obviously h′ is linear and extends f. If t > 0, then

h′(z + tv) = t(h(z/t) + c)

≤ t(h(z/t) + b)

≤ t(h(z/t) + ρ((z/t) + v)− h(z/t))

= tρ((z/t) + v)

= ρ(z + tv).

And, if t < 0, then

h′(z + tv) = |t|(h(z/|t|)− c)
≤ |t|(h(z/|t|)− a)

≤ |t|(h(z/|t|)− h(z/|t|) + ρ((z/|t|)− v))

= |t|ρ((z/|t|)− v)

= ρ(z + tv),
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which proves that h′(z + tv) ≤ ρ(z + tv) for all z + tv ∈ Z ′.
Hence, (Z ′, h′) ∈ S, (Z, h) ≤ (Z ′, h′), and the maximality of the linearly
ordered set {(Zα, hα)} is contradicted. This completes the proof.

THEOREM 2.3. (Hahn-Banach Theorem, Norm Version) Let Y be a
subspace of a real normed linear space X, and suppose that f is a linear
functional on Y for which there exists a positive constant M satisfying
|f(y)| ≤ M‖y‖ for all y ∈ Y. Then there exists an extension of f to a
linear functional g on X satisfying |g(x)| ≤M‖x‖ for all x ∈ X.
EXERCISE 2.6. (a) Prove the preceding theorem.
(b) Let the notation be as in the proof of Theorem 2.2. Suppose φ is a
linear functional on Z ′ that extends the linear functional h and for which
φ(z′) ≤ ρ(z′) for all z′ ∈ Z ′. Prove that φ(v) must satisfy a ≤ φ(v) ≤ b.
(c) Show that Theorem 2.2 holds if the seminorm ρ is replaced by the
weaker notion of a subadditive functional.
(d) Derive Theorem 2.2 as a consequence of Theorem 2.1. HINT: Let
X ′ = X ⊕R, Define P to be the set of all (x, t) ∈ X ′ for which ρ(x) ≤ t,
let Y ′ = Y ⊕ R, and define f ′ on Y ′ by f ′(y, t) = t − f(y). Now apply
Theorem 2.1.
(e) Derive Theorem 2.1 as a consequence of Theorem 2.2. HINT: Define
ρ on X by ρ(x) = inf f(y), where the infimum is taken over all y ∈ Y
for which y − x ∈ P. Show that ρ is a subadditive functional, and then
apply part c.

We devote the next few exercises to developing the notion of convergence
of nets. This topological concept is of great use in functional analysis.
The reader should notice how crucial the axiom of choice is in these
exercises. Indeed, the Tychonoff theorem (Exercise 2.11) is known to be
equivalent to the axiom of choice.

DEFINITION. A directed set is a nonempty set D, on which there
is defined a transitive and reflexive partial ordering ≤, satisfying the
following condition: If α, β ∈ D, then there exists an element γ ∈ D
such that α ≤ γ and β ≤ γ. That is, every pair of elements of D has an
upper bound.
If C and D are two directed sets, and h is a mapping from C into D,
then h is called order-preserving if c1 ≤ c2 implies that h(c1) ≤ h(c2).
An order-preserving map h of C into D is called cofinal if for each α ∈ D
there exists a β ∈ C such that α ≤ h(β).
A net in a set X is a function f from a directed set D into X. A net f
in X is frequently denoted, in analogy with a sequence, by {xα}, where
xα = f(α).
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If {xα} denotes a net in a set X, then a subnet of {xα} is determined
by an order-preserving cofinal function h from a directed set C into D,
and is the net g defined on C by g(β) = xh(β). The values h(β) of the
function h are ordinarily denoted by h(β) = αβ , whence the subnet g
takes the notation g(β) = xαβ .
A net {xα}, α ∈ D, in a topological space X is said to converge to
an element x ∈ X, and we write x = limα xα, if For each open set U
containing x, there exists an α ∈ D such that xα′ ∈ U whenever α ≤ α′.

EXERCISE 2.7. (a) Show that any linearly ordered set is a directed
set.
(b) Let S be a set and let D be the set of all finite subsets F of S. Show
that D is a directed set if the partial ordering on D is given by F1 ≤ F2

if and only if F1 ⊆ F2.
(c) Let x be a point in a topological space X, and let D be the partially-
ordered set of all neighborhoods of x with the ordering U ≤ V if and
only if V ⊆ U. Prove that D is a directed set.
(d) Let D and D′ be directed sets. Show that D ×D′ is a directed set,
where the ordering is given by (α, α′) ≤ (β, β′) if and only if α ≤ α′ and
β ≤ β′.
(e) Verify that every sequence is a net.
(f) Let {xn} be a sequence. Show that there exist subnets of the net
{xn} which are not subsequences.

EXERCISE 2.8. (a) (Uniqueness of Limits) Let {xα} be a net in a
Hausdorff topological space X. Suppose x = limxα and y = limxα.
Show that x = y.
(b) Suppose {xα} and {yα} are nets (defined on the same directed set
D) in C, and assume that x = limxα and y = lim yα. Prove that

x+ y = lim(xα + yα),

xy = lim(xαyα),

and that if a ≤ xα ≤ b for all α, then

a ≤ x ≤ b.

(c) Prove that if a net {xα} converges to an element x in a topological
space X, then every subnet {xαβ} of {xα} also converges to x.
(d) Prove that a net {xα} in a topological space X converges to an
element x ∈ X if and only if every subnet {xαβ} of {xα} has in turn a
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subnet {xαβγ } that converges to x. HINT: To prove the “if” part, argue
by contradiction.
(e) Let A be a subset of a topological space X. We say that an element
x ∈ X is a cluster point of A if there exists a net {xα} in A such that
x = limxα. Prove that A is closed if and only if it contains all of its
cluster points.
(f) Let f be a function from a topological space X into a topological
space Y. Show that f is continuous at a point x ∈ X if and only if for
each net {xα} that converges to x ∈ X, the net {f(xα)} converges to
f(x) ∈ Y.
EXERCISE 2.9. (a) Let X be a compact topological space. Show that
every net in X has a convergent subnet. HINT: Let {xα} be a net in X
defined on a directed set D. For each α ∈ D, define Vα ⊆ X to be the
set of all x ∈ X for which there exists a neighborhood Ux of X such that
xβ /∈ Ux whenever α ≤ β. Show that, if x /∈ ∪Vα, then x is the limit of
some subnet of {xα}. Now, argue by contradiction.
(b) Prove that a topological space X is compact if and only if every net
in X has a convergent subnet. HINT: Let F be a collection of closed
subsets of X for which the intersection of any finite number of elements
of F is nonempty. Let D be the directed set whose elements are the
finite subsets of F .
(c) Let {xα} be a net in a metric space X. Define what it means for
the net {xα} to be a Cauchy net. Show that, if X is a complete metric
space, then a net {xα} is convergent if and only if it is a Cauchy net.

EXERCISE 2.10. Let X be a set, let {fi}, for i in an index set I,
be a collection of real-valued functions on X, and let T be the weakest
topology on X for which each fi is continuous.
(a) Show that a net {xα} in the topological space (X, T ) converges to
an element x ∈ X if and only if

fi(x) = lim
α
fi(xα)

for every i ∈ I.
(b) Let X be a set, for each x ∈ X let Yx be a topological space, and let
Y be the topological product space

Y =
∏
x∈X

Yx.

Prove that a net {yα} in Y converges if and only if, for each x ∈ X, the
net {yα(x)} converges in Yx.
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EXERCISE 2.11. Prove the Tychonoff Theorem. That is, prove that
if X =

∏
i∈I Xi, where each Xi is a compact topological space, then X is

a compact topological space. HINT: Let {xα} be a net in X, defined on
a directed set D. Show that there exists a convergent subnet as follows:
(a) Let S be the set of all triples (J,C, h), where J ⊆ I, C is a directed
set, and h is a cofinal, order-preserving map of C into D such that the
subnet xh(β) satisfies {(xh(β))i} converges for every i ∈ J. We say that

(J1, C1, h1) ≤ (J2, C2, h2)

if J1 ⊆ J2 and the subnet determined by h2 is itself a subnet of the
subnet determined by h1. Prove that S is a nonempty partially ordered
set.
(b) Let {(Jλ, Cλ, hλ)} be a maximal linearly ordered subset of S, and set
I0 = ∪λJλ. Prove that there exists a directed set C0 and a cofinal map
h0 such that (I0, C0, h0) ∈ S and such that (Jλ, Cλ, hλ) ≤ (I0, C0, h0)
for all λ.
(c) Let I0 be as in part b. Prove that I0 = I, and then complete the
proof to Tychonoff’s Theorem.

EXERCISE 2.12. (a) Suppose {fα} is a net of linear functionals on
a vector space X, and suppose that the net converges pointwise to a
function f. Prove that f is a linear functional.
(b) Suppose ρ is a subadditive functional on a vector space X and that
x ∈ X. Prove that −ρ(−x) ≤ ρ(x).
(c) Suppose ρ is a subadditive functional on a vector space X, and let
F ρ be the set of all linear functionals f on X for which f(x) ≤ ρ(x) for
every x ∈ X. Let K be the compact Hausdorff space

K =
∏
x∈X

[−ρ(−x), ρ(x)]

(thought of as a space of functions on X). Prove that F ρ is a closed
subset of K. Conclude that F ρ is a compact Hausdorff space in the
topology of pointwise convergence on X.

THEOREM 2.4. Let ρ be a subadditive functional on a vector space
X, and let g be a linear functional on X such that g(x) ≤ ρ(x) for all
x ∈ X. Suppose γ is a linear transformation of X into itself for which
ρ(γ(x)) = ρ(x) for all x ∈ X. Then there exists a linear functional h on
X satisfying:

(1) h(x) ≤ ρ(x) for all x ∈ X.
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(2) h(γ(x)) = h(x) for all x ∈ X.
(3) If x ∈ X satisfies g(x) = g(γn(x)) for all positive n, then h(x) =

g(x).

PROOF. For each positive integer n, define

gn(x) = (1/n)

n∑
i=1

g(γi(x)).

Let F ρ and K be as in the preceding exercise. Then the sequence {gn} is
a net in the compact Hausdorff space K, and consequently there exists
a convergent subnet {gnα}. By Exercise 2.12, we know then that the
subnet {gnα} of the sequence (net) {gn} converges pointwise to a linear
functional h on X and that h(x) ≤ ρ(x) for all x ∈ X.
Using the fact that −ρ(x) ≤ g(γi(x)) ≤ ρ(x) for all x ∈ X and all i > 0,
and the fact that the cofinal map α → nα diverges to infinity, we have
that

h(γ(x)) = lim
α
gnα(γ(x))

= lim
α

(1/nα)

nα∑
i=1

g(γi+1(x))

= lim
α

(1/nα)

nα+1∑
i=2

g(γi(x))

= lim
α

(1/nα)[

nα∑
i=1

g(γi(x)) + g(γnα+1(x))− g(γ(x))]

= lim
α

(1/nα)

nα∑
i=1

g(γi(x))

= lim
α
gnα(x)

= h(x),

which proves the second statement of the theorem.
Finally, if x is such that g(γn(x)) = g(x) for all positive n, then gn(x) =
g(x) for all n, whence h(x) = g(x), and this completes the proof.

EXERCISE 2.13. (Banach Means) Let X = l∞ be the vector space of
all bounded sequences {a1, a2, a3, . . . } of real numbers. A Banach mean
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or Banach limit is a linear functional M on X such that for all {an} ∈ X
we have:

inf an ≤M({an}) ≤ sup an.

and
M({an+1}) = M({an}).

(a) Prove that there exists a Banach limit on X. HINT: Use Theorem
2.2, or more precisely part c of Exercise 2.6, with Y the subspace of
constant sequences, f the linear functional sending a constant sequence
to that constant, and ρ the subadditive functional given by ρ({an}) =
lim sup an. Then use Theorem 2.4 applied to the extension g of f. (Note
that, since the proof to Theorem 2.4 depends on the Tychonoff theorem,
the very existence of Banach means depends on the axiom of choice.)
(b) Show that any Banach limit M satisfies M({an}) = L, if L = lim an,
showing that any Banach limit is a generalization of the ordinary notion
of limit.
(c) Show that any Banach limit assigns the number 1/2 to the sequence
{0, 1, 0, 1, . . . }.
(d) Construct a sequence {bn} ∈ X which does not converge but for
which

lim(bn+1 − bn) = 0.

Show that any linear functional g on X, for which g({an}) ≤ lim sup an
for all {an} ∈ X, satisfies g({bn}) = g({bn+1}).
(e) Use the sequence {bn} of part d to prove that there exist uncountably
many distinct Banach limits on X. HINT: Use the Hahn-Banach Theo-
rem and Theorem 2.4 to find a Banach limit that takes the value r on this
sequence, where r is any number satisfying lim inf bn ≤ r ≤ lim sup bn.

EXERCISE 2.14. Prove the following generalization of Theorem 2.4.
Let ρ be a subadditive functional on a vector space X, and let g be
a linear functional on X such that g(x) ≤ ρ(x) for all x ∈ X. Sup-
pose γ1, . . . , γn are commuting linear transformations of X into itself
for which ρ(γi(x)) = ρ(x) for all x ∈ X and all 1 ≤ i ≤ n. Then there
exists a linear functional h on X satisfying:

(1) h(x) ≤ ρ(x) for all x ∈ X.
(2) h(γi(x)) = h(x) for all x ∈ X and all 1 ≤ i ≤ n.
(3) If x ∈ X satisfies g(x) = g(γki (x)) for all positive k and all

1 ≤ i ≤ n, then h(x) = g(x).

HINT: Use the proof to Theorem 2.4 and mathematical induction.
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THEOREM 2.5. (Hahn-Banach Theorem, Semigroup-Invariant

Version) Let ρ be a subadditive functional on a real vector space X, and
let f be a linear functional on a subspace Y of X for which f(y) ≤ ρ(y)
for all y ∈ Y. Suppose Γ is an abelian semigroup of linear transformations
of X into itself for which:

(1) ρ(γ(x)) = ρ(x) for all γ ∈ Γ and x ∈ X; i.e., ρ is invariant under
Γ.

(2) γ(Y ) ⊆ Y for all γ ∈ Γ; i.e., Y is invariant under Γ.
(3) f(γ(y)) = f(y) for all γ ∈ Γ and y ∈ Y ; i.e., f is invariant under

Γ.

Then there exists a linear functional g on X for which

(a) g is an extension of f.

(b) g(x) ≤ ρ(x) for all x ∈ X.
(c) g(γ(x)) = g(x) for all γ ∈ Γ and x ∈ X; i.e., g is invariant under Γ.

PROOF. For A a finite subset of Γ, we use part c of Exercise 2.6 and
then Exercise 2.14 to construct a linear functional gA on X satisfying:

(1) gA is an extension of f.
(2) gA(x) ≤ ρ(x) for all x ∈ X.
(3) gA(γ(x)) = gA(x) for all x ∈ X and γ ∈ A.

If as in Exercise 2.12 K =
∏
x∈X [−ρ(−x), ρ(x)], then {gA} can be re-

garded as a net in the compact Hausdorff space K. Let {gAβ} be a
convergent subnet, and write h = limβ gAβ . Then, h is a function on X,
and is in fact the pointwise limit of a net of linear functionals, and so is
itself a linear functional.

Clearly, h(x) ≤ ρ(x) for all x ∈ X, and h is an extension of f.

To see that h(γ(x)) = h(x) for all γ ∈ Γ, fix a γ0, and let A0 = {γ0}.
By the definition of a subnet, there exists a β0 such that if β ≥ β0

then Aβ ≥ A0. Hence, if β ≥ β0, then {γ0} ⊆ Aβ . So, if β ≥ β0, then
gAβ (γ0(x)) = gAβ (x) for all x. Hence,

h(γ0(x)) = lim
β
gAβ (γ0(x)) = lim

β
gAβ (x) = h(x),

as desired.

DEFINITION. Let S be a set. A ring of subsets of S is a collection
R of subsets of S such that if E,F ∈ R, then both E ∪F and E∆F are
in R, where E∆F = (E ∩ F̃ ) ∪ (F ∩ Ẽ) is the symmetric difference of
E and F. By a finitely additive measure on S, we mean an assignment
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E → µ(E), of a ring R of subsets of S into the extended nonnegative
real numbers, such that

µ(∅) = 0

and

µ(E1 ∪ . . . ∪ En) = µ(E1) + . . .+ µ(En)

whenever {E1 . . . , En} is a pairwise disjoint collection of elements of R.

EXERCISE 2.15. (Translation-Invariant Finitely Additive Measures)
Let X be the vector space of all bounded functions on R with compact
support, and let P be the positive cone of nonnegative functions in X.
(a) Let I be a positive linear functional on X. For each bounded subset
E ⊂ R, define µ(E) = I(χE). Show that the set of all bounded subsets
of R is a ring R of sets and that µ is a finitely additive measure on this
ring.
(b) Show that there exists a finitely additive measure ν, defined on the
ring of all bounded subsets of R, such that ν(E) is the Lebesgue measure
for every bounded Lebesgue measurable subset E of R, and such that
ν(E+x) = ν(E) for all bounded subsets E of R and all real numbers x.
(Such a measure is said to be translation-invariant.) HINT: Let Y be the
subspace of X consisting of the bounded Lebesgue measurable functions
of bounded support, let I(f) =

∫
f, and let Γ be the semigroup of linear

transformations of X determined by the semigroup of all translations of
R. Now use Theorem 2.5.
(c) Let µ be the finitely additive measure of part b. For each subset E
of R, define ν(E) = limn µ(E ∩ [−n, n]). Prove that µ is a translation-
invariant, finitely additive measure on the σ-algebra of all subsets of R,
and that µ agrees with Lebesgue measure on Lebesgue measurable sets.
(d) Prove that there exists no countably additive translation-invariant
measure µ on the σ-algebra of all subsets of R that agrees with Lebesgue
measure on Lebesgue measurable sets. HINT: Suppose µ is such a count-
ably additive measure. Define an equivalence relation on R by setting
x ≡ y if y − x ∈ Q, i.e., y − x is a rational number. Let E ⊂ (0, 1) be
a set of representatives of the equivalence classes of this relation. Show
first that ∪q∈Q∩(0,1)E + q ⊂ (0, 2), whence µ(E) must be 0. Then show
that (0, 1) ⊂ ∪q∈QE + q, whence µ(E) must be positive.

DEFINITION. Let X be a complex vector space. A seminorm on X is
a real-valued function ρ that is subadditive and absolutely homogeneous;
i.e.,

ρ(x+ y) ≤ ρ(x) + ρ(y)
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for all x, y ∈ X, and

ρ(λx) = |λ|ρ(x)

for all x ∈ X and λ ∈ C. If, in addition, x 6= 0 implies that ρ(x) > 0,
then ρ is called a norm on the complex vector space X.

THEOREM 2.6. (Hahn-Banach Theorem, Complex Version) Let ρ be
a seminorm on a complex vector space X. Let Y be a subspace of X, and
let f be a complex-linear functional on Y satisfying |f(y)| ≤ ρ(y) for all
y ∈ Y. Then there exists a complex-linear functional g on X satisfying
g is an extension of f, and |g(x)| ≤ ρ(x) for all x ∈ X.

EXERCISE 2.16. Prove Theorem 2.6 as follows:

(a) Use Theorem 2.2 to extend the real part u of f to a real linear
functional a on X that satisfies a(x) ≤ ρ(x) for all x ∈ X.
(b) Use Exercise 1.11 and part a to define a complex linear functional g
on X that extends f.

(c) For x ∈ X, choose a complex number λ of absolute value 1 such that
|g(x)| = λg(x). Then show that

|g(x)| = g(λx) = a(λx) ≤ ρ(x).

(d) State and prove a theorem for complex spaces that is analogous to
Theorem 2.3.

CHAPTER III

TOPOLOGICAL VECTOR SPACES AND

CONTINUOUS LINEAR FUNCTIONALS
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The marvelous interaction between linearity and topology is introduced
in this chapter. Although the most familiar examples of this interaction
may be normed linear spaces, we have in mind here the more subtle, and
perhaps more important, topological vector spaces whose topologies are
defined as the weakest topologies making certain collections of functions
continuous. See the examples in Exercises 3.8 and 3.9, and particularly
the Schwartz space S discussed in Exercise 3.10.

DEFINITION. A topological vector space is a real (or complex) vector
space X on which there is a Hausdorff topology such that:
(1) The map (x, y)→ x+y is continuous from X×X into X. (Addition
is continuous.) and
(2) The map (t, x) → tx is continuous from R × X into X (or C × X
into X). (Scalar multiplication is continuous.)
We say that a topological vector space X is a real or complex topolog-
ical vector space according to which field of scalars we are considering.
A complex topological vector space is obviously also a real topological
vector space.
A metric d on a vector space X is called translation-invariant if d(x +
z, y + z) = d(x, y) for all x, y, z ∈ X. If the topology on a topological
vector space X is determined by a translation-invariant metric d, we
call X (or (X, d)) a metrizable vector space. If x is an element of a
metrizable vector space (X, d), we denote by Bε(x) the ball of radius
ε around x; i.e., Bε(x) = {y : d(x, y) < ε}. If the topology on a vector
space X is determined by the translation-invariant metric d defined by a
norm on X, i.e., d(x, y) = ‖x−y‖, we call X a normable vector space. If
the topology on X is determined by some complete translation-invariant
metric, we call X a Fréchet space.
The topological vector space X is called separable if it contains a count-
able dense subset.
Two topological vector spaces X1 and X2 are topologically isomorphic
if there exists a linear isomorphism T from X1 onto X2 that is also a
homeomorphism. In this case, T is called a topological isomorphism.

EXERCISE 3.1. (a) Let X be a topological vector space, and let x be
a nonzero element of X. Show that the map y → x+ y is a (nonlinear)
homeomorphism of X onto itself. Hence, U is a neighborhood of 0 if and
only if x+ U is a neighborhood of x. Show further that if U is an open
subset of X and S is any subset of X, then S + U is an open subset of
X.
(b) Show that x → −x is a topological isomorphism of X onto itself.
Hence, if U is a neighborhood of 0, then −U also is a neighborhood of 0,
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and hence V = U ∩ (−U) is a symmetric neighborhood of 0; i.e., x ∈ V
if and only if −x ∈ V.
(c) If U is a neighborhood of 0 in a topological vector space X, use the
continuity of addition to show that there exists a neighborhood V of 0
such that V + V ⊆ U.
(d) If X1, . . . , Xn are topological vector spaces, show that the (algebraic)
direct sum

⊕n
i=1Xi is a topological vector space, with respect to the

product topology. What about the direct product of infinitely many
topological vector spaces?
(e) If Y is a linear subspace of X, show that Y is a topological vector
space with respect to the relative topology.
(f) Show that, with respect to its Euclidean topology, Rn is a real topo-
logical vector space, and Cn is a complex topological vector space.

THEOREM 3.1. Let X be a topological vector space. Then:

(1) X is a regular topological space; i.e., if A is a closed subset of
X and x is an element of X that is not in A, then there exist
disjoint open sets U1 and U2 such that x ∈ U1 and A ⊆ U2.

(2) X is connected.
(3) X is compact if and only if X is {0}.
(4) Every finite dimensional subspace Y of X is a closed subset of

X.
(5) If T is a linear transformation of X into another topological

vector space X ′, then T is continuous at each point of X if and
only if T is continuous at the point 0 ∈ X.

PROOF. To see 1, let A be a closed subset of X and let x be a point
of X not in A. Let U denote the open set Ã, and let U ′ be the open
neighborhood U − x of 0. (See part a of Exercise 3.1.) Let V be a
neighborhood of 0 such that V + V ⊂ U ′. Now −V is a neighborhood
of 0, and we let W = V ∩ (−V ). Then W = −W and W +W ⊂ U ′. Let
U1 = W + x and let U2 = W +A. Then x ∈ U1 and A ⊆ U2. Clearly U1

is an open set, and, because U2 = ∪y∈A(W + y), we see also that U2 is
an open set. Further, if z ∈ U1 ∩U2, then we must have z = x+w1 and
z = a + w2, where both w1 and w2 belong to W and a ∈ A. But then
we would have

a = x+ w1 − w2 ∈ x+W −W ⊂ x+ U ′ = U = Ã,

which is a contradiction. Therefore, U1 ∩ U2 = ∅, and X is a regular
topological space.
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Because the map t→ (1−t)x+ty is continuous on R, it follows that any
two elements of X can be joined by a curve, in fact by a line segment in
X. Therefore, X is pathwise connected, hence connected, proving part
2.
Part 3 is left to an exercise.
We prove part 4 by induction on the dimension of the subspace Y. Al-
though the assertion in part 4 seems simple enough, it is surprisingly
difficult to prove. First, if Y has dimension 1, let y 6= 0 ∈ Y be a basis
for Y. If {tαy} is a net in Y that converges to an element x ∈ X, then
the net {tα} must be eventually bounded in R (or C), in the sense that
there must exist an index α0 and a constant M such that |tα| ≤ M for
all α ≥ α0. Indeed, if the net {tα} were not eventually bounded, let
{tαβ} be a subnet for which limβ |tαβ | =∞. Then

y = lim
β

(1/tαβ )tαβy

= lim
β

(1/tαβ ) lim
β
tαβy

= 0× x
= 0,

which is a contradiction. So, the net {tα} is bounded. Let {tαβ} be a
convergent subnet of {tα} with limit t. Then

x = lim
α
tαy = lim

β
tαβy = ty,

whence x ∈ Y, and Y is closed.
Assume now that every n− 1-dimensional subspace is closed, and let Y
have dimension n > 1. Let {y1, . . . , yn} be a basis for Y, and write Y ′

for the linear span of y1, . . . , yn−1. Then elements y of Y can be written
uniquely in the formy = y′ + tyn, for y′ ∈ Y ′ and t real (complex).
Suppose that x is an element of the closure of Y, i.e., x = limα(y′α+tαyn).
As before, we have that the net {tα} must be bounded. Indeed, if
the net {tα} were not bounded, then let {tαβ} be a subnet for which
limβ |tαβ | =∞. Then

0 = lim
β

(1/tαβ )x = lim
β

(y′αβ/tαβ ) + yn,

or
yn = lim

β
−(y′αβ/tαβ ),
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implying that yn belongs to the closure of the closed subspace Y ′. Since
yn is linearly independent of the subspace Y ′, this is impossible, showing
that the net {tα} is bounded. Hence, letting {tαβ} be a convergent
subnet of {tα}, say t = limβ tαβ , we have

x = lim
β

(y′αβ + tαβyn),

showing that
x− tyn = lim y′αβ ,

whence, since Y ′ is closed, there exists a y′ ∈ Y ′ such that x− tyn = y′.
Therefore, x = y′ + tyn ∈ Y, and Y is closed, proving part 4.
Finally, if T is a linear transformation from X into X ′, then T being
continuous at every point of X certainly implies that T is continuous at
0. Conversely, suppose T is continuous at 0, and let x ∈ X be given. If
V is a neighborhood of T (x) ∈ X ′, let U be the neighborhood V − T (x)
of 0 ∈ X ′. Because T is continuous at 0, there exists a neighborhood W
of 0 ∈ X such that T (W ) ⊆ U. But then the neighborhood W + x of x
satisfies T (W + x) ⊆ U + T (x) = V, and this shows the continuity of T
at x.

EXERCISE 3.2. (a) Prove part 3 of the preceding theorem.
(b) Prove that any linear transformation T, from Rn (or Cn), equipped
with its ordinary Euclidean topology, into a real (complex) topological
vector space X, is necessarily continuous. HINT: Let e1, . . . , en be the
standard basis, and write xi = T (ei).
(c) Let ρ be a seminorm (or subadditive functional) on a real topological
vector space X. Show that ρ is continuous everywhere on X if and only
if it is continuous at 0.
(d) Suppose ρ is a continuous seminorm on a real topological vector
space X and that f is a linear functional on X that is bounded by ρ;
i.e., f(x) ≤ ρ(x) for all x ∈ X. Prove that f is continuous.
(e) Suppose X is a vector space on which there is a topology T such
that (x, y) → x − y is continuous from X ×X into X. Show that T is
Hausdorff if and only if it is T0. (A topological space is called T0 if, given
any two points, there exists an open set that contains one of them but
not the other.)
(f) Show that Lp(R) is a topological vector space with respect to the
topology defined by the (translation-invariant) metric

d(f, g) = ‖f − g‖p.
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Show, in fact, that any normed linear space is a topological vector space
with respect to the topology defined by the metric given by

d(x, y) = ‖x− y‖.

(g) Let cc denote the set of all real (or complex) sequences {a1, a2, . . . }
that are nonzero for only finitely many terms. If {aj} ∈ cc, define the
norm of {aj} by ‖{aj}‖ = maxj |aj |. Verify that cc is a normed linear
space with respect to this definition of norm.

(h) Give an example of a (necessarily infinite dimensional) subspace of
Lp(R) which is not closed.

THEOREM 3.2. (Finite-Dimensional Topological Vector Spaces)

(1) If X is a finite dimensional real (or complex) topological vector
space, and if x1, . . . , xn is a basis for X, then the map T : Rn →
X (or T : Cn → X), defined by T (t1, . . . , tn) =

∑
tixi, is a topo-

logical isomorphism of Rn (or Cn), equipped with its Euclidean
topology, onto X. That is, specifically, a net {xα} = {

∑n
i=1 t

α
i xi}

converges to an element x =
∑n
i=1 tixi ∈ X if and only if each

net {tαi } converges to ti, 1 ≤ i ≤ n.
(2) The only topology on Rn (or Cn), in which it is a topological

vector space, is the usual Euclidean topology.
(3) Any linear transformation, from one finite dimensional topologi-

cal vector space into another finite dimensional topological vector
space, is necessarily continuous.

PROOF. We verify these assertions for real vector spaces, leaving the
complex case to the exercises. The map T : Rn → X in part 1 is
obviously linear, 1-1 and onto. Also, it is continuous by part b of Exercise
3.2. Let us show that T−1 is continuous. Thus, let the net {xα} =
{
∑n
i=1 t

α
i xi} converge to 0 in X. Suppose, by way of contradiction, that

there exists an i for which the net {tαi } does not converge to 0. Then

let {tαβi } be a subnet for which limβ t
αβ

i = t, where t either is ±∞ or is
a nonzero real number. Write xα = tαi xi + x′

α
. Then

(1/tα
β

i )xα
β

= xi + (1/tα
β

i )x′
αβ
,

whence,

xi = − lim
β

(1/tα
β

i )x′
αβ
,
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implying that xi belongs to the (closed) subspace spanned by the vectors

x1, . . . , xi−1, xi+1, . . . , xn,

and this is a contradiction, since the xi’s form a basis of X. Therefore,
each of the nets {tαi } converges to 0, and T−1 is continuous.
We leave the proofs of parts 2 and 3 to the exercises.

EXERCISE 3.3. (a) Prove parts 2 and 3 of the preceding theorem in
the case that X is a real topological vector space.
(b) Prove the preceding theorem in the case that X is a complex topo-
logical vector space.

EXERCISE 3.4. (Quotient Topological Vector Spaces) Let M be a
linear subspace of a topological vector space X.
(a) Prove that the natural map π, which sends x ∈ X to x+M ∈ X/M,
is continuous and is an open map, where X/M is given the quotient
topology.
(b) Show that X/M, equipped with the quotient topology, is a topolog-
ical vector space if and only if M is a closed subspace of X. HINT: Use
part e of Exercise 3.2.
(c) Suppose M is not closed in X. Show that, if U is any neighborhood
of 0 ∈ X, then U +M contains the closure M of M.
(d) Conclude from part c that, if M is dense in X, then the only open
subsets of X/M are X/M and ∅.

THEOREM 3.3. Let X be a real topological vector space. Then X is
locally compact if and only if X is finite dimensional.

PROOF. If X is finite dimensional it is clearly locally compact, since
the only topology on Rn is the usual Euclidean one. Conversely, suppose
U is a compact neighborhood of 0 ∈ X, and let V be a neighborhood of
0 for which V + V ⊆ U. Because U is compact, there exists a finite set
x1, . . . , xn of points in U such that

U ⊆ ∪ni=1(xi + V ).

Let M denote the subspace of X spanned by the points x1, . . . , xn. Then
M is a closed subspace, and the neighborhood π(U) of 0 in X/M equals
π(V ). Indeed, if π(y) ∈ π(U), with y ∈ U, then there exists an 1 ≤ i ≤ n
such that y ∈ xi + V, whence π(y) ∈ π(V ).
It then follows that

π(U) = π(U) + π(U) = Nπ(U)
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for every positive integer N,which implies that π(U) = X/M. So X/M
is compact and hence is {0}. Therefore, X = M, and X is finite dimen-
sional.

THEOREM 3.4. Let T be a linear transformation of a real topological
vector space X into a real topological vector space Y, and let M be the
kernel of T. If π denotes the quotient map of X onto X/M, and if S is the
unique linear transformation of the vector space X/M into Y satisfying
T = S ◦ π, then S is continuous if and only if T is continuous, and S is
an open map if and only if T is an open map.

PROOF. Since π is continuous and is an open map, see Exercise 3.4,
It follows that T is continuous or open if S is continuous or open. If T is
continuous, and if U is an open subset of Y, then S−1(U) = π(T−1(U)),
and this is open because T is continuous and π is an open map. Hence,
S is continuous.

Finally, if T is an open map and U is an open subset of X/M, then
S(U) = S(π(π−1(U))) = T (π−1(U)), which is open because T is an
open map and π is continuous. So, S is an open map.

THEOREM 3.5. (Characterization of Continuity) If T is a linear trans-
formation of a real (or complex) topological vector space X into Rn (or
Cn), then T is continuous if and only if ker(T ) is closed. Further, T is
continuous if and only if there exists a neighborhood of 0 in X on which
T is bounded. If f is a linear functional on X, then f is continuous if
and only if there exists a neighborhood of 0 on which f either is bounded
above or is bounded below.

PROOF. Suppose that X is a real vector space. If M = ker(T ) is
closed, and if T = S ◦ π, then T is continuous because S is, X/M being
finite dimensional. The converse is obvious.

If T is not continuous, then, from the preceding paragraph, M is not
closed. So, by part c of Exercise 3.4, every neighborhood U of 0 is such
that U + M contains M. If x is an element of M −M, then T (x) 6= 0.
Also, for any scalar λ, λx ∈M ⊆ U +M, whence there exists an m ∈M
such that λx −m ∈ U. But then, T (λx −m) = λT (x), showing that T
is not bounded on U. Again, the converse is immediate.

The third claim of this theorem follows in the same manner as the second,
and the complex cases for all parts are completely analogous to the real
ones.

REMARK. We shall see that the graph of a linear transformation is
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important vis a vis the continuity of T. The following exercise demon-
strates the initial aspects of this connection.

EXERCISE 3.5. (Continuity and the Graph) Let X and Y be topo-
logical vector spaces, and let T be a linear transformation from X into
Y.
(a) Show that if T is continuous then the graph of T is a closed subspace
of X × Y.
(b) Let X and Y both be the normed linear space cc (see part g of
Exercise 3.2), and define T by T ({aj}) = {jaj}. Verify that the graph
of T is a closed subset of X × Y but that T is not continuous.
(c) Show that, if the graph of T is closed, then the kernel of T is closed.
(d) Let Y = Rn or Cn. Show that T is continuous if and only if the
graph of T is closed.

EXERCISE 3.6. (a) Let T be a linear transformation from a normed
linear space X into a normed linear space Y. Show that T is continuous
if and only if there exists a constant M such that

‖T (x)‖ ≤M‖x‖

for every x ∈ X.
(b) Let X be an infinite dimensional normed linear space. Prove that
there exists a discontinuous linear functional on X. HINT: Show that
there exists an infinite set of linearly independent vectors of norm 1.
Then, define a linear functional that is not bounded on any neighborhood
of 0.
(c) Show that, if 1 ≤ p < ∞, then Lp(R) is a separable normed linear
space. What about L∞(R)?
(d) Let µ be counting measure on an uncountable set X. Show that each
Lp(µ) (1 ≤ p ≤ ∞) is a normed linear space but that none is separable.
(e) Let ∆ be a second-countable, locally compact, Hausdorff, topological
space. Show that X = C0(∆) is a separable normed linear space, where
the norm on X is the supremum norm. (See Exercise 1.9.)

DEFINITION. Let X be a set, and let {fν} be a collection of real-
valued (or complex-valued) functions on X. The weak topology on X,
generated by the fν ’s, is the smallest topology on X for which each fν
is continuous. A basis for this topology consists of sets of the form

V = ∩ni=1f
−1
νi (Ui),

where each Ui is an open subset of R (or C).
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EXERCISE 3.7. (Vector Space Topology Generated by a Set of Linear
Functionals) Let X be a real vector space and let {fν} be a collection of
linear functionals on X that separates the points of X. Let Y =

∏
ν R,

and define a function F : X → Y by [F (x)](ν) = fν(x).
(a) Show that F is 1-1, and that with respect to the weak topology on
X, generated by the fν ’s, F is a homeomorphism of X onto the subset
F (X) of Y. HINT: Compare the bases for the two topologies.
(b) Conclude that convergence in the weak topology on X, generated by
the fν ’s, is described as follows:

x = lim
α
xα ≡ fν(x) = lim

α
fν(xα)

for all ν.
(c) Prove that X, equipped with the weak topology generated by the
fν ’s, is a topological vector space.
(d) Show that Y is metrizable, and hence this weak topology on X is
metrizable, if the set of fν ’s is countable.
(e) Verify that parts a through d hold if X is a complex vector space
and each fν is a complex linear functional.

An important kind of topological vector space is obtained as a general-
ization of the preceding exercise, and is constructed as follows. Let X
be a (real or complex) vector space, and let {ρν} be a collection of semi-
norms on X that separates the nonzero points of X from 0 in the sense
that for each x 6= 0 there exists a ν such that ρν(x) > 0. For each y ∈ X
and each index ν, define gy,ν(x) = ρν(x − y). Then X, equipped with
the weakest topology making all of the gy,ν ’s continuous, is a topological
vector space, i.e., is Hausdorff and addition and scalar multiplication are
continuous. A net {xα} of elements in X converges in this topology to
an element x if and only if ρν(x−xα) converges to 0 for every ν. Further,
this topology is a metrizable topology if the collection {ρν} is countable.
We call this the vector space topology on X generated by the seminorms
{ρν} and denote this topological vector space by (X, {ρν}).
If ρ1, ρ2, . . . is a sequence of norms on X, then we call the topological
vector space (X, {ρn}) a countably normed space.

EXERCISE 3.8. (Vector Space Topology Generated by a Set of Semi-
norms) Let X be a real (or complex) vector space and let {ρν} be a
collection of seminorms on X that separates the nonzero points of X
from 0 in the sense that for each x 6= 0 there exists a ν such that
ρν(x) > 0. For each y ∈ X and each index ν, define gy,ν(x) = ρν(x− y).
Finally, let T be the topology on X generated by the gy,ν ’s.
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(a) Let x be an element of X and let V be an open set containing x.
Show that there exist indices ν1, . . . , νn, elements y1, . . . , yn ∈ X, and
open sets U1, . . . , Un ⊆ R (C) such that

x ∈ ∩ni=1g
−1
yi,νi(Ui) ⊆ V.

(b) Conclude that convergence in the topology on X generated by the
gy,ν ’s is described by

x = lim
α
xα ≡ lim

α
ρν(x− xα) = 0

for each ν.
(c) Prove that X, equipped with the topology generated by the gy,ν ’s,
is a topological vector space. (HINT: Use nets.) Show further that this
topology is metrizable if the collection {ρν} is countable, i.e., if ρ1, ρ2, . . .
is a sequence of seminorms. (HINT: Use the formula

d(x, y) =

∞∑
n=1

2−n min(ρn(x− y), 1).

Verify that d is a translation-invariant metric and that convergence with
respect to this metric is equivalent to convergence in the topology T .)
(d) Let X be a vector space, and let ρ1, ρ2, . . . be a sequence of semi-
norms that separate the nonzero points of X from 0. For each n ≥ 1,
define pn = maxk≤n ρk. Prove that each pn is a seminorm on X, that
pn ≤ pn+1 for all n, and that the two topological vector spaces (X, {ρn})
and (X, {pn}) are topologically isomorphic.
(e) Let X and {pn} be as in part d. Show that if V is a neighborhood
of 0, then there exists an integer n and an ε > 0 such that if pn(x) <
ε, then x ∈ V. Deduce that, if f is a continuous linear functional on
(X, {pn}), then there exists an integer n and a constant M such that
|f(x)| ≤Mpn(x) for all x ∈ X.
(f) Let X be a normed linear space, and define ρ(x) = ‖x‖. Prove that
the topology on X determined by the norm coincides with the vector
space topology generated by ρ.

EXERCISE 3.9. (a) Let X be the complex vector space of all infin-
itely differentiable complex-valued functions on R. For each nonnegative
integer n, define ρn on X by

ρn(f) = sup
|x|≤n

sup
0≤i≤n

|f (i)(x)|,
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where f (i) denotes the ith derivative of f. Show that the ρn’s are semi-
norms (but not norms) that separate the nonzero points of X from 0,
whence X is a metrizable complex topological vector space in the weak
vector space topology generated by the ρn’s. This vector space is usually
denoted by E .
(b) Let X be the complex vector space C0(∆), where ∆ is a locally
compact Hausdorff space. For each δ ∈ ∆, define ρδ on X by

ρδ(f) = |f(δ)|.

Show that, with respect to the weak vector space topology generated by
the ρδ’s, convergence is pointwise convergence of the functions.

EXERCISE 3.10. (Schwartz Space) Let S denote the set of all C∞

complex-valued functions f on R that are rapidly decreasing, i.e., such
that xnf (j)(x) ∈ C0(R) for every pair of nonnegative integers n and j.
In other words, f and all its derivatives tend to 0 at ±∞ faster than the
reciprocal of any polynomial.
(a) Show that every C∞ function having compact support belongs to S,
and verify that f(x) = xke−x

2

belongs to S for every integer k ≥ 0.
(b) Show that S is a complex vector space, that each element of S
belongs to every Lp space, and that S is closed under differentiation and
multiplication by polynomials. What about antiderivatives of elements
of S? Are they again in S?
(c) For each nonnegative integer n, define pn on S by

pn(f) = max
0≤i,j≤n

sup
x
|xjf (i)(x)|.

Show that each pn is a norm on S, that pn(f) ≤ pn+1(f) for all f ∈ S,
and that the topological vector space (S, {pn}) is a countably normed
space. This countably normed vector space is called Schwartz space.

(d) Show that f = lim fk in S if and only if {xjf (i)
k (x)} converges

uniformly to xjf (i)(x) for every i and j.
(e) Prove that the set D of C∞ functions having compact support is
a dense subspace of S. HINT: Let χ be a nonnegative C∞ function,
supported on [−2, 2], and satisfying χ(x) = 1 for −1 ≤ x ≤ 1. Define
χn(x) = χ(x/n). If f ∈ S, show that f = lim fχn in the topology of S.
(f) Prove that the map f → f ′ is a continuous linear transformation
from S into itself. Is this transformation onto?

We introduce next a concept that is apparently purely from algebraic
linear space theory and one that is of extreme importance in the topo-
logical aspect of Functional Analysis.
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DEFINITION. A subset S of a vector space is called convex if (1 −
t)x+ ty ∈ S whenever x, y ∈ S and 0 ≤ t ≤ 1. The convex hull of a set
S is the smallest convex set containing S (the intersection of all convex
sets containing S). A topological vector space X is called locally convex
if there exists a neighborhood basis at 0 consisting of convex subsets
of X. That is, if U is any neighborhood of 0 in X, then there exists a
convex open set V such that 0 ∈ V ⊆ U.
EXERCISE 3.11. (a) Let X be a real vector space. Show that the
intersection of two convex subsets of X and the sum of two convex
subsets of X is a convex set. If S is a subset of X, show that the
intersection of all convex sets containing S is a convex set. Show also
that if X is a topological vector space then the closure of a convex set
is convex.
(b) Prove that a normed linear space is locally convex by showing that
each ball centered at 0 in X is a convex set.
(c) Let X be a vector space and let {fν} be a collection of linear func-
tionals on X that separates the points of X. Show that X, equipped
with the weakest topology making all of the fν ’s continuous, is a locally
convex topological vector space. (See Exercise 3.7.)
(d) Let X be a vector space, and let {ρν} be a collection of seminorms
on X that separates the nonzero points of X from 0. Prove that X,
equipped with the weak vector space topology generated by the ρν ’s, is
a locally convex topological vector space. (See Exercise 3.8.)
(e) Suppose X is a locally convex topological vector space and that M
is a subspace of X. Show that M is a locally convex topological vector
space with respect to the relative topology. If M is a closed subspace
of X, show that the quotient space X/M is a locally convex topological
vector space.
(f) Show that all the Lp spaces are locally convex as well as the spaces
C0(∆) under pointwise convergence, E , and S of Exercises 3.9 and 3.10.

If X is a real vector space, recall that a function ρ : X → R is called a
subadditive functional if

(1) ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ X.
(2) ρ(tx) = tρ(x) for all x ∈ X and t ≥ 0.

THEOREM 3.6. (Convex Neighborhoods of 0 and Continuous Sub-
additive Functionals) Let X be a real topological vector space. If ρ is
a continuous subadditive functional onX, then ρ−1(−∞, 1) is a convex
neighborhood of 0 in X. Conversely, if U is a convex neighborhood of
0, then there exists a continuous nonnegative subadditive functional ρ
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such that ρ−1(−∞, 1) ⊆ U ⊆ ρ−1(−∞, 1]. In addition, if U is symmetric,
then ρ may be chosen to be a seminorm.

PROOF. If ρ is a continuous subadditive functional, then it is imme-
diate that ρ−1(−∞, 1) is open, contains 0, and is convex.

Conversely, if U is a convex neighborhood of 0, define ρ on X by

ρ(x) =
1

supt>0,tx∈U t
= inf
r>0,x∈rU

r.

(We interpret ρ(x) as 0 if the supremum in the denominator is∞, i.e., if
x ∈ rU for all r > 0.) Because U is an open neighborhood of 0 = 0× x,
and because scalar multiplication is continuous, the supremum in the
above formula is always > 0, so that 0 ≤ ρ(x) < ∞ for every x. Notice
also that if t > 0 and t× x ∈ U, then 1/t ≥ ρ(x).

It follows immediately that ρ(rx) = rρ(x) if r ≥ 0, and, if U is symmet-
ric, then ρ(rx) = |r|ρ(x) for arbitrary real r.

If x and y are in X and ε > 0 is given, choose real numbers t and s such
that tx ∈ U, sy ∈ U, 1/t ≤ ρ(x) + ε, and 1/s ≤ ρ(y) + ε. Because U is
convex, we have that

s

t+ s
tx +

t

t+ s
sy =

st

t+ s
(x+ y) ∈ U.

Therefore, ρ(x+ y) ≤ (s+ t)/st, whence

ρ(x+ y) ≤ (t+ s)/st = (1/t) + (1/s) ≤ ρ(x) + ρ(y) + 2ε,

completing the proof that ρ is a subadditive functional in general and a
seminorm if U is symmetric.

If ρ(x) < 1, then there exists a t > 1 so that tx ∈ U. Since U is convex,
it then follows that x ∈ U. Also, if x = 1× x ∈ U, then ρ(x) ≤ 1. Hence,
ρ−1(−∞, 1) ⊆ U ⊆ ρ−1(−∞, 1].

Finally, ρ−1(−∞, ε) ⊆ εU ⊆ ρ−1(−∞, ε] for every positive ε, which
shows that ρ is continuous at 0 and hence everywhere.

REMARK. The subadditive functional ρ constructed in the preced-
ing proof is called the Minkowski functional associated to the convex
neighborhood U.
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THEOREM 3.7. (Hahn-Banach Theorem, Locally Convex Version)
Let X be a real locally convex topological vector space, let Y be a
subspace of X, and let f be a continuous linear functional on Y with
respect to the relative topology. Then there exists a continuous linear
functional g on X whose restriction to Y is f.

PROOF. By Theorem 3.5, there exists a neighborhood V of 0 in Y on
which f is bounded, and by scaling we may assume that it is bounded
by 1; i.e., |f(y)| ≤ 1 if y ∈ V. Let W be a neighborhood of 0 in X such
that V = W ∩ Y, and let U be a symmetric convex neighborhood of 0
in X such that U ⊆ W. Let ρ be the continuous seminorm (Minkowski
functional) on X associated to U as in the preceding theorem.
Now, if y ∈ Y, t > 0, and ty ∈ U, then

|f(y)| = (1/t)|f(ty)| ≤ 1/t,

whence, by taking the supremum over all such t’s,

|f(y)| ≤ ρ(y),

showing that f is bounded by ρ on Y. Using Theorem 2.2, let g be a
linear functional on X that extends f and such that |g(x)| ≤ ρ(x) for
all x ∈ X. Then g is an extension of f and is continuous, so the proof is
complete.

EXERCISE 3.12. Let M be a subspace of a locally convex topological
vector space X. Prove that M is dense in X if and only if the only
continuous linear functional f on X that is identically 0 on M is the 0
functional.

THEOREM 3.8. (Local Convexity and Existence of Continuous Linear
Functionals) A locally convex topological vector space has sufficiently
many continuous linear functionals to separate its points.

PROOF. Assume first that X is a real topological vector space. We
will apply the Hahn-Banach Theorem. Suppose that x 6= y are elements
of X, and let Y be the subspace of X consisting of the real multiples of
the nonzero vector y − x. Define a linear functional f on Y by

f(t(y − x)) = t.

Because Y is one-dimensional, this linear functional f is continuous.
By the Hahn-Banach Theorem above, there exists a continuous linear
functional g on X that is an extension of f. We have that

g(y)− g(x) = g(y − x) = f(y − x) = 1 6= 0,
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showing that g separates the two points x and y.

Now, if X is a complex locally convex topological vector space, then it is
obviously a real locally convex topological vector space. Hence, if x 6= y
are elements of X, then there exists a continuous real linear functional
g on X such that g(x) 6= g(y). But, as we have seen in Chapter I, the
formula

f(z) = g(z)− ig(iz)

defines a complex linear functional on X, and clearly f is continuous
and f(x) 6= f(y).

EXERCISE 3.13. (Example of a Non-Locally-Convex Topological Vec-
tor Space) Let X ′ be the vector space of all real-valued Lebesgue mea-
surable functions on [0, 1]. and define an equivalence relation ≡ on X ′

by f ≡ g if f(x) = g(x) a.e.m, where m denotes Lebesgue measure. For
f, g ∈ X ′, set

d′(f, g) =

∞∑
n=1

1

2n
m({x : |f(x)− g(x)| ≥ 1

n
}).

(a) Prove that X = X ′/ ≡ is a vector space, and show that d′ determines
a translation-invariant metric d on X. HINT: Show that {x : |f(x) −
h(x)| ≥ 1/n} is a subset of {x : |f(x)−g(x)| ≥ 1/2n}∪{x : |g(x)−h(x)| ≥
1/2n}.
(b) Show that d′(fn− f)→ 0 if and only if the sequence {fn} converges
in measure to f. Conclude that the metric d is a complete metric.

(c) Prove that, with respect to the topology on X determined by the
metric d, X is a topological vector space (in fact a Fréchet space), and
that the subspace Y ⊆ X consisting of the equivalence classes [φ] corre-
sponding to measurable simple functions φ is dense in X.

(d) Let δ > 0 be given. Show that if E is a measurable set of measure
< δ, then for every scalar c ≥ 1 the equivalence class [cχE ] belongs to
the ball Bδ(0) of radius δ around 0 ∈ X.
(e) Let f be a continuous linear functional on the topological vector space
X, and let Bδ(0) be a neighborhood of 0 ∈ X on which f is bounded.
See Theorem 3.5. Show that f([χE ]) = 0 for all E with m(E) < δ,
whence f([φ]) = 0 for all measurable simple functions φ.

(f) Conclude that the only continuous linear functional on X is the zero
functional, whence the topology on X is not locally convex.
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THEOREM 3.9. (Separation Theorem) Let C be a closed convex sub-
set of a locally convex real topological vector space X, and let x be an
element of X that is not in C. Then there exists a continuous linear
functional φ on X and a real number s such that φ(c) ≤ s < φ(x) for all
c ∈ C.

PROOF. Again, we apply the Hahn-Banach Theorem. Let U be a
neighborhood of 0 such that x + U does not intersect C. Let V be a
convex symmetric neighborhood of 0 for which V + V ⊆ U, and write
C ′ for the open convex set V + C. Then (x + V ) ∩ C ′ = ∅. If y is an
element of C ′, write W for the convex neighborhood C ′ − y of 0, and
observe that (x− y + V ) ∩W = ∅. Let ρ be the continuous subadditive
functional associated to W as in Theorem 3.6. (ρ is not necessarily a
seminorm since W need not be symmetric.) If Y is the linear span of the
nonzero vector x− y, let f be defined on Y by f(t(x− y)) = tρ(x− y).
Then f is a linear functional on Y satisfying f(z) ≤ ρ(z) for all z ∈ Y.
By part c of Exercise 2.6, there exists a linear functional φ on X, which
is an extension of f and which satisfies φ(w) ≤ ρ(w) for all w ∈ X.
Since ρ is continuous, it follows that φ is continuous. Also, by the
definition of ρ, if z ∈W, then ρ(z) ≤ 1, whence φ(z) ≤ 1. Now ρ(x−y) >
1. For, if t is sufficiently close to 1, then t(x − y) ∈ x − y + V, whence
t(x − y) /∈ W, and ρ(x − y) ≥ 1/t > 1. So, φ(x − y) = f(x − y) =
ρ(x− y) > 1. Setting s = φ(y) + 1, we have φ(c) ≤ s for all c ∈ C, and
φ(x) > s, as desired.

DEFINITION. Let C be a convex subset of a real vector space X. We
say that a nonempty convex subset F of C is a face of C if: Whenever x ∈
F is a proper convex combination of points in C (i.e., x = (1− t)y+ tz,
with y ∈ C, z ∈ C, and 0 < t < 1,) then both y and z belong to F.

A point x ∈ C is called an extreme point of C if: Whenever x = (1 −
t)y + tz, with y ∈ C, z ∈ C, and 0 < t < 1, then y = z = x.

EXERCISE 3.14. (a) Let C be the closed unit ball in Lp(R), for 1 <
p <∞. Show that the extreme points of C are precisely the elements of
the unit sphere, i.e., the elements f for which ‖f‖p = 1. HINT: Use the
fact that |(1− t)y + tz|p < (1− t)|y|p + t|z|p if y 6= z and 0 < t < 1.

(b) If C is the closed unit ball in L1(R), show that C has no extreme
points.

(c) Find the extreme points of the closed unit ball in l∞(R).

(d) Find all the faces of a right circular cylinder, a tetrahedron, a sphere.
Are all these faces closed sets?
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(e) Suppose C is a closed convex subset of a topological vector space X.
Is the closure of a face of C again a face? Is every face of C necessarily
closed?
(f) Show that a singleton, which is a face of a convex set C, is an extreme
point of C.
(g) Suppose C is a convex subset of a topological vector space X. Show
that the intersection of two faces of C is a face of C. Also, if φ is a linear
functional on X, and maxx∈C φ(x) = c, show that φ−1(c) ∩ C is a face
of C.

EXERCISE 3.15. (Hahn-Banach Theorem, Extreme Point Version)
Let X be a real vector space, and let ρ be a seminorm (or subadditive
functional) on X. If Z is a subspace of X, define FZ to be the set of all
linear functionals f on Z for which f(z) ≤ ρ(z) for all z ∈ Z.
(a) Prove that FZ is a convex set of linear functionals.
(b) Let Y be a subspace of X. If f is an extreme point of FY , show
that there is an extreme point g ∈ FX that is an extension of f. HINT:
Mimic the proof of Theorem 2.2. That is, use the Hausdorff maximality
principle to find a maximal pair (Z, h), for which h is an extension of
f and h is an extreme point of FZ . Then, following the notation in the
proof to Theorem 2.2, show that Z = X by choosing c to equal b.

We give two main theorems concerning the set of extreme points of a
convex set.

THEOREM 3.10. (Krein-Milman Theorem) Let C be a nonempty
compact convex subset of a locally convex real topological vector space
X. Then

(1) There exists an extreme point of C.
(2) C is the closure of the convex hull of its extreme points.

PROOF. Let F be the collection of all closed faces of C, and consider
F to be a partially ordered set by defining F ≤ F ′ if F ′ ⊆ F. Then,
F is nonempty (C is an element of F), and we let {Fα} be a maximal
linearly ordered subset of F (the Hausdorff maximality principle). We
set F = ∩Fα, and note, since C is compact, that F is a nonempty
closed (compact) face of C. We claim that F is a singleton, whence an
extreme point of C. Indeed, if x ∈ F, y ∈ F, and x 6= y, let φ be a
continuous linear functional which separates x and y, and let z be a
point in the compact set F at which φ attains its maximum on F. Let
H = φ−1(φ(z)), and let F ′ = F ∩H. Then F ′ is a closed face of C which
is properly contained in F. See part g of Exercise 3.14. But then the



TOPOLOGICAL VECTOR SPACES 61

subset of F , consisting of the Fα’s together with F ′, is a strictly larger
linearly ordered subset of F , and this is a contradiction. Therefore, F
is a singleton, and part 1 is proved.
Next, let C ′ be the closure of the convex hull of the extreme points of
C. Then C ′ ⊆ C. If there is an x ∈ C which is not in C ′, then, using the
Separation Theorem (Theorem 3.9), let s be a real number and φ be a
continuous linear functional for which φ(y) ≤ s < φ(x) for all y ∈ C ′.
Because C is compact and φ is continuous, there exists a z ∈ C such
that φ(z) ≥ φ(w) for all w ∈ C, and we let C ′′ = C ∩ φ−1(φ(z)). Then
C ′′ is a nonempty compact convex subset of C, and C ′ ∩ C ′′ = ∅. By
part 1, there exists an extreme point p of C ′′. We claim that p is also an
extreme point of C. Thus, if p = (1 − t)q + tr, with q ∈ C, r ∈ C, and
0 < t < 1, then

φ(z) = φ(p)

= (1− t)φ(q) + tφ(r)

≤ (1− t)φ(z) + tφ(z)

= φ(z).

Therefore, φ(q) = φ(r) = φ(z), which implies that q ∈ C ′′ and r ∈ C ′′.
Then, since p is an extreme point of C ′′, we have that q = r = p, as
desired. But this implies that p ∈ C ′, which is a contradiction. This
completes the proof of part 2.

The Krein-Milman theorem is a topological statement about the set of
extreme points of a compact convex set. Choquet’s theorem, to follow,
is a measure-theoretic statement about the set of extreme points of a
compact convex set.

THEOREM 3.11. (Choquet Theorem) Let X be a locally convex real
topological vector space, let K be a metrizable, compact, convex subset
of X, and let E denote the set of extreme points of K. Then:

(1) E is a Borel subset of K.
(2) For each x ∈ K, there exists a Borel probability measure µx on

E such that

f(x) =

∫
E

f(q) dµx(q),

for every continuous linear functional f on X.

PROOF. Let A be the complement in K × K of the diagonal, i.e.,
the complement of the set of all pairs (x, x) for x ∈ K. Then A is an
open subset of a compact metric space, and therefore A is a countable
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increasing union A = ∪An of compact sets {An}. Define a function
I : (0, 1) × A → K by I(t, y, z) = (1 − t)y + tz. Then the range of I is
precisely the complement of E inK. Also, since I is continuous, the range
of I is the countable union of the compact sets I([1/n, 1 − 1/n] × An),
whence the complement of E is an Fσ subset of K, so that E is a Gδ,
hence a Borel set. This proves part 1.
Now, let Y denote the vector space of all continuous affine functions on
K, i.e., all those continuous real-valued functions g on K for which

g((1− t)y + tz) = (1− t)g(y) + tg(z)

for all y, z ∈ K and 0 ≤ t ≤ 1. Note that the restriction to K of
any continuous linear functional on X is an element of Y. Now Y is a
subspace of C(K). Since K is compact and metrizable, we have that
C(K) is a separable normed linear space in the uniform norm, whence
Y is a separable normed linear space. Let {g1, g2, . . . } be a countable
dense set in the unit ball B1(0) of Y, and define

g′ =

∞∑
i=1

2−ig2
i .

Then g′ is continuous on K, and is a proper convex function; i.e.,

g′((1− t)y + tz) < (1− t)g′(y) + tg′(z)

whenever y, z ∈ K, y 6= z, and 0 < t < 1. Indeed, the series defining
g′ converges uniformly by the Weierstrass M test, showing that g′ is
continuous. Also, if y, z ∈ K, with y 6= z, there exists a continuous
linear functional φ on X that separates y and z. In fact, any nonzero
multiple of φ separates y and z. So, there exists at least one i such that
gi(y) 6= gi(z). Now, for any such i, if 0 < t < 1, then

g2
i ((1− t)y + tz) < (1− t)g2

i (y) + tg2
i (z),

since
((1− t)a+ tb)2 − (1− t)a2 − tb2 < 0

for all a 6= b. Indeed, this function of b is 0 when b = a and has a negative
derivative for b > a. On the other hand, if i is such that gi(y) = gi(z),
then

g2
i ((1− t)y + tz) = (gi((1− t)y + tz))2 = g2

i (y) = (1− t)g2
i (y) + tg2

i (z).
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Hence,

g′((1− t)y + tz) =

∞∑
i=1

2−ig2
i ((1− t)y + tz)

<

∞∑
i=1

2−i[(1− t)g2
i (y) + tg2

i (z)]

= (1− t)g′(y) + tg′(z).

We let Y1 be the linear span of Y and g′, so that we may write each
element of Y1 as g + rg′, where g ∈ Y and r ∈ R.
Now, given an x ∈ K, define a function ρx on C(K) by

ρx(h) = inf c(x),

where the infimum is taken over all continuous concave functions c on
K for which h(y) ≤ c(y) for all y ∈ K. Recall that a function c on K is
called concave if

c((1− t)y + tz) ≥ (1− t)c(y) + tc(z),

for all y, z ∈ K and 0 ≤ t ≤ 1. Because the sum of two concave functions
is again concave and a positive multiple of a concave function is again
concave, it follows directly that ρx is a subadditive functional on C(K).
Note also that if c is a continuous concave function on K, then ρx(c) =
c(x). Define a linear functional ψx on Y1 by

ψx(g + rg′) = g(x) + rρx(g′).

Note that the identically 1 function I is an affine function, so it belongs
to Y and hence to Y1. It follows then that ψx(I) = 1. Also, we have that
ψx ≤ ρx on Y1 (see the exercise following), and we let φx be a linear
functional on C(K), which is an extension of ψx, and for which φx ≤ ρx
on C(K). (We are using part c of Exercise 2.6.)
Note that, if h ∈ C(K) ≤ 0, then ρx(h) ≤ 0 (the 0 function is concave
and 0 ≥ h). So, if h ≤ 0, then φx(h) ≤ ρx(h) ≤ 0. It follows from
this that φx is a positive linear functional. By the Riesz Representation
Theorem, we let νx be the unique (finite) Borel measure on K for which

φx(h) =

∫
h dνx
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for all h ∈ C(K). Again letting I denote the identically 1 function on
K, we have that

νx(K) =

∫
I dνx

= φx(I)

= ψx(I)

= 1,

showing that νx is a probability measure.

If f is a continuous linear functional on X, then

∫
f dνx = φx(f) = ψx(f) = f(x),

since the restriction of f to K is a continuous affine function, whence in
Y1.

We prove next that νx is supported on E. To do this, let {cn} be a
sequence of continuous concave functions on K for which cn ≥ g′ for all
n and ρx(g′) = lim cn(x). Set c = lim inf cn. Then c is a Borel function,
hence is νx-measurable, and c(y) ≥ g′(y) for all y ∈ K. Hence,

∫
(c −

g′) dνx ≥ 0. But,

∫
(c− g′) dνx =

∫
(lim inf cn − g′) dνx

≤ lim inf

∫
(cn − g′) dνx

= lim inf φx(cn − g′)
= lim inf φx(cn)− φx(g′)

= lim inf φx(cn)− ρx(g′)

≤ lim inf ρx(cn)− ρx(g′)

= lim inf cn(x)− ρx(g′)

= lim cn(x)− ρx(g′)

= 0.

Therefore, νx is supported on the set where c and g′ agree. Let us show
that c(w) 6= g′(w) whenever w /∈ E. Thus, if w = (1 − t)y + tz, for
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y, z ∈ K, y 6= z, and 0 < t < 1, then

c(w) = lim inf cn(w)

= lim inf cn((1− t)y + tz)

≥ lim inf[(1− t)cn(y) + tcn(z)]

≥ (1− t)g′(y) + tg′(z)

> g′((1− t)y + tz)

= g′(w).

Define µx to be the restriction of νx to E. Then µx is a Borel probability
measure on E, and ∫

E

f dµx =

∫
K

f dνx = f(x)

for all continuous linear functionals f on X. This completes the proof.

EXERCISE 3.16. (a) Verify that the function ρx in the preceding proof
is a subadditive functional and that ψx(h) ≤ ρx(h) for all h ∈ Y1.

(b) Let X = R2, let K = {(s, t) : |s| + |t| ≤ 1}, and let x = (0, 0)
be the origin. Show that there are uncountably many different Borel
probability measures µ on the set E of extreme points of K for which
f(x) =

∫
E
f(q) dµ(q) for all linear functionals on X. Conclude that there

can be no uniqueness assertion in Choquet’s Theorem.

CHAPTER IV

NORMED LINEAR SPACES AND BANACH SPACES



66 CHAPTER IV

DEFINITION A Banach space is a real normed linear space that is a
complete metric space in the metric defined by its norm. A complex
Banach space is a complex normed linear space that is, as a real normed
linear space, a Banach space. If X is a normed linear space, x is an
element of X, and δ is a positive number, then Bδ(x) is called the ball
of radius δ around x, and is defined by Bδ(x) = {y ∈ X : ‖y − x‖ < δ}.
The closed ball Bδ(x) of radius δ around x is defined by Bδ(x) = {y ∈
X : ‖y − x‖ ≤ δ}. By Bδ and Bδ we shall mean the (open and closed)
balls of radius δ around 0.

Two normed linear spaces X and Y are isometrically isomorphic if there
exists a linear isomorphism T : X → Y which is an isometry of X onto
Y. In this case, T is called an isometric isomorphism.

If X1, . . . Xn are n normed linear spaces, we define a norm on the (alge-
braic) direct sum X =

⊕n
i=1Xi by

‖(x1, . . . , xn)‖ =
n

max
i=1
‖xi‖.

This is frequently called the max norm.

Our first order of business is to characterize those locally convex topo-
logical vector spaces whose topologies are determined by a norm, i.e.,
those locally convex topological vector spaces that are normable.

DEFINITION. Let X be a topological vector space. A subset S ⊆ X
is called bounded if for each neighborhood W of 0 there exists a positive
scalar c such that S ⊆ cW.

THEOREM 4.1. (Characterization of Normable Spaces) Let X be a
locally convex topological vector space. Then X is a normable vector
space if and only if there exists a bounded convex neighborhood of 0.

PROOF. If X is a normable topological vector space, let ‖ · ‖ be a
norm on X that determines the topology. Then B1 is clearly a bounded
convex neighborhood of 0.

Conversely, let U be a bounded convex neighborhood of 0 in X. We
may assume that U is symmetric, since, in any event, U ∩ (−U) is also
bounded and convex. Let ρ be the seminorm (Minkowski functional) on
X associated to U as in Theorem 3.6. We show first that ρ is actually a
norm.

Thus, let x 6= 0 be given, and choose a convex neighborhood V of 0 such
that x /∈ V. Note that, if tx ∈ V, then |t| < 1. Choose c > 0 so that



NORMED LINEAR SPACES AND BANACH SPACES 67

U ⊆ cV, and note that if tx ∈ U, then tx ∈ cV, whence |t| < c. Therefore,
recalling the definition of ρ(x),

ρ(x) =
1

supt>0,tx∈U t
,

we see that ρ(x) ≥ 1/c > 0, showing that ρ is a norm.
We must show finally that the given topology agrees with the one de-
fined by the norm ρ. Since, by Theorem 3.6, ρ is continuous, it fol-
lows immediately that Bε = ρ−1(−∞, ε) is open in the given topol-
ogy, showing that the topology defined by the norm is contained in the
given topology. Conversely, if V is an open subset of the given topol-
ogy and x ∈ V, let W be a neighborhood of 0 such that x + W ⊆ V.
Choose c > 0 so that U ⊆ cW. Again using Theorem 3.6, we see that
B1 = ρ−1(−∞, 1) ⊆ U ⊆ cW, whence B1/c = ρ−1(−∞, (1/c)) ⊆ W, and
x+B1/c ⊆ V. This shows that V is open in the topology defined by the
norm. Q.E.D.

EXERCISE 4.1. (a) (Characterization of Banach Spaces) Let X be a
normed linear space. Show that X is a Banach space if and only if every
absolutely summable infinite series in X is summable in X. (An infinite
series

∑
xn is absolutely summable in X if

∑
‖xn‖ < ∞.) HINT: If

{yn} is a Cauchy sequence in X, choose a subsequence {ynk} for which
‖ynk − ynk+1

‖ < 2−k.
(b) Use part a to verify that all the spaces Lp(R), 1 ≤ p ≤ ∞, are
Banach spaces, as is C0(∆).
(c) If c0 is the set of all sequences {an}, n = 0, 1, . . . , satisfying lim an =
0, and if we define ‖{an}‖ = max |an|, show that c0 is a Banach space.
(d) Let X be the set of all continuous functions on [0, 1], which are
differentiable on (0, 1). Set ‖f‖ = supx∈[0,1] |f(x)|. Show that X is a
normed linear space but is not a Banach space.
(e) If X1, . . . , Xn are normed linear spaces, show that the direct sum⊕n

i=1Xi, equipped with the max norm, is a normed linear space. If each
Xi is a Banach space, show that

⊕n
i=1Xi is a Banach space.

(f) Let X1, . . . , Xn be normed linear spaces. Let x = (x1, . . . , xn) be in⊕n
i=1Xi, and define ‖x‖1 and ‖x‖2 by

‖x‖1 =

n∑
i=1

‖xi‖,

and

‖x‖2 =

√√√√ n∑
i=1

‖xi‖2.
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Prove that both ‖ · ‖1 and ‖ · ‖2 are norms on
⊕n

i=1Xi. Show further
that

‖x‖ ≤ ‖x‖2 ≤ ‖x‖1 ≤ n‖x‖.

(g) Let {Xi} be an infinite sequence of nontrivial normed linear spaces.
Prove that the direct product

∏
Xi is a metrizable, locally convex, topo-

logical vector space, but that there is no definition of a norm on
∏
Xi

that defines its topology. HINT: In a normed linear space, given any
bounded set A and any neighborhood U of 0, there exists a number t
such that A ⊆ tU.

EXERCISE 4.2. (Schwartz Space S is Not Normable) Let S denote
Schwartz space, and let {ρn} be the seminorms (norms) that define the
topology on S :

ρn(f) = sup
x

max
0≤i,j≤n

|xjf (i)(x)|.

(a) If V is a neighborhood of 0 in S, show that there exists an integer n
and an ε > 0 such that ρ−1

n (−∞, ε) ⊆ V ; i.e., if ρn(h) < ε, then h ∈ V.
(b) Given the nonnegative integer n from part a, show that there exists
a C∞ function g such that g(x) = 1/xn+1/2 for x ≥ 2. Note that

sup
x

max
0≤i,j≤n

|xjg(i)(x)| <∞.

(Of course, g is not an element of S.)
(c) Let n be the integer from part a and let f be a C∞ function with
compact support such that |f(x)| ≤ 1 for all x and f(0) = 1. For each
integer M > 0, define gM (x) = g(x)f(x −M), where g is the function
from part b. Show that each gM ∈ S and that there exists a positive
constant c such that ρn(gM ) < c for all M ; i.e., (ε/c)gM ∈ V for all M.

Further, show that for each M ≥ 2, ρn+1(gM ) ≥
√
M.

(d) Show that the neighborhood V of 0 from part a is not bounded in S.
HINT: Define W to be the neighborhood ρ−1

n+1(−∞, 1), and show that
no multiple of W contains V.
(e) Conclude that S is not normable.

THEOREM 4.2. (Subspaces and Quotient Spaces) Let X be a Banach
space and let M be a closed linear subspace.

(1) M is a Banach space with respect to the restriction to M of the
norm on X.

(2) If x+M is a coset of M, and if ‖x+M‖ is defined by

‖x+M‖ = inf
y∈x+M

‖y‖ = inf
m∈M

‖x+m‖,
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then the quotient space X/M is a Banach space with respect to
this definition of norm.

(3) The quotient topology on X/M agrees with the topology deter-
mined by the norm on X/M defined in part 2.

PROOF. M is certainly a normed linear space with respect to the
restricted norm. Since it is a closed subspace of the complete metric
space X, it is itself a complete metric space, and this proves part 1.
We leave it to the exercise that follows to show that the given definition
of ‖x + M‖ does make X/M a normed linear space. Let us show that
this metric space is complete. Thus let {xn +M} be a Cauchy sequence
in X/M. It will suffice to show that some subsequence has a limit in
X/M. We may replace this Cauchy sequence by a subsequence for which

‖(xn+1 +M)− (xn +M)‖ = ‖(xn+1 − xn) +M‖ < 2−(n+1).

Then, we may choose elements {yn} of X such that for each n ≥ 1 we
have

yn ∈ (xn+1 − xn) +M,

and ‖yn‖ < 2−(n+1). We choose y0 to be any element of x1 + M. If

zN =
∑N
n=0 yn, then it follows routinely that {zN} is a Cauchy sequence

in X, whence has a limit z. We claim that z + M is the limit of the
sequence {xN +M}. Indeed,

‖(z +M)− (xN +M)‖ = ‖(z − xN ) +M‖
= inf
y∈(z−xN )+M

‖y‖.

Since z =
∑∞
n=0 yn, and since

∑N−1
n=0 yn ∈ xN + M, It follows that∑∞

n=N yn ∈ (z − xN ) +M. Therefore,

‖(z +M)− (xN +M)‖ ≤ ‖
∞∑
n=N

yn‖

≤
∞∑
n=N

2−(n+1)

= 2−N ,

completing the proof of part 2.
We leave part 3 to the exercise that follows.
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EXERCISE 4.3. Let X and M be as in the preceding theorem.
(a) Verify that the definition of ‖x+M‖, given in the preceding theorem,
makes X/M into a normed linear space.
(b) Prove that the quotient topology on X/M agrees with the topology
determined by the norm on X/M.
(c) Suppose X is a vector space, ρ is a seminorm on X, and M = {x :
ρ(x) = 0}. Prove that M is a subspace of X. Define p on X/M by

p(x+M) = inf
m∈M

ρ(x+m).

Show that p is a norm on the quotient space X/M.

EXERCISE 4.4. (a) Suppose X and Y are topologically isomorphic
normed linear spaces, and let S denote a linear isomorphism of X onto
Y that is a homeomorphism. Prove that there exist positive constants
C1 and C2 such that

‖x‖ ≤ C1‖S(x)‖

and
‖S(x)‖ ≤ C2‖x‖

for all x ∈ X. Deduce that, if two norms ‖ · ‖1 and ‖ · ‖2 determine
identical topologies on a vector space X, then there exist constants C1

and C2 such that
‖x‖1 ≤ C1‖x‖2 ≤ C2‖x‖1

for all x ∈ X.
(b) Suppose S is a linear transformation of a normed linear space X into
a topological vector space Y. Assume that S(B1) contains a neighbor-
hood U of 0 in Y. Prove that S is an open map of X onto Y.

We come next to one of the important applications of the Baire category
theorem in functional analysis.

THEOREM 4.3. (Isomorphism Theorem) Suppose S is a continuous
linear isomorphism of a Banach space X onto a Banach space Y. Then
S−1 is continuous, and X and Y are topologically isomorphic.

PROOF. For each positive integer n, let An be the closure in Y of
S(Bn). Then, since S is onto, Y = ∪An. Because Y is a complete metric
space, it follows from the Baire category theorem that some An, say
AN , must have nonempty interior. Therefore, let y0 ∈ Y and ε > 0
be such that Bε(y0) ⊂ AN . Let x0 ∈ X be the unique element for
which S(x0) = y0, and let k be an integer larger than ‖x0‖. Then AN+k
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contains AN − y0, so that the closed set AN+k contains Bε(0). This
implies that if w ∈ Y satisfies ‖w‖ ≤ ε, and if δ is any positive number,
then there exists an x ∈ X for which ‖S(x)−w‖ < δ and ‖x‖ ≤ N + k.
Write M = (N + k)/ε. It follows then by scaling that, given any w ∈ Y
and any δ > 0, there exists an x ∈ X such that ‖S(x) − w‖ < δ and
‖x‖ ≤M‖w‖. We will use the existence of such an x recursively below.
We now complete the proof by showing that

‖S−1(w)‖ ≤ 2M‖w‖
for all w ∈ Y, which will imply that S−1 is continuous. Thus, let w ∈ Y
be given. We construct sequences {xn}, {wn} and {δn} as follows: Set
w1 = w, δ1 = ‖w‖/2, and choose x1 so that ‖w1 − S(x1)‖ < δ1 and
‖x1‖ ≤ M‖w1‖. Next, set w2 = w1 − S(x1), δ2 = ‖w‖/4, and choose
x2 such that ‖w2 − S(x2)‖ < δ2 and ‖x2‖ ≤ M‖w2‖ ≤ (M/2)‖w‖.
Continuing inductively, we construct the sequences {wn}, {δn} and {xn}
so that

wn = wn−1 − S(xn−1),

δn = ‖w‖/2n,
and xn so that

‖wn − S(xn)‖ < δn

and
‖xn‖ ≤M‖wn‖ < (M/2n−1)‖w‖.

It follows that the infinite series
∑
xn converges in X, its sequence of

partial sums being a Cauchy sequence, to an element x and that ‖x‖ ≤
2M‖w‖. Also, wn = w −

∑n−1
i=1 S(xi). So, since S is continuous and

0 = limwn, we have that S(x) = S(
∑∞
n=1 xn) =

∑∞
n=1 S(xn) = w.

Finally, for any w ∈ Y, we have that

‖S−1(w)‖ = ‖x‖ ≤ 2M‖w‖,
and the proof is complete.

THEOREM 4.4. (Open Mapping Theorem) Let T be a continuous
linear transformation of a Banach space X onto a Banach space Y. Then
T is an open map.

PROOF. Since T is continuous, its kernel M is a closed linear subspace
of X. Let S be the unique linear transformation of X/M onto Y satisfy-
ing T = S ◦ π, where π denotes the natural map of X onto X/M. Then,
by Theorems 3.4 and 4.2, S is a continuous isomorphism of the Banach
space X/M onto the Banach space Y. Hence, S is an open map, whence
T is an open map.
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THEOREM 4.5. (Closed Graph Theorem) Suppose T is a linear trans-
formation of a Banach space X into a Banach space Y, and assume
that the graph G of T is a closed subset of the product Banach space
X × Y = X ⊕ Y. Then T is continuous.

PROOF. Since the graph G is a closed linear subspace of the Banach
space X ⊕ Y, it is itself a Banach space in the restricted norm (max
norm) from X⊕Y. The map S from G to X, defined by S(x, T (x)) = x,
is therefore a norm-decreasing isomorphism of G onto X. Hence S−1 is
continuous by the Isomorphism Theorem. The linear transformation P
of X ⊕ Y into Y, defined by P (x, y) = y, is norm-decreasing whence
continuous. Finally, T = P ◦ S−1, and so is continuous.

EXERCISE 4.5. (a) Let X be the vector space of all continuous func-
tions on [0, 1] that have uniformly continuous derivatives on (0, 1). Define
a norm on X by ‖f‖ = sup0<x<1 |f(x)|+ sup0<x<1 |f ′(x)|. Let Y be the
vector space of all uniformly continuous functions on (0, 1), equipped
with the norm ‖f‖ = sup0<x<1 |f(x)|. Define T : X → Y by T (f) = f ′.
Prove that X and Y are Banach spaces and that T is a continuous linear
transformation.
(b) Now let X be the vector space of all absolutely continuous functions
f on [0, 1], for which f(0) = 0 and whose derivative f ′ is in Lp (for some
fixed 1 ≤ p ≤ ∞). Define a norm on X by ‖f‖ = ‖f‖p. Let Y = Lp, and
define T : X → Y by T (f) = f ′. Prove that T is not continuous, but
that the graph of T is closed in X × Y. How does this example relate to
the preceding theorem?
(c) Prove analogous results to Theorems 4.3, 4.4, and 4.5 for locally
convex, Fréchet spaces.

DEFINITION. Let X and Y be normed linear spaces. By L(X,Y ) we
shall mean the set of all continuous linear transformations from X into
Y. We refer to elements of L(X,Y ) as operators from X to Y.
If T ∈ L(X,Y ), we define the norm of T, denoted by ‖T‖, by

‖T‖ = sup
‖x‖≤1

‖T (x)‖.

EXERCISE 4.6. Let X and Y be normed linear spaces.
(a) Let T be a linear transformation ofX into Y. Verify that T ∈ L(X,Y )
if and only if

‖T‖ = sup
‖x‖≤1

‖T (x)‖ <∞.
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(b) Let T be in L(X,Y ). Show that the norm of T is the infimum of all
numbers M for which ‖T (x)‖ ≤M‖x‖ for all x ∈ X.
(c) For each x ∈ X and T ∈ L(X,Y ), show that ‖T (x)‖ ≤ ‖T‖‖x‖.

THEOREM 4.6. Let X and Y be normed linear spaces.

(1) The set L(X,Y ) is a vector space with respect to pointwise addi-
tion and scalar multiplication. If X and Y are complex normed
linear spaces, then L(X,Y ) is a complex vector space.

(2) L(X,Y ), equipped with the norm defined above, is a normed lin-
ear space.

(3) If Y is a Banach space, then L(X,Y ) is a Banach space.

PROOF. We prove part 3 and leave parts 1 and 2 to the exercises.
Thus, suppose Y is a Banach space, and let {Tn} be a Cauchy sequence
in L(X,Y ). Then the sequence {‖Tn‖} is bounded, and we let M be a
number for which ‖Tn‖ ≤ M for all n. For each x ∈ X, we have that
‖(Tn(x)− Tm(x))‖ ≤ ‖Tn − Tm‖‖x‖, whence the sequence {Tn(x)} is a
Cauchy sequence in the complete metric space Y. Hence there exists an
element T (x) ∈ Y such that T (x) = limTn(x). This mapping T, being
the pointwise limit of linear transformations, is a linear transformation,
and it is continuous, since ‖T (x)‖ = lim ‖Tn(x)‖ ≤M‖x‖. Consequently,
T is an element of L(X,Y ).
We must show finally that T is the limit in L(X,Y ) of the sequence {Tn}.
To do this, let ε > 0 be given, and choose anN such that ‖Tn−Tm‖ < ε/2
if n,m ≥ N. If x ∈ X and ‖x‖ ≤ 1, then

‖T (x)− Tn(x)‖ ≤ lim sup
m

‖T (x)− Tm(x)‖+ lim sup
m

‖Tm(x)− Tn(x)‖

≤ 0 + lim sup
m

‖Tm − Tn‖‖x‖

≤ ε/2,

whenever n ≥ N. Since this is true for an arbitrary x for which ‖x‖ ≤ 1,
it follows that

‖T − Tn‖ ≤ ε/2 < ε

whenever n ≥ N, as desired.

EXERCISE 4.7. Prove parts 1 and 2 of Theorem 4.6.

The next theorem gives another application to functional analysis of the
Baire category theorem.
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THEOREM 4.7. (Uniform Boundedness Principle) Let X be a Banach
space, let Y be a normed linear space, and suppose {Tn} is a sequence of
elements in L(X,Y ). Assume that, for each x ∈ X, the sequence {Tn(x)}
is bounded in Y. (That is, the sequence {Tn} is pointwise bounded.)
Then there exists a positive constant M such that ‖Tn‖ ≤ M for all n.
(That is, the sequence {Tn} is uniformly bounded.)

PROOF. For each positive integer j, let Aj be the set of all x ∈ X such

that ‖Tn(x)‖ ≤ j for all n. Then each Aj is closed (Aj = ∩nT−1
n (Bj)),

and X = ∪Aj . By the Baire category theorem, some Aj , say AJ , has
nonempty interior. Let ε > 0 and x0 ∈ X be such that AJ contains
Bε(x0). It follows immediately that AJ−x0 ⊆ A2J , from which it follows
that A2J contains Bε. Hence, if ‖z‖ < ε, then ‖Tn(z)‖ ≤ 2J for all n.
Now, given a nonzero x ∈ X, we write z = (ε/2‖x‖)x. So, for any n,

‖Tn(x)‖ = (2‖x‖/ε)‖Tn(z)‖
≤ (2‖x‖/ε)(2J)

= M‖x‖,

where M = 4J/ε. It follows then that ‖Tn‖ ≤M for all n, as desired.

THEOREM 4.8. Let X be a Banach space, let Y be a normed linear
space, let {Tn} be a sequence of elements of L(X,Y ), and suppose that
{Tn} converges pointwise to a function T : X → Y. Then T is a con-
tinuous linear transformation of X into Y ; i.e., the pointwise limit of a
sequence of continuous linear transformations from a Banach space into
a normed linear space is continuous and linear.

PROOF. It is immediate that the pointwise limit (when it exists) of a
sequence of linear transformations is again linear. Since any convergent
sequence in Y, e.g., {Tn(x)}, is bounded, it follows from the preceding
theorem that there exists an M so that ‖Tn‖ ≤ M for all n, whence
‖Tn(x)‖ ≤ M‖x‖ for all n and all x ∈ X. Therefore, ‖T (x)‖ ≤ M‖x‖
for all x, and this implies that T is continuous.

EXERCISE 4.8. (a) Extend the Uniform Boundedness Principle from
a sequence to a set S of elements of L(X,Y ).
(b) Restate the Uniform Boundedness Principle for a sequence {fn} of
continuous linear functionals, i.e., for a sequence in L(X,R) or L(X,C).
(c) Let cc denote the vector space of all sequences {aj}, j = 1, 2, . . .
that are eventually 0, and define a norm on cc by

‖{aj}‖ = max |aj |.
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Define a linear functional fn on cc by fn({aj}) = nan. Prove that the se-
quence {fn} is a sequence of continuous linear functionals that is point-
wise bounded but not uniformly bounded in norm. Why doesn’t this
contradict the Uniform Boundedness Principle?
(d) Let cc be as in part c. Define a sequence {fn} of linear functionals
on cc by fn({aj}) =

∑n
j=1 aj . Show that {fn} is a sequence of continu-

ous linear functionals that converges pointwise to a discontinuous linear
functional. Why doesn’t this contradict Theorem 4.8?
(e) Let c0 denote the Banach space of sequences a0, a1, . . . for which
lim an = 0, where the norm on c0 is given by

‖{an}‖ = max |an|.

If α = {n1 < n2 < . . . < nk} is a finite set of positive integers, define fα
on c0 by

fα({aj}) = fn1,... ,nk({aj}) = n1ank .

Show that each fα is a continuous linear functional on c0.
(f) Let D denote the set consisting of all the finite sets α = {n1 < n2 <
. . . < nk} of positive integers. Using inclusion as the partial ordering on
D, show that D is a directed set, and let {fα} be the corresponding net
of linear functionals, as defined in part e, on c0. Show that limα fα = 0.
Show also that the net {fα} is not uniformly bounded in norm. Explain
why this does not contradict part a of this exercise.

DEFINITION. A Banach algebra is a Banach space A on which there
is also defined a binary operation × of multiplication that is associative,
(left and right) distributive over addition, satisfies

λ(x× y) = (λx)× y = x× (λy)

for all scalars λ and all x, y ∈ A, and for which ‖xy‖ ≤ ‖x‖‖y‖ for all
x, y ∈ A.

EXERCISE 4.9. Let X be a Banach space. Using composition of
transformations as a multiplication, show that L(X,X) is a Banach
algebra.

EXERCISE 4.10. Let X be the Banach space R2 with respect to the
usual norm

‖x‖ = ‖(x1, x2)‖ =
√
x2

1 + x2
2,
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and let (1, 0) and (0, 1) be the standard basis for X. Let T be an element

of L(X,X), and represent T by a 2×2 matrix
(
a b

c d

)
. Compute the norm

of T in terms of a, b, c, d. Can you do the same for X = R3?

EXERCISE 4.11. Let X be a normed linear space, let Y be a dense
subspace of X, and let Z be a Banach space.
(a) If T ∈ L(Y,Z), show that there exists a unique element T ′ ∈ L(X,Z)
such that the restriction of T ′ to Y is T. That is, T has a unique con-
tinuous extension to all of X.
(b) Show that the map T → T ′, of part a, is an isometric isomorphism
of L(Y, Z) onto L(X,Z).
(c) Suppose {Tn} is a uniformly bounded sequence of elements of L(X,Z).
Suppose that the sequence {Tn(y)} converges for every y ∈ Y. Show that
the sequence {Tn(x)} converges for every x ∈ X.

EXERCISE 4.12. Let X be a normed linear space, and let X denote
the completion of the metric space X (e.g., the space of equivalence
classes of Cauchy sequences in X). Show that X is in a natural way a
Banach space with X isometrically imbedded as a dense subspace.

THEOREM 4.9. (Hahn-Banach Theorem, Normed Linear Space Ver-
sion) Let Y be a subspace of a normed linear space X. Suppose f is a
continuous linear functional on Y ; i.e., f ∈ L(Y,R). Then there exists
a continuous linear functional g on X, i.e., an element of L(X,R), such
that

(1) g is an extension of f.
(2) ‖g‖ = ‖f‖.

PROOF. If ρ is defined on X by ρ(x) = ‖f‖‖x‖, then ρ is a seminorm
on X. Clearly,

f(y) ≤ |f(y)| ≤ ‖f‖‖y‖ = ρ(y)

for all y ∈ Y. By the seminorm version of the Hahn-Banach Theorem,
there exists a linear functional g on X, which is an extension of f, such
that g(x) ≤ ρ(x) = ‖f‖‖x‖, for all x ∈ X, and this implies that g is
continuous, and ‖g‖ ≤ ‖f‖. Obviously ‖g‖ ≥ ‖f‖ since g is an extension
of f.

EXERCISE 4.13. (a) Let X be a normed linear space and let x ∈
X. Show that ‖x‖ = supf f(x), where the supremum is taken over all
continuous linear functionals f for which ‖f‖ ≤ 1. Show, in fact, that
this supremum is actually attained.
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(b) Use part a to derive the integral form of Minkowski’s inequality. That
is, if (X,µ) is a σ-finite measure space, and F (x, y) is a µ×µ-measurable
function on X ×X, then

(

∫
|
∫
F (x, y) dy|p dx)1/p ≤

∫
(

∫
|F (x, y)|p dx)1/p dy,

where 1 ≤ p <∞.
(c) Let 1 ≤ p <∞, and let X be the complex Banach space Lp(R). Let

p′ be such that 1/p+ 1/p′ = 1, and let D be a dense subspace of Lp
′
(R).

If f ∈ X, show that

‖f‖p = sup
‖g‖p′=1

|
∫
f(x)g(x) dx|.

EXERCISE 4.14. Let X and Y be normed linear spaces, and let T ∈
L(X,Y ). Prove that the norm of T is given by

‖T‖ = sup
x

sup
f
|f(T (x))|,

where the supremum is taken over all x ∈ X, ‖x‖ ≤ 1 and all f ∈ L(Y,R)
for which ‖f‖ ≤ 1.

We close this chapter with a theorem from classical analysis.

THEOREM 4.10. (Riesz Interpolation Theorem) Let D be the linear
space of all complex-valued measurable simple functions on R that have
compact support, and let T be a linear transformation of D into the
linear space M of all complex-valued measurable functions on R. Let
1 ≤ p0 < p1 <∞ be given, and suppose that:

(1) There exist numbers q0 and m0, with 1 < q0 ≤ ∞, such that
‖T (f)‖q0 ≤ m0‖f‖p0 for all f ∈ D; i.e., T has a unique extension
to a bounded operator T0 from Lp0 into Lq0 , and ‖T0‖ ≤ m0.

(2) There exist numbers q1 and m1, with 1 < q1 ≤ ∞, such that
‖T (f)‖q1 ≤ m1‖f‖p1 for all f ∈ D; i.e., T has a unique extension
to a bounded operator T1 from Lp1 into Lq1 , and ‖T1‖ ≤ m1.

Let p satisfy p0 < p < p1, and define t ∈ (0, 1) by

1/p = (1− t)/p0 + t/p1;

i.e.,

t =
1/p− 1/p0

1/p1 − 1/p0
.
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Now define q by

1/q = (1− t)/q0 + t/q1.

Then

‖T (f)‖q ≤ mp‖f‖p,

for all f ∈ D, where

mp = m1−t
0 mt

1.

Hence, T has a unique extension to a bounded operator Tp from Lp into
Lq, and ‖Tp‖ ≤ mp.

PROOF. For any 1 < r < ∞, we write r′ for the conjugate number
defined by 1/r + 1/r′ = 1. Let f ∈ D be given, and suppose that
‖f‖p = 1. If the theorem holds for all such f, it will hold for all f ∈ D.
(Why?) Because T (f) belongs to Lq0 and to Lq1 by hypothesis, it follows
that T (f) ∈ Lq, so that it is only the inequality on the norms that we
must verify. We will show that |

∫
[T (f)](y)g(y) dy| ≤ mp, whenever

g ∈ D ∩ Lq′ with ‖g‖q′ = 1. This will complete the proof (see Exercise
4.13). Thus, let g be such a function. Write f =

∑n
j=1 ajχAj and

g =
∑m
k=1 bkχBk , for {Aj} and {Bk} disjoint bounded measurable sets

and aj and bk nonzero complex numbers.

For each z ∈ C, define

α(z) = (1− z)/p0 + z/p1

and

β(z) = (1− z)/q′0 + z/q′1.

Note that α(t) = 1/p and β(t) = 1/q′.

We extend the definition of the signum function to the complex plane
as follows: If λ is a nonzero complex number, define sgn(λ) to be λ/|λ|.
For each complex z, define the simple functions

fz =

n∑
j=1

sgn(aj)|aj |α(z)/α(t)χAj

and

gz =

m∑
k=1

sgn(bk)|bk|β(z)/β(t)χBk ,
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and finally put

F (z) =

∫
[T (fz)](y)gz(y) dy

=

n∑
j=1

m∑
k=1

sgn(aj)sgn(bk)|aj |pα(z)|bk|q
′β(z)

∫
[T (χAj )](y)χBk(y) dy

=

n∑
j=1

m∑
k=1

cjke
djkz,

where the cjk’s are complex numbers and the djk’s are real numbers.
Observe that F is an entire function of the complex variable z, and
that it is bounded on the closed strip 0 ≤ <z ≤ 1. Note also that∫

[T (f)](y)g(y) dy, the quantity we wish to estimate, is precisely F (t).
Observe next that

sup
s∈R
|F (is)| = sup

s
|
∫

[T (fis)](y)gis(y) dy|

≤ sup
s

(

∫
|[T (fis)](y)|q0 dy)1/q0(

∫
|gis(y)|q

′
0 dy)1/q′0

≤ sup
s
m0‖fis‖p0‖gis‖q′0

= sup
s
m0(

∫ ∑
j

|(|aj |p0α(is)/α(t))|χAj (y) dy)1/p0

× (

∫ ∑
k

|(|bk|q
′
0β(is)/β(t))|χBk(y) dy)1/q′0

= m0 sup
s

∫ ∑
j

|aj |pχAj (y) dy)1/p0

× (

∫ ∑
k

|bk|q
′
χBk(y) dy)1/q′0

= m0‖f‖p/p0p ‖g‖q
′/q′0
q′

= m0.

By a similar calculation, we see that

sup
s∈R
|F (1 + is)| ≤ m1.

The proof of the theorem is then completed by appealing to the lemma
from complex variables that follows.
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LEMMA. Suppose F is a complex-valued function that is bounded and
continuous on the closed strip 0 ≤ <z ≤ 1 and analytic on the open strip
0 < <z < 1. Assume that m0 and m1 are real numbers satisfying

m0 ≥ sup
s∈R
|F (is)|

and
m1 ≥ sup

s∈R
|F (1 + is)|.

Then
sup
s∈R
|F (t+ is)| ≤ m1−t

0 mt
1

for all 0 ≤ t ≤ 1.

PROOF. We may assume that m0 and m1 are positive. Define a func-
tion G on the strip 0 ≤ <z ≤ 1 by

G(z) = F (z)/m1−z
0 mz

1.

Then G is continuous and bounded on this strip and is analytic on the
open strip 0 < <z < 1. It will suffice to prove that

sup
s∈R
|G(t+ is)| ≤ 1.

For each positive integer n, define Gn(z) = G(z)ez
2/n. Then each func-

tion Gn is continuous and bounded on the strip 0 ≤ <z ≤ 1 and analytic
on the open strip 0 < <z < 1. Also, G(z) = limGn(z) for all z in the
strip. It will suffice then to show that lim |Gn(z)| ≤ 1 for each z for
which 0 < <z < 1. Fix z0 = x0 + iy0 in the open strip, and choose

a Y > |y0| such that |Gn(z)| = |Gn(x + iy)| = |G(z)|e(x2−y2)/n < 1
whenever |y| ≥ Y. Let Γ be the rectangular contour determined by the
four points (0,−Y ), (1,−Y ), (1, Y ), and (0, Y ). Then, by the Maximum
Modulus Theorem, we have

|Gn(z0)| ≤ max
z∈Γ
|Gn(z)|

≤ max(1, sup
s∈R
|Gn(1 + is)| , 1, sup

s∈R
|Gn(is)|)

= e1/n,

proving that lim |Gn(z0)| ≤ 1, and this completes the proof of the lemma.
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EXERCISE 4.15. Verify that the Riesz Interpolation Theorem holds
with R replaced by any regular σ-finite measure space.

CHAPTER V

DUAL SPACES

DEFINITION Let (X, T ) be a (real) locally convex topological vector
space. By the dual space X∗, or (X, T )∗, of X we mean the set of all
continuous linear functionals on X.

By the weak topology on X we mean the weakest topology W on X for
which each f ∈ X∗ is continuous. In this context, the topology T is
called the strong topology or original topology on X.

EXERCISE 5.1. (a) Prove that X∗ is a vector space under pointwise
operations.

(b) Show that W ⊆ T . Show also that (X,W) is a locally convex topo-
logical vector space.

(c) Show that if X is infinite dimensional then every weak neighborhood
of 0 contains a nontrivial subspace M of X. HINT: If V = ∩ni=1f

−1
i (Ui),

and if M = ∩ni=1 ker(fi), then M ⊆ V.
(d) Show that a linear functional f on X is strongly continuous if and
only if it is weakly continuous; i.e., prove that (X, T )∗ = (X,W)∗.

(e) Prove that X is finite dimensional if and only if X∗ is finite dimen-
sional, in which case X and X∗ have the same dimension.



DUAL SPACES 83

EXERCISE 5.2. (a) For 1 < p <∞, let X be the normed linear space

Lp(R). For each g ∈ Lp′(R) (1/p + 1/p′ = 1), define a linear functional
φg on X by

φg(f) =

∫
f(x)g(x) dx.

Prove that the map g → φg is a vector space isomorphism of Lp
′
(R)

onto X∗.
(b) By analogy to part a, show that L∞(R) is isomorphic as a vector
space to L1(R)∗.
(c) Let c0 be the normed linear space of real sequences {a0, a1, . . . } for
which lim an = 0 with respect to the norm defined by ‖{an}‖ = max |an|.
Show that c∗0 is algebraically isomorphic to l1, where l1 is the linear space
of all absolutely summable sequences {b0, b1, . . . }. HINT: If f ∈ c∗0,
define bn to be f(en), where en is the element of c0 that is 1 in the nth
position and 0 elsewhere.
(d) In each of parts a through c, show that the weak and strong topolo-
gies are different. Exhibit, in fact, nets (sequences) which converge
weakly but not strongly.
(e) Let X = L∞(R). For each function g ∈ L1(R), define φg on X by
φg(f) =

∫
fg. Show that φg is an element of X∗. Next, for each finite

Borel measure µ on R, define φµ on X by φµ(f) =
∫
f dµ. Show that

φµ is an element of X∗. Conclude that, in this sense, L1(R) is a proper
subset of (L∞)∗.
(f) Let ∆ be a second countable locally compact Hausdorff space, and
let X be the normed linear space C0(∆) equipped with the supremum
norm. Identify X∗.
(g) Let X1, . . . , Xn be locally convex topological vector spaces. If X =⊕n

i=1Xi, show that X∗ is isomorphic to
⊕n

i=1X
∗
i .

THEOREM 5.1. (Relation between the Weak and Strong Topologies)
Let (X, T ) be a locally convex topological vector space.

(1) Let A be a convex subset of X. Then A is strongly closed if and
only if it is weakly closed.

(2) If A is a convex subset of X, then the weak closure of A equals
the strong closure of A.

(3) If {xα} is a net in X that converges weakly to an element x,
then there exists a net {yβ}, for which each yβ is a (finite) con-
vex combination of some of the xα’s, such that {yβ} converges
strongly to x. If T is metrizable, then the net {yβ} can be chosen
to be a sequence.
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PROOF. If A is a weakly closed subset, then it is strongly closed since
W ⊆ T . Conversely, suppose that A is a strongly closed convex set and
let x ∈ X be an element not in A. Then, by the Separation Theorem,
there exists a continuous linear functional φ on X, and a real number
s, such that φ(y) ≤ s for all y ∈ A and φ(x) > s. But then the set
φ−1(s,∞) is a weakly open subset of X that contains x and is disjoint
from A, proving that A is weakly closed, as desired.
If A is a convex subset of X, and if B is the weak closure and C is the
strong closure, then clearly A ⊆ C ⊆ B. On the other hand, C is convex
and strongly closed, hence C is weakly closed. Therefore, B = C, and
part 2 is proved.
Now let {xα} be a weakly convergent net in X, and let A be the convex
hull of the xα’s. If x = limW xα, then x belongs to the weak closure of
A, whence to the strong closure of A. Let {yβ} be a net (sequence if T
is metrizable) of elements of A that converges strongly to x. Then each
yβ is a finite convex combination of certain of the xα’s, and part 3 is
proved.

DEFINITION. Let X be a locally convex topological vector space, and
let X∗ be its dual space. For each x ∈ X, define a function x̂ on X∗

by x̂(f) = f(x). By the weak∗ topology on X∗, we mean the weakest
topology W∗ on X∗ for which each function x̂, for x ∈ X, is continuous.

THEOREM 5.2. (Duality Theorem) Let (X, T ) be a locally convex
topological vector space, and let X∗ be its dual space. Then:

(1) Each function x̂ is a linear functional on X∗.
(2) (X∗,W∗) is a locally convex topological vector space. (Each x̂

is continuous on (X∗,W∗).)
(3) If φ is a continuous linear functional on (X∗,W∗), then there

exists an x ∈ X such that φ = x̂; i.e., the map x→ x̂ is a linear
transformation of X onto (X∗,W∗)∗.

(4) The map x → x̂ is a topological isomorphism between (X,W)
and ((X∗,W∗)∗,W∗).

PROOF. If x ∈ X, then

x̂(af + bg) = (af + bg)(x)

= af(x) + bg(x)

= ax̂(f) + bx̂(g),

proving part 1.
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By the definition of the topology W∗, we see that each x̂ is continuous.
Also, the set of all functions {x̂} separate the points of X∗, for if f, g ∈
X∗, with f 6= g, then f−g is not the 0 functional. Hence there exists an
x ∈ X for which (f−g)(x), which is x̂(f)− x̂(g), is not 0. Therefore, the
weak topology on X∗, generated by the x̂’s, is a locally convex topology.
See part c of Exercise 3.11.

Now suppose φ is a continuous linear functional on (X∗,W∗), and let

M be the kernel of φ. If M = X∗, then φ is the 0 functional, which is 0̂.
Assume then that there exists an f ∈ X∗, for which φ(f) = 1, whence
f /∈ M. Since φ is continuous, M is a closed subset in X∗, and there
exists a weak* neighborhood V of f which is disjoint from M. Therefore,
by the definition of the topology W∗, there exists a finite set x1, . . . , xn
of elements of X and a finite set ε1, . . . , εn of positive real numbers such
that

V = {g ∈ X∗ : |x̂i(g)− x̂i(f)| < εi, 1 ≤ i ≤ n}.

Define a map R : X∗ → Rn by

R(g) = (x̂1(g), . . . , x̂n(g)).

Clearly R is a continuous linear transformation of X∗ into Rn. Now
R(f) /∈ R(M), for otherwise there would exist a g ∈M such that x̂i(g) =
x̂i(f) for all i. But this would imply that g ∈ V ∩ M, contradicting
the choice of the neighborhood V. Also, R(M) is a subspace of Rn, so
contains 0, implying then that R(f) 6= 0. Suppose R(M) is of dimension
j < n. Let α1, . . . , αn be a basis for Rn, such that α1 = R(f) and
αi ∈ R(M) for 2 ≤ i ≤ j + 1. We define a linear functional p on Rn by
setting p(α1) = 1 and p(αi) = 0 for 2 ≤ i ≤ n.
Now, p ◦ R is a continuous linear functional on X∗. If g ∈ M, then
(p ◦ R)(g) = p(R(g)) = 0, since R(g) ∈ R(M), which is in the span of
α2, . . . , αn. Also, (p◦R)(f) = p(R(f)) = 1, since R(f) = α1. So, p◦R is
a linear functional on X∗ which has the same kernel M as φ and agrees
with φ on f. Therefore, φ− p ◦R = 0 everywhere, and φ = p ◦R.
Let e1, . . . , en denote the standard basis for Rn, and let A be the n ×
n matrix relating the bases e1, . . . , en and α1, . . . , αn. That is, ei =
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j=1Aijαj . Then, if α = (a1, . . . , an) =

∑n
i=1 aiei, we have

p(α) =

n∑
i=1

aip(ei)

=

n∑
i=1

ai

n∑
j=1

Aijp(αj)

=

n∑
i=1

aiAi1.

Therefore,
φ(g) = p ◦R(g)

= p(R(g))

= p((x̂1(g), . . . , x̂n(g)))

=
n∑
i=1

Ai1x̂i(g)

= (

n∑
i=1

Ai1x̂i)(g)

=

n̂∑
i=1

Ai1xi(g)

= x̂(g),

where x =
∑n
i=1Ai1xi, and this proves part 3.

We leave the proof of part 4 to the exercises.

EXERCISE 5.3. Prove part 4 of the preceding theorem. HINT: Show
that a net {xα} converges in the weak topology of X to an element x if
and only if the net {x̂α} converges in the weak* topology of (X∗,W∗)∗
to the element x̂.

DEFINITION. If T is a continuous linear transformation from a lo-
cally convex topological vector space X into a locally convex topological
vector space Y, we define the transpose T ∗ of T to be the function from
Y ∗ into X∗ given by

[T ∗(f)](x) = f(T (x)).

EXERCISE 5.4. If T is a continuous linear transformation from a lo-
cally convex topological vector space X into a locally convex topological
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vector space Y, show that the transpose T ∗ is a continuous linear trans-
formation from (Y ∗,W∗) into (X∗,W∗).

EXERCISE 5.5. (Continuous Linear Functionals on Dense Subspaces,
Part 1) Let X be a locally convex topological vector space, and let Y be
a dense subspace of X.
(a) Prove that Y is a locally convex topological vector space in the
relative topology.
(b) Let f be a continuous linear functional on Y, and let x be an element
of X that is not in Y. Let {yα} be a net of elements of Y for which
x = lim yα. Prove that the net {f(yα)} is a Cauchy net in R, and hence
converges.
(c) Let f be in Y ∗. Show that f has a unique extension to a continuous
linear functional f ′ on X. HINT: Show that f ′ is well-defined and is
bounded on a neighborhood of 0.
(d) Conclude that the map f → f ′ of part c is an isomorphism of the
vector space Y ∗ onto the vector space X∗. Compare with Exercise 4.11,
part a.

EXERCISE 5.6. (Continuous Linear Functionals on Dense Subspaces,
Part 2) Let Y be a dense subspace of a locally convex topological vector
space X, and equip Y with the relative topology. If Y is a proper
subspace of X, show that the map f → f ′ of part c of the preceding
exercise is not a topological isomorphism of (Y ∗,W∗) and (X∗,W∗).
HINT: Use Theorem 5.2. Compare with part b of Exercise 4.11.

EXERCISE 5.7. (Weak Topologies and Metrizability) Let X be a lo-
cally convex topological vector space, and let X∗ be its dual space.
(a) Show that the weak topology on X is the weakest topology for which
each fα is continuous, where the fα’s form a basis for the vector space
X∗. Similarly, show that the weak* topology on X∗ is the weakest topol-
ogy for which each x̂α is continuous, where the xα’s form a basis for the
vector space X.
(b) Show that the weak* topology on X∗ is metrizable if and only if, as a
vector space, X has a countable basis. Show also that the weak topology
on X is metrizable if and only if, as a vector space, X∗ has a countable
basis. HINT: For the “only if” parts, use the fact that in a metric space
each point is the intersection of a countable sequence of neighborhoods,
whereas, if X has an uncountable basis, then the intersection of any
sequence of neighborhoods of 0 must contain a nontrivial subspace of X.
(c) Let X be the locally convex topological vector space

∏∞
n=1 R. Com-

pute X∗, and verify that it has a countable basis. HINT: Show that X∗



88 CHAPTER V

can be identified with the space of sequences {a1, a2, . . . } that are even-
tually 0. That is, as a vector space, X∗ is isomorphic to cc =

⊕∞
n=1 R.

(d) Conclude that the topological vector space X =
∏∞
n=1 R is a Fréchet

space that is not normable.

DEFINITION. Let S be Schwartz space, i.e., the countably normed
vector space of Exercise 3.10. Elements of the dual space S∗ of S are
called tempered distributions on R.

EXERCISE 5.8. (Properties of Tempered Distributions)
(a) If h is a measurable function on R, for which there exists a positive
integer n such that h(x)/(1 + |x|n) is in L1, we say that h is a tempered
function. If h is a tempered function, show that the assignment f →∫∞
−∞ h(t)f(t) dt is a tempered distribution uh. Show further that h is

integrable over any finite interval and that the function k, defined by

k(x) =
∫ x

0
h(t) dt if x ≥ 0, and by k(x) = −

∫ 0

x
h(t) dt if x ≤ 0, also is a

tempered function. Show finally that, if g and h are tempered functions
for which ug = uh, then g(x) = h(x) almost everywhere.
(b) Show that h(x) = 1/x is not a tempered function but that the
assignment

f → lim
δ→0

∫
|t|≥δ

(1/t)f(t) dt

is a tempered distribution. (Integrate by parts and use the mean value
theorem.) Show further that h(x) = 1/x2 is not a tempered function,
and also that the assignment

f → lim
δ→0

∫
|t|≥δ

(1/t2)f(t) dt

is not a tempered distribution. (In fact, this limit fails to exist in gen-
eral.) In some sense, then, 1/x can be considered to determine a tem-
pered distribution but 1/x2 cannot.
(c) If µ is a Borel measure on R, for which there exists a positive integer
n such that

∫
(1/(1 + |x|n)) dµ(x) is finite, we say that µ is a tempered

measure. If µ is a tempered measure, show that the assignment f →∫∞
−∞ f(t) dµ(t) is a tempered distribution uµ.

(d) Show that the linear functional δ, defined on S by δ(f) = f(0) (the
so-called Dirac δ-function), is a tempered distribution, and show that
δ = uµ for some tempered measure µ.
(e) Show that the linear functional δ′, defined on S by δ′(f) = −f ′(0),
is a tempered distribution, and show that δ′ is not the same as any
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tempered distribution of the form uh or uµ. HINT: Show that δ′ fails to
satisfy the dominated convergence theorem.

(f) Let u be a tempered distribution. Define a linear functional u′ on
S by u′(f) = −u(f ′). Prove that u′ is a tempered distribution. We call
u′ the distributional derivative of u. As usual, we write u(n) for the nth
distributional derivative of u. We have that

u(n)(f) = (−1)nu(f (n)).

Verify that if h is a C∞ function on R, for which both h and h′ are tem-
pered functions, then the distributional derivative (uh)′ of uh coincides
with the tempered distribution uh′ , showing that distributional differen-
tiation is a generalization of ordinary differentiation. Explain why the
minus sign is present in the definition of the distributional derivative.

(g) If h is defined by h(x) = ln(|x|), show that h is a tempered function,
that h′ is not a tempered function, but that

(uh)′(f) = lim
δ→0

∫
|t|≥δ

(1/t)f(t) dt = lim
δ→0

∫
|t|≥δ

h′(t)f(t) dt.

Moreover, compute (uh)(2) and show that it cannot be interpreted in
any way as being integration against a function.

(h) If h is a tempered function, show that there exists a tempered func-
tion k whose distributional derivative is h, i.e., u′k = uh.

(i) Suppose h is a tempered function for which the distributional deriv-
ative u′h of the tempered distribution uh is 0. Prove that there exists
a constant c such that h(x) = c for almost all x. HINT: Verify and

use the fact that, if
∫ b
a
h(x)f(x) dx = 0 for all functions f that satisfy∫ b

a
f(x) dx = 0, then h agrees with a constant function almost every-

where on [a, b].

The next result can be viewed as a kind of Riesz representation theorem
for the continuous linear functionals on S.

THEOREM 5.3. (Representing a Tempered Distribution as the De-
rivative of a Function) Let u be a tempered distribution. Then there
exists a tempered function h and a nonnegative integer N such that u is

the Nth distributional derivative u
(N)
h of the tempered distribution uh.

We say then that every tempered distribution is the Nth derivative of a
tempered function.
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PROOF. Let u ∈ S∗ be given. Recall that S is a countably normed
space, where the norms {ρn} are defined by

ρn(f) = sup
x

max
0≤i,j≤n

|xjf (i)(x)|.

We see then that ρn ≤ ρn+1 for all n. Therefore, according to part
e of Exercise 3.8, there exists an integer N and a constant M such
that |u(f)| ≤ MρN (f) for all f ∈ S. Now, for each f ∈ S, and each
nonnegative integer n, set

pn(f) = max
0≤i,j≤n

∫ ∞
−∞
|tjf (i)(t)| dt.

There exists a point x0 and integers i0 and j0 such that

ρN (f) = |xj00 f (i0)(x0)|

= |
∫ x0

−∞
j0t

j0−1f (i0)(t) + tj0f (i0+1)(t) dt|

≤
∫ ∞
−∞

j0|tj0−1f (i0)(t) + tj0f (i0+1)(t)| dt

≤ (N + 1)pN+1(f),

showing that |u(f)| ≤M(N + 1)pN+1(f) for all f ∈ S.
Let Y be the normed linear space S, equipped with the norm pN+1. Let

X =

N+1⊕
i,j=0

L1(R),

and define a map F : Y → X by

[F (f)]i,j(x) = xjf (i)(x).

Then, using the max norm on the direct sum space X, we see that F is
a linear isometry of Y into X. Moreover, the tempered distribution u is
a continuous linear functional on Y and hence determines a continuous
linear functional ũ on the subspace F (Y ) of X. By the Hahn-Banach
Theorem, there exists a continuous linear functional φ on X whose re-
striction to F (Y ) coincides with ũ.
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Now X∗ =
⊕N+1

i,j=0 L
∞(R), whence there exist L∞ functions vi,j such

that

φ(g) =

N+1∑
i=0

N+1∑
j=0

∫
gi,j(t)vi,j(t) dt

for all g = {gi,j} ∈ X. Hence, for f ∈ S, we have

u(f) = ũ(F (f))

= φ(F (f))

=

N+1∑
i=0

N+1∑
j=0

∫
[F (f)]i,j(t)vi,j(t) dt

=

N+1∑
i=0

N+1∑
j=0

∫
tjf (i)(t)vi,j(t) dt

=

N+1∑
i=0

∫
f (i)(t)(

N+1∑
j=0

tjvi,j(t)) dt

=

N+1∑
i=0

∫
f (i)(t)vi(t) dt,

where vi(t) =
∑N+1
j=0 tjvi,j(t). Clearly, each vi is a tempered function,

and we let wi be a tempered function whose (N + 1− i)th distributional
derivative is vi. (See part h of Exercise 5.8.) Then,

u(f) =

N+1∑
i=0

∫
f (i)(t)w

(N+1−i)
i (t) dt

=

N+1∑
i=0

(−1)N+1−i
∫
f (N+1)(t)wi(t) dt

=

∫
f (N+1)(t)w(t) dt,

where w(t) =
∑N+1
i=0 (−1)N+1−iwi. Hence u(f) =

∫
f (N+1)w, or

u = (−1)N+1u(N+1)
w = uh(N + 1),

where h = (−1)N+1w, and this completes the proof.
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DEFINITION. If f is a continuous linear functional on a normed linear
space X, define the norm ‖f‖ of f as in Chapter IV by

‖f‖ = sup
x∈X
‖x‖≤1

|f(x)|.

DEFINITION. If X is a normed linear space, we define the conjugate
space of X to be the dual space X∗ of X equipped with the norm defined
above.

EXERCISE 5.9. Let X be a normed linear space, and let X∗ be its
dual space. Denote by W∗ the weak* topology on X∗ and by N the
topology on X∗ defined by the norm.

(a) Show that the conjugate space X∗ of X is a Banach space.

(b) Show that, if X is infinite dimensional, then the weak topology on X
is different from the norm topology on X and that the weak* topology
on the dual space X∗ is different from the norm topology on X∗. HINT:
Use part c of Exercise 5.1. Note then that the two dual spaces (X∗,W∗)∗
and (X∗,N )∗ ≡ X∗∗ may be different.

EXERCISE 5.10. (a) Show that the vector space isomorphisms of
parts a through c of Exercise 5.2 are isometric isomorphisms.

(b) Let X be a normed linear space and let X∗ denote its conjugate
space. Let X∗∗ denote the conjugate space of the normed linear space
X∗. If x ∈ X, define x̂ on X∗ by x̂(f) = f(x). Show that x̂ ∈ X∗∗.
(c) Again let X be a normed linear space and let X∗ denote its conjugate
space. Prove that (X∗,W∗)∗ ⊆ X∗∗; i.e., show that every continuous
linear functional on (X∗,W∗) is continuous with respect to the norm
topology on X∗.

(d) Let the notation be as in part b. Prove that the map x → x̂ is
continuous from (X,W) into (X∗∗,W∗).

THEOREM 5.4. Let X be a normed linear space.

(1) If Y is a dense subspace of X, then the restriction map g → g̃ of
X∗ into Y ∗ is an isometric isomorphism of X∗ onto Y ∗.

(2) The weak* topologyW∗ on X∗ is weaker than the topology defined
by the norm on X∗.

(3) The map x → x̂ is an isometric isomorphism of the normed
linear space X into the conjugate space X∗∗ of the normed linear
space X∗.
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PROOF. That the restriction map g → g̃ is an isometric isomorphism
of X∗ onto Y ∗ follows from part c of Exercise 5.5 and the definitions of
the norms.

If x ∈ X, then x̂ is a linear functional on X∗ and |x̂(f)| = |f(x)| ≤
‖x‖‖f‖, showing that x̂ is a continuous linear functional in the norm
topology of the Banach space X∗, and that ‖x̂‖ ≤ ‖x‖. Since the weak*
topology is the weakest making each x̂ continuous, it follows that W∗ is
contained in the norm topology on X∗.

Finally, given an x ∈ X, there exists by the Hahn-Banach Theorem an
f ∈ X∗ for which ‖f‖ = 1 and f(x) = ‖x‖. Therefore, x̂(f) = ‖x‖,
showing that ‖x̂‖ ≥ ‖x‖, and the proof is complete.

EXERCISE 5.11. (The Normed Linear Space of Finite Complex Mea-
sures on a Second Countable Locally Compact Hausdorff Space, Part 1)
Let ∆ be a second countable locally compact Hausdorff space, and let
M(∆) be the complex vector space of all finite complex Borel measures
on ∆. Recall that a finite complex Borel measure on ∆ is a map µ of
the σ-algebra B of Borel subsets of ∆ into C satisfying:

(1) µ(∅) = 0.
(2) If {En} is a sequence of pairwise disjoint Borel sets, then the

series
∑
µ(En) is absolutely summable and µ(∪En) =

∑
µ(En).

See Exercise 1.12.

(a) If µ ∈M(∆), show that µ can be written uniquely as µ = µ1 + iµ2,
where µ1 and µ2 are finite signed Borel measures on ∆. Show further
that each µi may be written uniquely as µi = µi1 − µi2, where each µij
is a finite positive Borel measure, and where µi1 and µi2 are mutually
singular.

(b) Let M(∆) be as in part a, and let µ be an element of M(∆). Given
a Borel set E and an ε > 0, show that there exists a compact set K and
an open set U for which K ⊆ E ⊆ U such that |µ(U −K)| < ε. HINT:
Use the fact that ∆ is σ-compact, and consider the collection of sets E
for which the desired condition holds. Show that this is a σ-algebra that
contains the open sets.

EXERCISE 5.12. (The Normed Linear Space of Finite Complex Mea-
sures on a Second Countable Locally Compact Hausdorff Space, Part 2)
Let M(∆) be as in the previous exercise, and for each µ ∈M(∆) define

‖µ‖ = sup

n∑
i=1

|µ(Ei)|,
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where the supremum is taken over all partitions E1, . . . , En of ∆ into a
finite union of pairwise disjoint Borel subsets.
(a) Show that ‖µ‖ <∞.
(b) Prove that M(∆) is a normed linear space with respect to the above
definition of ‖µ‖. This norm is called the total variation norm.
(c) If h is a bounded, complex-valued Borel function on ∆, and if µ ∈
M(∆), show that

|
∫
h dµ| ≤ ‖h‖∞‖µ‖.

HINT: Do this first for simple functions.
(d) For each µ ∈ M(∆), define a linear functional φµ on the complex
Banach space C0(∆) by

φµ(f) =

∫
f dµ.

Prove that the map µ → φµ is a norm-decreasing isomorphism of the
normed linear space M(∆) onto C0(∆)∗.
(e) Let µ be an element of M(∆). Prove that

‖µ‖ = sup

n∑
i=1

|µ(Ki)|,

where the supremum is taken over all n-tuples K1, . . . ,Kn of pairwise
disjoint compact subsets of ∆.
(f) Let µ be an element of M(∆), and let φµ be the element of C0(∆)∗

defined in part d. Prove that ‖φµ‖ = ‖µ‖. Conclude that M(∆) is a
Banach space with respect to the norm ‖µ‖ and that it is isometrically
isomorphic to C0(∆)∗.

EXERCISE 5.13. Let X be the normed linear space c0. See part c of
Exercise 5.2.
(a) Compute the conjugate space c∗0.
(b) Compute c∗∗0 and (c∗0,W∗)∗. Conclude that (X∗,W∗)∗ can be prop-
erly contained in X∗∗; i.e., there can exist linear functionals on X∗ that
are continuous with respect to the norm topology but not continuous
with respect to the weak* topology.

DEFINITION. A Banach space X is called reflexive if the map x→ x̂,
defined in part b of Exercise 5.10, is an (isometric) isomorphism of X
onto X∗∗. In general, X∗∗ is called the second dual or second conjugate
of X.
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EXERCISE 5.14. (Relation among the Weak, Weak*, and Norm Topolo-
gies) Let X be a normed linear space. Let N denote the topology on X∗

determined by the norm, let W denote the weak topology on the locally
convex topological vector space (X∗,N ), and let W∗ denote the weak*
topology on X∗.
(a) If X is finite dimensional, show that all three topologies are the same.
(b) If X is an infinite dimensional reflexive Banach space, show that
W∗ =W, and that W ⊂ N .
(c) If X is not reflexive, show that W∗ ⊆ W ⊂ N .
(d) Let X be a nonreflexive Banach space. Show that there exists a
subspace of X∗ which is closed in the norm topology N (whence also in
the weak topology W) but not closed in the weak* topology W∗, and
conclude then that W∗ ⊂ W. HINT: Let φ be a norm continuous linear
functional that is not weak* continuous, and examine its kernel.
(e) Suppose X is an infinite dimensional Banach space. Prove that nei-
ther (X,W) nor (X∗,W∗) is metrizable. HINT: Use the Baire Category
Theorem to show that any Banach space having a countable vector space
basis must be finite dimensional.

DEFINITION. Let X and Y be normed linear spaces, and let T be a
continuous linear transformation from X into Y. The transpose T ∗ of T
is called the adjoint of T when it is regarded as a linear transformation
from the normed linear space Y ∗ into the normed linear space X∗.

THEOREM 5.5. Let T be a continuous linear transformation from a
normed linear space X into a normed linear space Y. Then:

(1) The adjoint T ∗ of T is a continuous linear transformation of the
Banach space Y ∗ into the Banach space X∗.

(2) If the range of T is dense in Y, then T ∗ is 1-1.
(3) Suppose X is a reflexive Banach space. If T is 1-1, then the

range of T ∗ is dense in X∗.

PROOF. That T ∗ is linear is immediate. Further,

‖T ∗(f)‖ = sup
x∈X
‖x‖≤1

|[T ∗(f)](x)|

= sup
x∈X
‖x‖≤1

|f(T (x))|

≤ sup
x∈X
‖x‖≤1

‖f‖‖T (x)‖

≤ ‖f‖‖T‖,
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showing that T ∗ is continuous in the norm topologies.
If T ∗(f) = 0, then f(T (x)) = 0 for all x ∈ X. If the range of T is dense
in Y, then f(y) = 0 for all y ∈ Y ; i.e., f is the 0 functional, which implies
that T ∗ is 1-1.
Now, if the range of T ∗ is not dense in X∗, then there exists a nonzero
continuous linear functional φ on X∗ such that φ is 0 on the range of
T ∗. (Why?) Therefore, φ(T ∗(f)) = 0 for all f ∈ Y ∗. If X is reflexive,
then φ = x̂ for some nonzero element x ∈ X. Therefore, x̂(T ∗(f)) =
[T ∗(f)](x) = f(T (x)) = 0 for every f ∈ Y ∗. But then T (x) belongs to
the kernel of every element f in Y ∗, whence T (x) is the zero vector,
which implies that T is not 1-1. Q.E.D.

THEOREM 5.6. Let X be a normed linear space, and let B1 denote
the closed unit ball in the conjugate space X∗ of X; i.e., B1 = {f ∈ X∗ :
‖f‖ ≤ 1}. Then:

(1) (Alaoglu) B1 is compact in the weak* topology on X∗.
(2) If X is separable, then B1 is metrizable in the weak* topology.

PROOF. By the definition of the weak* topology, we have that B1 is
homeomorphic to a subset of the product space

∏
x∈X R. See part e of

Exercise 0.8. Indeed, the homeomorphism F is defined by

[F (f)]x = x̂(f) = f(x).

Since |f(x)| ≤ ‖x‖, for f ∈ B1, it follows in fact that

F (B1) ⊆
∏
x∈X

[−‖x‖, ‖x‖],

which is a compact topological space K. Hence, to see that B1 is compact
in the weak* topology, it will suffice to show that F (B1) is a closed subset
of K. Thus, if {fα} is a net of elements of B1, for which the net {F (fα)}
converges in K to an element k, then kx = lim[F (fα)]x = lim fα(x),
for every x; i.e., the function f on X, defined by f(x) = kx, is the
pointwise limit of a net of linear functionals. Therefore f is itself a linear
functional on X. Further, |f(x)| ≤ ‖x‖, implying that f is a continuous
linear functional on X with ‖f‖ ≤ 1, i.e., f ∈ B1. But then, the element
k ∈ K satisfies k = F (f), showing that F (B1) is closed in K, and this
proves part 1.
Now, suppose that {xn} is a countable dense subset of X. Then

K∗ =
∏
n

[−‖xn‖, ‖xn‖]



DUAL SPACES 97

is a compact metric space, and the map F ∗ : B1 → K∗, defined by

[F ∗(f)]n = f(xn),

is continuous and 1-1, whence is a homeomorphism of B1 onto a compact
metric space, and this completes the proof.

EXERCISE 5.15. (a) Prove that the closed unit ball in Lp is compact
in the weak topology, for 1 < p <∞.
(b) Show that neither the closed unit ball in L1(R) nor the closed unit
ball in c0 is compact in its weak topology (or, in fact, in any locally
convex vector space topology). HINT: Compact convex sets must have
extreme points.
(c) Show that neither L1(R) nor c0 is topologically isomorphic to the
conjugate space of any normed linear space. Conclude that not every
Banach space has a “predual.”
(d) Conclude from part c that neither L1(R) nor c0 is reflexive. Prove
this assertion directly for L1(R) using part e of Exercise 5.2.
(e) Show that the closed unit ball in an infinite dimensional normed
linear space is never compact in the norm topology.

THEOREM 5.7. (Criterion for a Banach Space to Be Reflexive) Let X
be a normed linear space, and let X∗∗ denote its second dual equipped
with the weak* topology. Then:

(1) X̂, i.e., the set of all x̂ for x ∈ X, is dense in (X∗∗,W∗).
(2) B̂1, i.e., the set of all x̂ for ‖x‖ < 1, is weak* dense in the closed

unit ball V1 of X∗∗.
(3) X is reflexive if and only if B1 is compact in the weak topology

of X.

PROOF. Suppose X̂ is a proper subspace of (X∗∗,W∗), and let φ be

an element of X∗∗ that is not in X̂. Since X̂ is a closed convex subspace
in the weak* topology on X∗∗, there exists a weak* continuous linear
functional η on (X∗∗,W∗) such that η(x̂) = 0 for all x ∈ X and η(φ) = 1.
By Theorem 5.2, every weak* continuous linear functional on X∗∗ is
given by an element of X∗. That is, there exists an f ∈ X∗ such that

η(ψ) = f̂(ψ) = ψ(f)

for every ψ ∈ X∗∗. Hence,

f(x) = x̂(f) = η(x̂) = 0
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for every x ∈ X, implying that f = 0. But,

φ(f) = f̂(φ) = η(φ) = 1,

implying that f 6= 0. Therefore, we have arrived at a contradiction,

whence X̂ = X∗∗ proving part 1.

We show part 2 in a similar fashion. Thus, suppose that C = B̂1 is a
proper weak* closed (convex) subset of the norm closed unit ball V1 of
X∗∗, and let φ be an element of V1 that is not an element of C. Again,
since C is closed and convex, there exists by the Separation Theorem
(Theorem 3.9) a weak* continuous linear functional η on (X∗∗,W∗) and
a real number s such that η(c) ≤ s for all c ∈ C and η(φ) > s. Therefore,
again by Theorem 5.2, there exists an f ∈ X∗ such that

η(ψ) = ψ(f)

for all ψ ∈ X∗∗. Hence,

f(x) = x̂(f) = η(x̂) ≤ s

for all x ∈ B1, implying that

|f(x)| ≤ s

for all x ∈ B1, and therefore that ‖f‖ ≤ s. But, ‖φ‖ ≤ 1, and φ(f) =
η(φ) > s, implying that ‖f‖ > s. Again, we have arrived at the desired

contradiction, showing that B̂1 is dense in V1.
We have seen already that the map x → x̂ is continuous from (X,W)
into (X∗∗,W∗). See part d of Exercise 5.10. So, if B1 is weakly compact,

then B̂1 is weak* compact in X∗∗, whence is closed in V1. But, by part

2, B̂1 is dense in V1, and so must equal V1. It then follows immediately
by scalar multiplication that X̂ = X∗∗, and X is reflexive.
Conversely, if X is reflexive, then the map x → x̂ is an isometric iso-

morphism, implying that V1 = B̂1. Moreover, by Theorem 5.2, the map
x → x̂ is a topological isomorphism of (X,W) and (X∗∗,W∗). Since
V1 is weak* compact by Theorem 5.6, it then follows that B1 is weakly
compact, and the proof is complete.

EXERCISE 5.16. Prove that every normed linear space is isometri-
cally isomorphic to a subspace of some normed linear space C(∆) of
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continuous functions on a compact Hausdorff space ∆. HINT: Use the
map x→ x̂.

We conclude this chapter by showing that Choquet’s Theorem (The-
orem 3.11) implies the Riesz Representation Theorem (Theorem 1.3)
for compact metric spaces. Note, also, that we used the Riesz theorem
in the proof of Choquet’s theorem, so that these two results are really
equivalent.

EXERCISE 5.17. (Choquet’s Theorem and the Riesz Representation
Theorem) Let ∆ be a second countable compact topological space, and
let C(∆) denote the normed linear space of all continuous real-valued
functions on ∆ equipped with the supremum norm. Let K be the set of
all continuous positive linear functionals φ on C(∆) satisfying φ(1) = 1.

(a) Show that K is compact in the weak* topology of (C(∆))∗.

(b) Show that the map x → δx is a homeomorphism of ∆ onto the set
of extreme points of K. (δx denotes the linear functional that sends f
to the number f(x).)

(c) Show that every positive linear functional on C(∆) is continuous.

(d) Deduce the Riesz Representation Theorem in this case from Cho-
quet’s Theorem; i.e., show that every positive linear functional I on
C(∆) is given by

I(f) =

∫
∆

f(x) dµ(x),

where µ is a finite Borel measure on ∆.

CHAPTER VI

APPLICATIONS TO ANALYSIS
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We include in this chapter several subjects from classical analysis to
which the notions of functional analysis can be applied. Some of these
subjects are essential to what follows in this text, e.g., convolution, ap-
proximate identities, and the Fourier transform. The remaining subjects
of this chapter are highly recommended to the reader but will not specif-
ically be referred to later.

Integral Operators

Let (S, µ) and (T, ν) be σ-finite measure spaces, and let k be a µ × ν-
measurable, complex-valued function on S×T. We refer to the function
k as a kernel, and we are frequently interested in when the formula

[K(f)](s) =

∫
T

k(s, t)f(t) dν(t) (6.1)

determines a bounded operator K from Lp(ν) into Lr(µ), for some 1 ≤
p ≤ ∞ and some 1 ≤ r ≤ ∞. Ordinarily, formula (6.1) is only defined for
certain functions f, the so-called domain D(K) of K, i.e., the functions
f for which s → k(s, t)f(t) is ν-integrable for µ almost all s ∈ S. In
any event, D(K) is a vector space, and on this domain, K is clearly a
linear transformation. More precisely, then, we are interested in when
formula (6.1) determines a linear transformation K that can be extended
to a bounded operator on all of Lp(ν) into Lr(µ). Usually, the domain
D(K) is a priori dense in Lp(ν), and the question above then reduces to
whether K is a bounded operator from D(K) into Lr(µ). That is, does
there exist a constant M such that

‖K(f)‖r = (

∫
S

|
∫
T

k(s, t)f(t) dν(t)|r dµ(s))1/r ≤M‖f‖p

for all f ∈ D(K). In such a case, we say that K is a bounded integral
operator. In general, we say that the linear transformation K is an
integral operator determined by the kernel k(s, t).

The elementary result below is basically a consequence of Hoelder’s in-
equality and the Fubini theorem.

THEOREM 6.1. Suppose p, r are real numbers strictly between 1 and
∞, and let p′ and r′ satisfy

1/p+ 1/p′ = 1/r + 1/r′ = 1.
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Suppose that k(s, t) is a µ×ν-measurable function on S×T, and assume
that the set D(K) of all f ∈ Lp(ν) for which Equation (6.1) is defined
is a dense subspace of Lp(ν). Then:

(1) If the function b defined by s→
∫
T
|k(s, t)|p′ dν(t) is an element

of Lr/p
′
(µ), then K is a bounded integral operator from Lp(ν)

into Lr(µ).
(2) Suppose p = r and that there exists an α ∈ [0, 1] for which

the function s →
∫
T
|k(s, t)|αp′ dν(t) is an element of L∞(µ)

with L∞ norm c1, and the function t →
∫
S
|k(s, t)|(1−α)p dµ(s)

is an element of L∞(ν) with L∞ norm c2. Then K is a bounded
integral operator from Lp(ν) into Lp(µ). Moreover, we have that

‖K(f)‖p ≤ c1/p
′

1 c
1/p
2 ‖f‖p

for all f ∈ Lp(ν).

PROOF. Let f ∈ D(K) be fixed. We have that

|
∫
T

k(s, t)f(t) dν(t)| ≤
∫
T

|k(s, t)f(t)| dν(t)

≤ (

∫
T

|k(s, t)|p
′
dν(t))1/p′ × (

∫
T

|f(u)|p dν(u))1/p

= b(s)1/p′‖f‖p,

from which it follows that D(K) is all of Lp(ν) for part 1, and

‖K(f)‖r = (

∫
S

|
∫
T

k(s, t)f(t) dν(t)|r dµ(s))1/r ≤ ‖b‖1/p
′

r/p′‖f‖p.

This proves part 1.
Again, for f ∈ D(K) we have that

|
∫
T

k(s, t)f(t) dν(t)| ≤
∫
T

|k(s, t)|α|k(s, t)|1−α|f(t)| dν(t)

≤ (

∫
T

|k(s, t)|αp
′
dν(t))1/p′

× (

∫
T

|k(s, u)|(1−α)p|f(u)|p dν(u))1/p

≤ c1/p
′

1 (

∫
T

|k(s, u)|(1−α)p|f(u)|p dν(u))1/p,
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from which it follows that

‖K(f)‖p = (

∫
S

|
∫
T

k(s, t)f(t) dν(t)|p dµ(s))1/p

≤ c1/p
′

1 (

∫
S

∫
T

|k(s, u)|(1−α)p|f(u)|p dν(u) dµ(s))1/p

= c
1/p′

1 (

∫
T

∫
S

|k(s, u)|(1−α)p|f(u)|p dµ(s) dν(u))1/p

≤ c1/p
′

1 c
1/p
2 ‖f‖p,

and this proves part 2.

EXERCISE 6.1. (a) Restate part 1 of the above theorem for p = r.
(b) Restate part 1 of the above theorem for r = p′. Restate both parts
of the theorem for p = r = 2.
(c) As a special case of part 2 of the theorem above, reprove it for
p = r = 2 and α = 1/2.
(d) How can we extend the theorem above to the case where p or r is 1
or ∞?

EXERCISE 6.2. Suppose both µ and ν are finite measures.
(a) Show that if the kernel k(s, t) is a bounded function on S × T, then
(6.1) determines a bounded integral operator K for all p and r.
(b) Suppose S = T = [a, b] and that µ and ν are both Lebesgue measure.
Define k to be the characteristic function of the set of all pairs (s, t) for
which s ≥ t. Show that (6.1) determines a bounded integral operator K
from L1(µ) into L1(ν). Show further that K(f) is always differentiable
almost everywhere, and that [K(f)]′ = f.
(c) Suppose k is an element of L2(µ× ν). Use Theorem 6.1 to show that
(6.1) determines a bounded integral operator K from L2(ν) into L2(µ).
(d) Is part c valid if µ and ν are only assumed to be σ-finite measures?
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Convolution Kernels

THEOREM 6.2. (Young’s Inequality) Let f be a complex-valued mea-
surable function on Rn, and define k ≡ kf on Rn × Rn by

k(x, y) = f(x− y).

If f ∈ L1(Rn) and 1 ≤ p ≤ ∞, then (6.1) determines a bounded integral
operator K ≡ Kf from Lp(Rn) into itself, where we equip each space
Rn with Lebesgue measure. Moreover, ‖Kf (g)‖p ≤ ‖f‖1‖g‖p for every
g ∈ Lp(Rn).

PROOF. Suppose first that p =∞. We have that

‖Kf (g)‖∞ = sup
x
|
∫
Rn
f(x− y)g(y) dy|

≤ sup
x

∫
Rn
|f(x− y)|‖g‖∞ dy

= ‖f‖1‖g‖∞,

as desired.
Now, suppose 1 ≤ p < ∞. Let g be in Lp(Rn) and h be in Lp

′
(Rn),

(1/p+ 1/p′ = 1). By Tonelli’s Theorem, we have that∫
Rn

∫
Rn
|f(x− y)g(y)h(x)| dydx =

∫
Rn

∫
Rn
|f(−y)g(x+ y)h(x)| dydx

≤ ‖f‖1 sup
y

∫
Rn
|g(x+ y)h(x)| dx

≤ ‖f‖1 sup
y
‖g‖p‖h‖p′ ,

which shows that the function f(x−y)g(y)h(x) is integrable on Rn×Rn.
Therefore, for almost all x, the function y → f(x− y)g(y) is integrable

on Rn. Because the inequality above holds for every h ∈ Lp′(Rn), the
resulting function Kf (g) of x belongs to Lp(Rn). Moreover,

‖Kf (g)‖p ≤ ‖f‖1‖g‖p,

and the proof is complete.

By T we shall mean the half-open interval [0,1), and we shall refer to T
as the circle. By Lp(T) we shall mean the set of all Lebesgue mea-
surable functions on R, which are periodic with period 1, satisfying∫ 1

0
|f(x)|p dx <∞.
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EXERCISE 6.3. (a) Use part 2 of Theorem 6.1 to give an alternative
proof of Theorem 6.2 in the case 1 < p <∞.
(b) (Convolution on the circle) If f ∈ L1(T), define k = kf on T× T by
kf (x, y) = f(x− y). Prove that Kf is a bounded integral operator from
Lp(T) into itself for all 1 ≤ p ≤ ∞. In fact, prove this two ways: Use
Theorem 6.1, and then mimic the proof of Theorem 6.2.

DEFINITION. If f ∈ L1(Rn) (L1(T)), then the bounded integral oper-
ator Kf of the preceding theorem (exercise) is called the convolution op-
erator by f, and we denote Kf (g) by f ∗g. The kernel kf (x, y) = f(x−y)
is called a convolution kernel.

EXERCISE 6.4. (a) Suppose f ∈ Lp(Rn) and g ∈ Lp′(Rn). Show that
the function f ∗ g, defined by

(f ∗ g)(x) =

∫
Rn
f(x− y)g(y) dy,

is everywhere well-defined. Show further that f ∗ g is continuous and
vanishes at infinity. Show finally that f ∗ g = g ∗ f.
(b) If f, g, h ∈ L1, show that f ∗g = g∗f and that (f ∗g)∗h = f ∗(g∗h).

The next result is a useful generalization of Theorem 6.2.

THEOREM 6.3. Let f be an element of Lp(Rn). Then, for any 1 ≤
q ≤ p′, convolution by f is a bounded operator from Lq(Rn) into Lr(Rn),
where 1/p+ 1/q − 1/r = 1.

EXERCISE 6.5. Use the Riesz Interpolation Theorem, Theorem 6.2,
and Exercise 6.4 to prove Theorem 6.3.

REMARK. Later, we will be interested in convolution kernels kf where
the function f does not belong to any Lp space. Such kernels are called
singular kernels. Though the arguments above cannot be used on such
singular kernels, nevertheless these kernels often define bounded integral
operators.

Reproducing Kernels and Approximate Identities

DEFINITION. Let (S, µ) be a σ-finite measure space and let k(x, y) be
a µ×µ-measurable kernel on S×S. Suppose that the operator K, defined
by (6.1), is a bounded integral operator from Lp(µ) into itself. Then K is
called a reproducing kernel for a subspace V of Lp(µ) if K(g) = g for all
g ∈ V. A parameterized family {kt} of kernels is called an approximate
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identity for a subspace V of Lp(µ) if all the corresponding operators Kt

are bounded integral operators, and limt→0Kt(g) = g for every g ∈ V,
where the limit is taken in Lp(µ).

THEOREM 6.4. Let S be the closed unit disk in C. Using the Riesz
Representation Theorem (Theorem 1.5), let µ be the measure on S whose
corresponding integral is defined on the space C(S) of continuous func-
tions on S by ∫

S

f(z) dµ(z) =

∫ 2π

0

f(eiθ) dθ.

Let p = 1, and let H be the subspace of L1(µ) consisting of the (complex-
valued) functions that are continuous on S and analytic on the interior
of S. Let k(z, ζ) be the kernel on S × S defined by

k(z, ζ) =
1

2π

1

1− (z/ζ)
,

if z 6= ζ, and
k(z, z) = 0

for all z ∈ S. Then k is a reproducing kernel for H.

EXERCISE 6.6. Prove Theorem 6.4. HINT: Cauchy’s formula.

REMARK. Among the most interesting reproducing kernels and ap-
proximate identities are the ones that are convolution kernels.

THEOREM 6.5. Let k be a nonnegative Lebesgue-measurable function
on Rn for which

∫
k(x) dx = 1. For each positive t, define

kt(x) = (1/tn)k(x/t),

and set

K(x) =

∫
‖x‖≤‖y‖

k(y) dy.

Then:

(1) If f is uniformly continuous and bounded on Rn, then kt ∗ f
converges uniformly to f on Rn as t approaches 0.

(2) If K ∈ Lp(Rn) (1 ≤ p <∞), then kt∗f converges to f in Lp(Rn)
for every f ∈ Lp(Rn) as t approaches 0.

(3) If k ∈ Lp′(Rn), f ∈ Lp(Rn) (1 ≤ p < ∞ and 1/p + 1/p′ = 1),
and f is continuous at a point x, then (kt ∗ f)(x) converges to
f(x) as t approaches 0.
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PROOF. To prove part 1, we must show that for each ε > 0 there
exists a δ > 0 such that if t < δ then |(kt ∗ f)(x) − f(x)| < ε for all x.
Note first that

∫
kt(x) dx = 1 for all t. Write

(kt ∗ f)(x) =

∫
kt(x− y)f(y) dy =

∫
kt(y)f(x− y) dy.

So, we have that

|(kt ∗ f)(x)− f(x)| = |
∫
kt(y)f(x− y) dy − f(x)

∫
kt(y) dy|

≤
∫
kt(y)|f(x− y)− f(x)| dy

=

∫
‖y‖≤h

kt(y)|f(x− y)− f(x)| dy

+

∫
‖y‖>h

kt(y)|f(x− y)− f(x)| dy

for any positive h. Therefore, given ε > 0, choose h so that |f(w) −
f(z)| < ε/2 if ‖w − z‖ < h, and set M = ‖f‖∞. Then

|(kt ∗ f)(x)− f(x)| ≤
∫
‖y‖≤h

kt(y)(ε/2) dy +

∫
‖y‖>h

kt(y)2M dy

≤ (ε/2)

∫
kt(y) dy + 2M

∫
‖y‖>h

kt(y) dy

= (ε/2) + 2M

∫
‖y‖>h/t

k(y) dy

for all x. Finally, since k ∈ L1(Rn), there exists a ρ > 0 such that∫
‖y‖>ρ

k(y) dy < ε/(4M),

whence
|(kt ∗ f)(x)− f(x)| < ε

for all x if t < δ = h/ρ. This proves part 1.
By Theorem 6.2 we have that ‖kt ∗ f‖p ≤ ‖f‖p for all t. Hence, if
f ∈ Lp(Rn) and {fj} is a sequence of continuous functions with compact
support that converges to f in Lp norm, then

‖kt ∗ f − f‖p ≤ ‖kt ∗ (f − fj)‖p + ‖kt ∗ fj − fj‖p + ‖fj − f‖p.
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Given ε > 0, choose j so that the first and third terms are each bounded
by ε/3. Hence, we need only verify part 2 for an f ∈ Lp(Rn) that is
continuous and has compact support. Suppose the support of such an
f is contained in the ball of radius a around 0. From the proof above
for part 1, we see that |(kt ∗ f)(x)− f(x)| ≤ 2M for all x. Moreover, if
‖x‖ ≥ 2a and t < 1/2, then

|(kt ∗ f)(x)− f(x)| = |
∫
kt(y)(f(x− y)− f(x)) dy|

≤
∫
kt(y)|f(x− y)| dy

=

∫
‖x‖−a≤‖y‖≤‖x‖+a

kt(y)|f(x− y)| dy

≤M
∫
‖x‖−a≤‖y‖

kt(y) dy

≤M
∫
‖x/2‖≤‖y‖

kt(y) dy

= M

∫
‖x/2t‖≤‖y‖

k(y) dy

≤M
∫
‖x‖≤‖y‖

k(y) dy

= MK(x).

Hence, |(kt ∗ f)(x) − f(x)| is bounded for all t < 1/2 by a fixed func-
tion in Lp(Rn), so that part 2 follows from part 1 and the dominated
convergence theorem.
We leave part 3 to the exercises.

EXERCISE 6.7. (a) Prove part 3 of the preceding theorem.
(b) (Poisson Kernel on the Line) For each t > 0 define a kernel kt on
R× R by

kt(x, y) = (t/π)(1/(t2 + (x− y)2)).

Prove that {kt} is an approximate identity for Lp(R) for 1 ≤ p < ∞.
HINT: Note that the theorem above does not apply directly. Alter the
proof.
(c) (Poisson Kernel in Rn) Let c =

∫
Rn 1/(1 + ‖x‖2)(n+1)/2 dx. For each

positive t, define a kernel kt on Rn × Rn by

kt(x, y) =
t/c

(t2 + ‖x− y‖2)(n+1)/2
.
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Prove that {kt} is an approximate identity for Lp(Rn) for 1 ≤ p <∞.
(d) (Poisson Kernel on the Circle) For each 0 < r < 1 define a function
kr on T by

kr(x) =
1− r2

1 + r2 − 2r cos(2πx)
.

Show that kr(x) ≥ 0 for all r and x, and that

kr(x) =

∞∑
n=−∞

r|n|e2πinx,

whence
∫ 1

0
kr(x) dx = 1 for every 0 < r < 1. Prove that {kr} is an

approximate identity for Lp(T) (1 ≤ p <∞) in the sense that

f = lim
r→1

kr ∗ f,

where the limit is taken in Lp(T).

EXERCISE 6.8. (Gauss Kernel) (a) Define g on R by

g(x) = (1/
√

2π)e−x
2/2,

and set
gt(x) = (1/

√
t)g(x/

√
t) = (1/

√
2πt)e−x

2/2t.

Prove that {gt} is an approximate identity for Lp(R) for 1 ≤ p <∞.
(b) Define g on Rn by

g(x) = (1/(2π)n/2)e−‖x‖
2/2,

and set
gt(x) = (1/tn/2)g(x/

√
t) = (2πt)−n/2e−‖x‖

2/2t.

Prove that {gt} is an approximate identity for Lp(Rn) for 1 ≤ p <∞.

Green’s Functions

DEFINITION. Let µ be a σ-finite Borel measure on Rn, let D be a
dense subspace of Lp(µ), and suppose L is a (not necessarily continuous)
linear transformation of D into Lp(µ). By a Green’s function for L we
shall mean a µ× µ-measurable kernel g(x, y) on Rn ×Rn, for which the
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corresponding (not necessarily bounded) integral operator G satisfies the
following: If v belongs to the range of L, then G(v), defined by

[G(v)](x) =

∫
Rn
g(x, y)v(y) dµ(y),

belongs to D, and L(G(v)) = v. That is, the integral operator G is a
right inverse for the transformation L.

Obviously, knowing a Green’s function for an operator L is of use in
solving for u in an equation like L(u) = f. Not every (even invertible)
linear transformation L has a Green’s function, although many classi-
cal transformations do. There are various techniques for determining
Green’s functions for general kinds of transformations L, but the most
important L’s are differential operators. The following exercise gives a
classical example of the construction of a Green’s function for such a
transformation.

EXERCISE 6.9. Let b be a positive real number, let f be an element
of L1([0, b]), and consider the nth order ordinary differential equation:

u(n) + an−1u
(n−1) + . . .+ a1u

′ + a0u = f, 6.2)

where the coefficients a0, . . . , an−1 are constants. Let D denote the set
of all n times everywhere-differentiable functions u on [0, b] for which
u(n) ∈ L1([0, b]), and let L be the transformation of D into L1([0, b]) ⊂
L1(R) defined by

L(u) = u(n) + an−1u
(n−1) + . . .+ a1u

′ + a0u.

Let A denote the n× n matrix defined by

A =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
−a0 −a1 −a2 . . . −an−1

 ,
let ~F (t) be the vector-valued function given by

~F (t) =


0
·
·
·
0
f(t)

 ,
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and consider the vector-valued differential equation

~̇U = A~U + ~F . (6.3)

(a) Show that if ~U is a solution of Equation (6.3), then u1 is a solution

of Equation (6.2), where u1 is the first component of ~U.
(b) If B is an n× n matrix, write eB for the matrix defined by

eB =

∞∑
j=0

Bj/j!.

Define ~U on [0, b] by

~U(t) =

∫ t

0

e(t−s)A × ~F (s) ds.

Prove that ~U is a solution of Equation (6.3).
(c) For 1 ≤ i, j ≤ n, write cij(t) for the ijth component of the matrix
etA. Define g(t, s) = c1n(t− s) if s ≤ t and g(t, s) = 0 otherwise. Prove
that g is a Green’s function for L.

We give next two general, but certainly not all-inclusive, results on the
existence of Green’s functions.
If h(x, y) is a function of two variables, we denote by hy the function of
x defined by hy(x) = h(x, y).

THEOREM 6.6. Let µ be a regular (finite on compact sets) σ-finite
Borel measure on Rn, let D be a dense subspace of Lp(µ) (1 ≤ p ≤ ∞),
and let L be a (not necessarily continuous) linear transformation of D
into L1(µ). Assume that:

(1) There exists a bounded integral operator K from L1(µ) into L1(µ),
determined by a kernel k(x, y), for which k is a reproducing ker-
nel for the range V of L, and such that the map y → ky is
uniformly continuous from Rn into L1(µ).

(2) There exists a bounded integral operator G from L1(µ) into Lp(µ),
determined by a kernel g(x, y), such that the map y → gy is uni-
formly continuous from Rn into D, and such that L(gy) = ky for
all y.

(3) The graph of L, thought of as a subset of Lp(µ)×L1(µ), is closed.
That is, if {uj} is a sequence of elements of D that converges to
an element u ∈ Lp, and if the sequence {L(uj)} converges in L1

to a function v, then the pair (u, v) belongs to the graph of L;
i.e., u ∈ D and v = L(u).
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Then g is a Green’s function for L.

PROOF. Let v be in the range of L, and let {φj} be a sequence of
simple functions having compact support that converges to v in L1(µ).
Because µ is regular and σ-finite, we may assume that

φj =

nj∑
i=1

ai,jχEi,j ,

where

lim
j→∞

max
i

diam(Ei,j) ≡ lim δj = 0.

For each j = 1, 2, . . . and each 1 ≤ i ≤ nj , let yi,j be an element of Ei,j ,
and define functions vj and uj by

vj(x) =

nj∑
i=1

ai,jµ(Ei,j)k
yi,j (x) =

nj∑
i=1

ai,jµ(Ei,j)k(x, yi,j)

and

uj(x) =

nj∑
i=1

ai,jµ(Ei,j)g
yi,j (x). =

nj∑
i=1

ai,jµ(Ei,j)g(x, yi,j).

Notice that each uj ∈ D and that vj = L(uj). Finally, for each positive
δ, define ε1(δ) and ε2(δ) by

ε1(δ) = sup
‖y−y′‖<δ

‖ky − ky
′
‖1

and

ε2(δ) = sup
‖y−y′‖<δ

‖gy − gy
′
‖p.

By the uniform continuity assumptions on the maps y → ky and y → gy,
we know that

0 = lim
δ→0

εi(δ).
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First, we have that v = limj vj . For

‖v − vj‖1 = ‖K(v)− vj‖1
≤ ‖K(v − φj)‖1 + ‖K(φj)− vj‖1

≤ ‖K‖‖v − φj‖1 +

∫
|[K(φj)](x)− vj(x)| dµ(x)

= ‖K‖‖v − φj‖1 +

∫
|
∫
k(x, y)

nj∑
i=1

ai,jχEi,j (y) dy

−
nj∑
i=1

ai,jµ(Ei,j)k(x, yi,j)| dx

= ‖K‖‖v − φj‖1 +

∫
|
nj∑
i=1

[

∫
k(x, y)ai,jχEi,j (y)

− k(x, yi,j)ai,jχEi,j (y) dy]| dx
≤ ‖K‖‖v − φj‖1

+

nj∑
i=1

|ai,j |
∫
χEi,j (y)

∫
|k(x, y)− k(x, yi,j)| dxdy

= ‖K‖‖v − φj‖1 +

nj∑
i=1

|ai,j |
∫
‖ky − kyi,j‖1χEi,j (y) dy

≤ ‖K‖‖v − φj‖1 + ε1(δj)‖φj‖1,

which tends to zero as j tends to ∞.
Similarly, we have that G(v) = limj uj . (See the following exercise.) So,
since the graph of L is closed, and since L(uj) = vj for all j, we see that
G(v) ∈ D and L(G(v)) = v, as desired.

EXERCISE 6.10. In the proof of Theorem 6.6, verify that G(v) is
the Lp limit of the sequence {uj}. HINT: Use the integral form of
Minkowski’s inequality. See Exercise 4.13.

THEOREM 6.7. Let µ,D, and L be as in the preceding theorem. Sup-
pose {gt(x, y)} is a parameterized family of kernels on Rn×Rn such that,
for each t, the operator Gt determined by the kernel gt is a bounded inte-
gral operator from L1(Rn) into Lp(Rn), and the map y → gyt is uniformly
continuous from Rn into D. Suppose that {kt(x, y)} is an approximate
identity for the range of L, that for each t the map y → kyt is uniformly
continuous from Rn into L1(µ), and that L(gyt ) = kyt for all t and y.
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Suppose finally that limt→0 gt(x, y) = g(x, y) for almost all x and y, and
that limt→0Gt(v) = G(v) for each v in the range of L, where G is the in-
tegral operator determined by the kernel g. Then g is a Green’s function
for L.

EXERCISE 6.11. Prove Theorem 6.7. HINT: For v in the range of L,
show that Gt(v) ∈ D and that L(Gt(v)) = Kt(v). Then use again the
fact that the graph of L is closed.

EXERCISE 6.12. Let µ be Lebesgue measure on Rn, and suppose D
and L are as in the preceding two theorems. Assume that L is homoge-
neous of degree d. That is, if δt is the map of Rn into itself defined by
δt(x) = tx, then

L(u ◦ δt) = td[L(u)] ◦ δt.

(Homogeneous differential operators fall into this class.) Suppose p is a
nonnegative function on Rn of integral 1, and that u0 is an element of D
for which L(u0) = p. Define gt(x) = td−nu0(x/t), and assume that, for
each v in the range of L, limt→0 gt ∗ v exists and that gt converges, as t
approaches 0, almost everywhere to a function g. Show that g is a Green’s
function for L. HINT: Use Theorem 6.5 to construct an approximate
identity from the function p. Then verify that the hypotheses of Theorem
6.7 hold.

Fourier Transform

DEFINITION. If f is a complex-valued function in L1(R), define a

function f̂ on R by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx.

The function f̂ is called the Fourier transform of f.

EXERCISE 6.13. (a) (Riemann-Lebesgue Theorem) For f ∈ L1, show

that the Fourier transform f̂ of f is continuous, vanishes at infinity, and

‖f̂‖∞ ≤ ‖f‖1. HINT: Do this first for f the characteristic function of a
finite interval (a, b) and then approximate (in L1 norm) an arbitrary f
by step functions.
(b) If f and g are elements of L1, prove the Convolution Theorem

f̂ ∗ g = f̂ ĝ
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and the Exchange Theorem ∫
fĝ =

∫
f̂g.

(c) For f ∈ L1, define f∗ by

f∗(x) = f(−x).

Show that f̂∗ = f̂ .

(d) If |x||f(x)| ∈ L1, show that f̂ is differentiable, and

f̂ ′(ξ) = −2πi

∫
xf(x)e−2πixξ dx.

(e) If f is absolutely continuous (f(x) =
∫ x
−∞ f ′), and both f and f ′ are

in L1(R), show that ξf̂(ξ) ∈ C0.
(f) Show that the Fourier transform sends Schwartz space S into itself.
(g) If f(x) = e−2π|x|, show that

f̂(ξ) = (1/π)
1

1 + ξ2
.

(h) If g(x) = e−πx
2

, show that

ĝ(ξ) = e−πξ
2

= g(ξ).

That is, ĝ = g. HINT: Show that ĝ satisfies the differential equation

ĝ′(ξ) = −2πξĝ(ξ),

and
ĝ(0) = 1.

Recall that ∫ ∞
−∞

e−x
2/2 dx =

√
2π.

EXERCISE 6.14. (Inversion Theorem)
(a) (Fourier transform of the Gauss kernel) If gt is the function defined
by

gt(x) = (1/
√

2πt)e−x
2/2t,
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use part h of the preceding exercise to show that

ĝt(ξ) = e−2π2tξ2 ,

whence

gt(x) =

∫
ĝt(ξ)e

2πixξ dξ.

(b) Show that for any f ∈ L1, for which f̂ also is in L1, we have that f
is continuous and

f(x) =

∫
f̂(ξ)e2πixξ dξ.

HINT: Make use of the fact that the gt’s of part a form an approximate
identity. Establish the equality

∫
f̂(ξ)e2πixξ dξ = lim

t→0

∫
f̂(ξ)ĝt(ξ)e

2πixξ dξ,

and then use the convolution theorem.

(c) Conclude that the Fourier transform is 1-1 on L1.

(d) Show that Schwartz space is mapped 1-1 and onto itself by the
Fourier transform. Show further that the Fourier transform is a topo-
logical isomorphism of order 4 from the locally convex topological vector
space S onto itself.

THEOREM 6.8. (Plancherel Theorem) If f ∈ L1(R) ∩ L2(R), then

f̂ ∈ L2(R) and ‖f‖2 = ‖f̂‖2. Consequently, if f, g ∈ L1(R)∩L2(R), then

∫
f(x)g(x) dx =

∫
f̂(ξ)ĝ(ξ) dξ.

PROOF. Suppose first that f is in Schwartz space S, and write f∗ for
the function defined by

f∗(x) = f(−x).
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Then f ∗f∗ ∈ L1, and f̂ ∗ f∗ = |f̂ |2 ∈ L1. So, by the Inversion Theorem,

‖f‖22 =

∫
f(x)f(x) dx

=

∫
f(x)f∗(−x) dx

= (f ∗ f∗)(0)

=

∫
f̂ ∗ f∗(ξ)e2πi0×ξ dξ

=

∫
f̂ ∗ f∗(ξ) dξ

=

∫
|f̂(ξ)|2 dξ

= ‖f̂‖22.

Now, if f is an arbitrary element of L1(R) ∩ L2(R), and if {fn} is a
sequence of elements of S that converges to f in L2 norm, then the

sequence {f̂n} is a Cauchy sequence in L2(R), whence converges to an

element g ∈ L2(R). We need only show that g and f̂ agree almost every-
where. If h is any element of S we have, using part b of Exercise 6.13,
that ∫

g(ξ)h(ξ) dξ = lim

∫
f̂n(ξ)h(ξ) dξ

= lim

∫
fn(ξ)ĥ(ξ) dξ

=

∫
f(ξ)ĥ(ξ) dξ

=

∫
f̂(ξ)h(ξ) dξ,

showing that f̂ and g agree as L2 functions. (Why?) It follows then

that f̂ ∈ L2 and ‖f̂‖2 = ‖f‖2.
The final equality of the theorem now follows from the polarization iden-
tity in L2(R). That is, for any f, g ∈ L2(R), we have∫

fg = (1/4)

3∑
k=0

ik
∫

(f + ikg)(f + ikg),

which can be verified by expanding the right-hand side.
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REMARK. The Plancherel theorem asserts that the Fourier transform
is an isometry in the L2 norm from L1(R) ∩ L2(R) into L2(R). Since
Schwartz space is in the range of the Fourier transform on L1(R)∩L2(R),
the Fourier transform maps L1(R) ∩ L2(R) onto a dense subspace of
L2(R), whence there exists a unique extension U of the Fourier transform
from L1(R)∩L2(R) to an isometry on all of L2(R). This U is called the
L2 Fourier transform. It is an isometry of L2(R) onto itself.

EXERCISE 6.15. (a) Suppose f(x) and xf(x) are both elements of
L2(R). Prove that U(f) is differentiable almost everywhere and compute
[U(f)]′(ξ).

(b) If f is absolutely continuous and both f and f ′ belong to L2(R), show
that f(x) =

∫ x
−∞ f ′(t) dt and that [U(f ′)](ξ) = 2πiξ[U(f)](ξ). State and

prove results for the L2 Fourier transform that are analogous to parts b
and c of Exercise 6.13.

(c) Suppose f is in L2(R) but not L1(R). Assume that for almost every
ξ, the function f(x)e−2πixξ is improperly Riemann integrable. That is,
assume that there exists a function g such that

lim
B→∞

∫ B

−B
f(x)e−2πixξ dx

exists and equals g(ξ) for almost all ξ. Prove that g = U(f).

(d) Define the function f by f(x) = sin(x)/x. Prove that f ∈ L2(R)
but not in L1(R). Show that f is improperly Riemann integrable, and
establish that

lim
B→∞

∫ B

−B
f(x) dx = π.
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HINT: Verify the following equalities:

lim
B→∞

∫ B

−B
f(x) dx = 2 lim

n

∫ π(n+1/2)

0

f(x) dx

= lim
n

∫ π

0

sin((n+ 1/2)x)

x/2
dx

= lim
n

∫ π

0

sin((n+ 1/2)x)

sin((1/2)x)
dx

= lim
n

∫ π

0

e−i(n+1/2)x − ei(n+1/2)x

e−i(1/2)x − ei(1/2)x
dx

= lim
n

∫ π

0

n∑
k=−n

eikx dx

= π.

(e) Fix a δ > 0, and let fδ(x) = 1/x for |x| ≥ δ. Use part c to show that

[U(fδ)](ξ) = −isgn(ξ) lim
B→∞

∫
2πδ|ξ|≤|x|≤B

sin(x)/x dx,

where sgn denotes the signum function defined on R by

sgn(t) = 1, for t > 0

sgn(0) = 0

sgn(t) = −1, for t < 0.

Using part d, conclude that [U(fδ)](ξ) is uniformly bounded in both the
variables δ and ξ, and show that

lim
δ→0

[U(fδ)](ξ) = −πisgn(ξ).

(We may say then that the Fourier transform of the non-integrable and
non-square-integrable function 1/x is the function −πisgn.)

EXERCISE 6.16. (Hausdorff-Young Inequality) Suppose f ∈ L1 ∩ Lp
for 1 ≤ p ≤ 2. Prove that f̂ ∈ Lp′ , for 1/p+ 1/p′ = 1, and that ‖f̂‖p′ ≤
‖f‖p. HINT: Use the Riesz Interpolation Theorem.
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DEFINITION. If u is a tempered distribution, i.e., an element of S ′,
define the Fourier transform û of u to be the linear functional on S given
by

û(f) = u(f̂).

EXERCISE 6.17. (a) Prove that the Fourier transform of a tempered
distribution is again a tempered distribution.
(b) Suppose h is a tempered function in L1(R) (L2(R)), and suppose
that u is the tempered distribution uh. Show that û = uĥ (uU(h)).
(c) If u is the tempered distribution defined by

u(f) = lim
δ→0

∫
|t|≥δ

[f(t)/t] dt,

show that û = u−πisgn. See part b of Exercise 5.8.
(d) If u is a tempered distribution, show that the Fourier transform of
the tempered distribution u′ is the tempered distribution v = mû, where
m is the C∞ tempered function given by m(ξ) = 2πiξ. That is,

û′(f) = v(f) = û(mf).

(e) Suppose u and its distributional derivative u′ are both tempered
distributions corresponding to L2 functions f and g respectively. Prove
that f is absolutely continuous and that f ′(x) = −g(x) a.e.
(f) Suppose both u and its distributional derivative u′ are tempered
distributions corresponding to L2 functions f and g respectively. Assume
that there exists an ε > 0 such that |ξ|(3/2)+εû(ξ) is in L2(R). Prove that
f is in fact a C1 function.

DEFINITION. For vectors x and y in Rn, write (x, y) for the dot

product of x and y. If f ∈ L1(Rn), define the Fourier transform f̂ of f
on Rn by

f̂(ξ) =

∫
Rn
f(x)e−2πi(x,ξ) dx.

EXERCISE 6.18. (a) Prove the Riemann-Lebesgue theorem: If f ∈
L1(Rn), then f̂ ∈ C0(Rn).
(b) Prove the convolution theorem: If f, g ∈ L1(Rn), then

f̂ ∗ g = f̂ ĝ.

Show also that
∫
f̂g =

∫
fĝ.



120 CHAPTER VI

(c) Let 1 ≤ j ≤ n, and suppose that both f and its partial derivative
∂f

∂xj
belong to L1(Rn). Show that

∂̂f

∂xj
(ξ) = 2πiξj f̂(ξ).

Generalize this equality to higher order and mixed partial derivatives.
(d) For t > 0 define gt on Rn by

gt(x) = (2πt)−n/2e−‖x‖
2/2t.

Show that
ĝt(ξ) = e−2πt‖ξ‖2 .

(e) Prove the Inversion Theorem for the Fourier transform on L1(Rn);

i.e., if f, f̂ ∈ L1(Rn), show that

f(x) =

∫
Rn
f̂(ξ)e2πi(x,ξ) dξ

for almost all x ∈ Rn.
(f) Prove the Plancherel Formula for the Fourier transform on L2(Rn);
i.e., for f, g ∈ L1(Rn) ∩ L2(Rn), show that∫

fg =

∫
f̂ ĝ.

Verify that the Fourier transform has a unique extension from L1(Rn)∩
L2(Rn) to an isometry from L2(Rn) onto itself. We denote this isometry
by U and call it the L2 Fourier transform on Rn.

EXERCISE 6.19. (The Green’s Function for the Laplacian) Let L de-
note the Laplacian on Rn; i.e.,

L(u) =

n∑
i=1

∂2u

∂xi2
,

for u any almost everywhere twice differentiable function on Rn. Let D
be the space of all functions u ∈ L2(Rn), all of whose first and second
order partial derivatives are continuous and belong to L2(Rn). Think of

L as a mapping of D into L2(Rn). Let D̃ be the set of all f ∈ L2(Rn)
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such that ‖ξ‖2U(f)(ξ) belongs to L2(Rn), and define L̃ : D̃ → L2(Rn)

by L̃(f) = U−1(mU(f)), where U denotes the L2 Fourier transform on
Rn, and m is the function defined by m(ξ) = −4π2‖ξ‖2.
(a) Show that D ⊆ D̃, that L̃ is an extension of L, and that the graph

of L̃ is closed.
(b) Assume that n ≥ 5. Find a Green’s function g for L̃, and observe
that g is also a Green’s function for L. HINT: Set

p(x) = c/(1 + ‖x‖2)(n+2)/2,

find a u0 ∈ D such that L(u0) = L̃(u0) = p. Then use Exercises 6.7 and
6.12.
(c) Extrapolating from the results in part b, find a Green’s function for
the Laplacian in R3 and R4.
(d) Find a Green’s function for the Laplacian in R2 and in R. HINT:
Notice that the Green’s functions in parts b and c satisfy L(g) = 0
except at the origin.

Hilbert Transform on the Line

If m is a bounded measurable function on R, we may define a bounded
operator M on L2 by

M(f) = U−1(mU(f)),

where U denotes the L2 Fourier transform. Such an operator M is called
a multiplier operator or simply a multiplier.

EXERCISE 6.20. Suppose m = f̂ for some L1 function f. Show that
the multiplier operator M is given by

M(g) = f ∗ g.

Note, therefore, that multipliers are generalizations of L1 convolution
operators.

REMARK. Recall from Theorem 6.2 that L1 convolution operators
determine bounded operators on every Lp space (1 ≤ p ≤ ∞). If m is
not the Fourier transform of an L1 function, then the multiplier M (a
priori a bounded operator on L2(R)) may or may not have extensions to
bounded operators on Lp spaces other than p = 2, and it is frequently
important to know when it does have such extensions.
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EXERCISE 6.21. Let m be a bounded measurable function on R.
(a) Suppose that the multiplier M, corresponding to the function m,
determines a bounded operator from Lp(R) into itself for every 1 <
p <∞. Show that the multiplier corresponding to the function m is the
adjoint M∗ of M, and hence is a bounded operator from Lq(R) into itself
for every 1 < q <∞.
(b) Prove that the multiplier M, corresponding to the function m, deter-
mines a bounded operator from Lp(R) into itself, for some 1 < p < ∞,
if and only if M is a bounded operator from Lp

′
(R) into itself, where

1/p+ 1/p′ = 1.

Perhaps the most important example of a nontrivial multiplier is the
following.

DEFINITION. Let h denote the function −isgn, where sgn is the
signum function. The Hilbert transform is the multiplier operator H
corresponding to the function h; i.e., on L2(R) we have

H(f) = U−1(−isgnU(f)).

REMARK. In view of the results in Exercises 6.15 and 6.20, we might
expect the Hilbert transform to correspond somehow to convolution by
the nonintegrable function 1/πx. Indeed, this is what we shall see below.

EXERCISE 6.22. (a) Show that the Hilbert transform has no exten-
sion to a bounded operator on L1. HINT: For f ∈ L1(R) ∩ L2(R), we

have that U(f) = f̂ is continuous.

(b) Suppose f ∈ L1(R) ∩ L2(R), and f̂ ∈ L1(R). Verify the following
sequence of equalities:

[H(f)](x) = [U−1(−isgnf̂)](x)

= (1/π) lim
δ→0

[U−1(U(fδ)f̂)](x)

= (1/π) lim
δ→0

∫ ∞
−∞

f̂(ξ)[U(fδ)](ξ)e
2πixξ dξ

= (1/π) lim
δ→0

∫ ∞
−∞

f(x+ t)f∗δ (t) dt

= lim
δ→0

∫
|t|≥δ

f(x− t)/πt dt,

where fδ is the function from part e of Exercise 6.15. Note that this
shows that the operator H can be thought of as a generalization of
convolution, in this case by the nonintegrable function 1/πx.
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(c) Verify that if f is a real-valued function in L1(R) ∩ L2(R), and if f̂
is in L1(R), then H(f) also is real-valued.

EXERCISE 6.23. (a) For each positive real number y, define the func-
tion gy by

gy(ξ) = e−2πy|ξ|.

Show that
sgn(ξ)gy(ξ) = (−1/2πy)g′y(ξ)

for every y > 0 and every ξ 6= 0.
(b) Let f be a Schwartz function. For any real x, let fx denote the
function defined by

fx(y) = f(x+ y).

Verify the following sequence of equalities:

[H(f)](x) = lim
y→0

(i/2πy)[U−1(g′y f̂)](x)

= lim
y→0

(i/2πy)

∫ ∞
−∞

g′y(ξ)f̂(ξ)e2πixξ dξ

= lim
y→0

(−i/2πy)

∫ ∞
−∞

gy(ξ)f̂x
′
(ξ) dξ

= lim
y→0

(−i/2πy)

∫ ∞
−∞

ĝy(t)(−2πit)fx(t) dt

= lim
y→0

∫ ∞
−∞

t/π

t2 + y2
f(x− t) dt.

Note again that the Hilbert transform can be regarded as a kind of
convolution by 1/πx.

THEOREM 6.9. The Hilbert transform determines a bounded operator
from Lpinto itself, for each 1 < p <∞.
PROOF. Given a 1 < p < ∞, it will suffice to prove that there exists
a positive constant cp such that

‖H(f)‖p ≤ cp‖f‖p
for all real-valued, C∞ functions f having compact support. (Why?)
First, let n be a positive integer, and let p = 2n. For such a fixed real-
valued, C∞ function f having compact support, define a function F of
a complex variable z = x+ iy by

F (z) = (1/πi)

∫ ∞
−∞

f(t)/(t− z) dt.
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Then F is analytic at each point z = x+ iy for y > 0 (it has a derivative
there). It follows easily that there exists a constant c for which

|F (x+ iy)| ≤ c/y (6.4)

for all x and all y > 0, and

|F (x+ iy)| ≤ c/|x| (6.5)

for all y > 0 and all sufficiently large x. (See Exercise 6.24 below.)
If we write F = U + iV, then since f is real-valued we have

U(x+ iy) =

∫ ∞
−∞

y/π

y2 + (x− t)2
f(t) dt

and

V (x+ iy) =

∫ ∞
−∞

(x− t)/π
(x− t)2 + y2

f(t) dt.

Then, by Exercises 6.7 and 6.23, we have that for every real x

f(x) = lim
y→0

U(x+ iy),

and
[H(f)](x) = lim

y→0
V (x+ iy).

We fix a sequence {yj} converging to 0 and define Uj(x) = U(x + iyj)
and Vj(x) = V (x+ iyj). Then f = limUj and H(f) = limVj .
Because F is analytic in the upper half plane, and because of inequalities
(6.4) and (6.5), we have that∫ ∞

−∞
F 2n(x+ iy) dx = 0 (6.6)

for each positive y. (See Exercise 6.24.) Hence∫ ∞
−∞
<(F 2n)(x+ iy) dx = 0

for every positive y.
From trigonometry, we see that there exist positive constants an and bn
such that

sin2n(θ) ≤ an cos2n(θ) + (−1)nbn cos(2nθ)
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for all real θ. Indeed, choose bn so that this is true for θ near π/2 and
then choose an so the inequality holds for other θ’s. It follows then that
for any complex number z we have

=(z)2n ≤ an<(z)2n + (−1)nbn<(z2n).

So, we have that

V (x+ iy)2n ≤ anU(x+ iy)2n + (−1)nbn<(F 2n(x+ iy)),

whence ∫ ∞
−∞

V (x+ iy)2n dx ≤ an
∫ ∞
−∞

U(x+ iy)2n dx

implying that ∫ ∞
−∞
|Vj(x)|2n dx ≤ an

∫ ∞
−∞
|Uj(x)|2n dx

for all j. So, by the dominated convergence theorem and part b of Ex-
ercise 6.7, ∫ ∞

−∞
|[H(f)](x)|p dx ≤ an

∫ ∞
−∞
|f(x)|p dx,

and
‖H(f)‖p ≤ a1/p

n ‖f‖p,

where p = 2n.
We have thus shown that the Hilbert transform determines a bounded
operator from Lp into itself, for p of the form 2n. By the Riesz Interpo-
lation Theorem, it follows then that the Hilbert transform determines a
bounded operator from Lp into itself, for 2 ≤ p <∞. The proof can now
be completed by appealing to Exercise 6.21 for the cases 1 < p < 2.

EXERCISE 6.24. (a) Show that any constant c ≥
∫
|f(t)| dt will sat-

isfy inequality (6.4). Supposing that f is supported in the interval
[−a, a], show that any constant c ≥ 2

∫
|f(t)| dt will satisfy inequality

(6.5) if |x| ≥ 2a.
(b) Establish Equation (6.6) by integrating around a large square con-
tour.
(c) Let m be the characteristic function of an open interval (a, b), where
−∞ ≤ a < b ≤ ∞. Prove that the multiplier M, corresponding to m
determines a bounded operator on every Lp for 1 < p <∞. HINT: Write
m as a finite linear combination of translates of −isgn.
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(d) Let m be the characteristic function of the set E = ∪n[2n, 2n +
1]. Verify that the multiplier M corresponding to m has no bounded
extension to any Lp space for p 6= 2.

CHAPTER VII

AXIOMS FOR A MATHEMATICAL MODEL
OF EXPERIMENTAL SCIENCE

This chapter is a diversion from the main subject of this book, and it
can be skipped without affecting the material that follows. However,
we believe that the naive approach taken in this chapter toward the
axiomatizing of experimental science serves as a good motivation for the
mathematical theory developed in the following four chapters.
We describe here a set of axioms, first introduced by G.W. Mackey,
to model experimental investigation of a system in nature. We suppose
that we are studying a phenomenon in terms of various observations of it
that we might make. We postulate that there exists a nonempty set S of
what we shall call the possible states of the system, and we postulate that
there is a nonempty set O of what we shall call the possible observables
of the system. We give two examples.
(1) Suppose we are investigating a system that consists of a single phys-
ical particle in motion on an infinite straight line. Newtonian mechanics
(f = ma) tells us that the system is completely determined for all fu-
ture time by the current position and velocity, i.e., by two real numbers.
Hence, the states of this system might well be identified with points in



MATHEMATICAL MODEL OF EXPERIMENTAL SCIENCE 129

the plane. Two of the (many) possible observables of this system can be
described as position and velocity observables. We imagine that there
is a device which indicates where the particle is and another device that
indicates its velocity. More realistically, we might have many yes/no de-
vices that answer the observational questions: “Is the particle between
a and b?” “Is the velocity of the particle between c and d?”
Quantum mechanical models of this single particle are different from
the Newtonian one. They begin by assuming that the (pure) states of
this one-particle system are identifiable with certain square-integrable
functions and the observables are identified with certain linear transfor-
mations. This model seems quite mysterious to most mathematicians,
and Mackey’s axioms form one attempt at justifying it.
(2) Next, let us imagine that we are investigating a system in which three
electrical circuits are in a black box and are open or closed according
to some process of which we are not certain. The states of this system
might well be described as all triples of 0’s and 1’s (0 for open and 1
for closed). Suppose that we have only the following four devices for
observing this system. First, we can press a button b0 and determine
how many of the three circuits are closed. However, when we press this
button, it has the effect of opening all three circuits, so that we have
no hope of learning exactly which of the three were closed. (Making
the observation actually affects the system.) In addition, we have three
other buttons b1, b2, b3, bi telling whether circuit i is open or closed.
Again, when we press button bi, all three circuits are opened, so that
we have no way of determining if any of the circuits other than the
ith was closed. This is a simple example in which certain simultaneous
observations appear to be impossible, e.g., determining whether circuits
1 and 2 are both closed.
The axioms we introduce are concerned with the concept of interpreting
what it means to make a certain observation of the system when the
system is in a given state. The result of such an observation should be a
real number, with some probability, depending on the state and on the
observable.

AXIOM 1. To each state α ∈ S and observable A ∈ O there corre-
sponds a Borel probability measure µα,A on R.

REMARK. The probability measure µα,A contains the information
about the probability that the observation A will result in a certain
value, when the system is in the state α.

EXERCISE 7.1. Write out in words, from probability theory, what the
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following symbols mean.
(a) µα,A([3, 5]) = 0.9.
(b) µα,A({0}) = 1.

AXIOM 2. (a) If A,B are observables for which µα,A = µα,B for
every state α ∈ S, then A = B.
(b) If α, β are states for which µα,A = µβ,A for every observable A ∈ O,
then α = β.

EXERCISE 7.2. Discuss the intuitive legitimacy of Axiom 2.

AXIOM 3. If α1, . . . αn are states, and t1, . . . tn are nonnegative real
numbers for which

∑n
i=1 ti = 1, then there exists a state α for which

µα,A =

n∑
i=1

tiµαi,A

for every observable A. This axiom can be interpreted as asserting that
the set S of states is closed under convex combinations. If the αi’s
are not all identical, we call this state α a mixed state and we write
α =

∑n
i=1 tiαi.

We say that a state α ∈ S is a pure state if it is not a mixture of other
states. That is, if α =

∑n
i=1 tiαi, with each ti > 0 and

∑n
i=1 ti = 1,

then αi = α for all i.

EXERCISE 7.3. Discuss the intuitive legitimacy of Axiom 3. Think
of a physical system, like a beaker of water, for which there are what we
can interpret as pure states and mixed states.

AXIOM 4. If A is an observable, and f : R→ R is a Borel function,
then there exists an observable B such that

µα,B(E) = µα,A(f−1(E))

for every state α and every Borel set E ⊆ R. We denote this observable
B by f(A).

EXERCISE 7.4. Discuss the intuitive legitimacy of Axiom 4. Show
that, if f is 1-1, the system is in the state α and the observable A results
in a value t with probability p, the observable B = f(A) results in the
value f(t) with the same probability p.
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EXERCISE 7.5. (a) Prove that there exists an observable A such that
µα,A(−∞, 0) = 0 for every state α. That is, A is an observable that is
nonnegative with probability 1 independent of the state of the system.
HINT: Use f(t) = t2 for example.
(b) Given a real number t, show that there exists an observable A such
that µα,A = δt for every state α. That is, A is an observable that equals
t with probability 1, independent of the state of the system.
(c) Show that the set of observables is closed under scalar multiplication.
That is, if A is an observable and c is a nonzero real number, then there
exists an observable B such that

µα,B(E) = µα,A((1/c)E).

We may then write B = cA.
(d) If A and B are observables, does there have to be an observable C
that we could think of as the sum A+B?
(e) In what way must we alter the descriptions of the systems in Ex-
ample 1 and Example 2 in order to incorporate these first four axioms
(particularly Axioms 3 and 4)?

DEFINITION. We say that two observables A and B are compati-
ble, pairwise compatible, or simultaneously observable if there exists an
observable C and Borel functions f and g such that A = f(C) and
B = g(C). A sequence {Ai} is called mutually compatible if there exists
an observable C and Borel functions {fi} such that Ai = fi(C) for all i.

EXERCISE 7.6. Is there a difference between a sequence {Ai} of ob-
servables being pairwise compatible and being mutually compatible? In
particular, is it possible that there could exist observables A,B,C, such
that A and B are compatible, B and C are compatible, A and C are
compatible, and yet A, B, C are not mutually compatible? HINT: Try
to modify Example 2.

EXERCISE 7.7. (a) If A,B are observables, what should it mean to
say that an observable C is the sum A+B of A and B? Discuss why we
do not hypothesize that there always exists such an observable C.
(b) If A and B are compatible, can we prove that there exists an ob-
servable C that can be regarded as A+B?

DEFINITION. An observable q is called a question or a yes/no ob-
servable if, for each state α, the measure µα,q is supported on the two
numbers 0 and 1. We say that the result of observing q, when the system
is in the state α, is “yes” with probability µα,q({1}), and it is “no” with
probability µα,q({0}).
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THEOREM 7.1. Let A be an observable.

(1) For each Borel subset E in R, the observable χE(A) is a question.
(2) If g is a real-valued Borel function on R, for which g(A) is a

question, then there exists a Borel set E such that g(A) = χE(A).

(Note that condition 2 does not assert that g necessarily equals χE .)

PROOF. For each Borel set E, we have

µα,χE(A)({1}) = µα,A(χ−1
E ({1}))

= µα,A(E),

and
µα,χE(A)({0}) = µα,A(χ−1

E ({0}))
= µα,A(Ẽ)

= 1− µα,A(E),

which proves that µα,χE(A) is supported on the two points 0 and 1 for
every α, whence χE(A) is a question and so part 1 is proved.
Given a g for which q = g(A) is a question, set E = g−1({1}), and
observe that for any α ∈ S we have

µα,q({1}) = µα,g(A)({1})
= µα,A(E)

= µα,χE(A)({1}).

Since both q and χE(A) are questions, it follows from the preceding
paragraph that

µα,q({0}) = µα,χE(A)({0}),

showing that
µα,q = µα,χE(A)

for every state α. Then, by Axiom 2, we have that

g(A) = q = χE(A).

We now define some mathematical structure on the set Q of all questions.
This set will form the fundamental ingredient of our model.

DEFINITION. Let Q denote the set of all questions. For each question
q ∈ Q, define a real-valued function mq on the set S of states by

mq(α) = µα,q({1}).
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If p and q are questions, we say that p ≤ q if mp(α) ≤ mq(α) for all
α ∈ S.
If p, q and r are questions, for which mr = mp+mq, we say that p and q
are summable and that r is the sum of p and q. We then write r = p+q.
More generally, if {qi} is a countable (finite or infinite) set of questions,
we say that the qi’s are summable if there exists a question q such that

mq(α) =
∑
i

mqi(α)

for every α ∈ S. In such a case, we write q =
∑
i qi.

Finally, a countable set {qi} is called mutually summable if every subset
of the qi’s is summable.

REMARK. As mentioned above, the set Q will turn out to be the
fundamental ingredient of our model, in the sense that everything else
will be described in terms of Q.

THEOREM 7.2.

(1) The set Q is a partially ordered set with respect to the ordering
≤ defined above.

(2) There exists a question q1 ∈ Q, which we shall often simply call
1, for which q ≤ q1 for every q ∈ Q. That is, Q has a maximum
element q1.

(3) There exists a question q0 ∈ Q, which we shall often simply call
0, for which q0 ≤ q for every q ∈ Q. That is, Q has a minimum
element q0.

(4) For each question q, there exists a question q̃ such that

mq +mq̃ = q1 = 1.

That is, every question has a complementary question.

PROOF. That Q is a partially ordered set is clear.
If A is any observable, and f is the identically 1 function, then the
question q1 = f(A) satisfies

mq1(α) = µα,q1({1})
= µα,f(A)({1})
= µα,A(f−1({1}))
= µα,A(R)

= 1
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for all α, and clearly then q ≤ q1 for every q ∈ Q.
Taking f to be the identically 0 function, we may define the question q0

to be f(A).
Finally, if f is the function defined by f(t) = 1 − t, and if q ∈ Q, then
f(q) is the desired question q̃. Indeed,

µα,f(q)({1}) = µα,q(f
−1({1}))

= µα,q({0}),

and
µα,f(q)({0}) = µα,q(f

−1({0}))
= µα,q({1}),

proving that f(q) is a question and showing also that

mf(q)(α) = 1−mq(α)

for every α, as desired.

DEFINITION. Two questions p and q are called orthogonal if p ≤ q̃
or (equivalently) q ≤ p̃. That is, p and q are orthogonal if mp +mq ≤ 1.

REMARK. Clearly, if p and q are summable, then they are orthogonal,
but the converse need not hold. Even if mp +mq ≤ 1, there may not be
a question r such that mr = mp + mq. We have no axiom that ensures
this.

Our next goal is to describe the observables in terms of the set Q.

THEOREM 7.3. Let A be an observable. For each Borel set E ⊆ R,
put

qAE = χE(A).

Then, the mapping E → qAE satisfies:

(1) qAR = 1 and qA∅ = 0.

(2) If {Ei} is a sequence of pairwise disjoint Borel sets, then {qAEi} is
a sequence of mutually compatible, mutually summable, (pairwise
orthogonal) questions, and

qA∪iEi =
∑
i

qAEi .

(3) If A and B are observables, for which qAE = qBE for every Borel
set E, then A = B.
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PROOF. Since χR is the identically 1 function, it follows that qAR = 1.
Similarly, qA∅ = 0.

If {Fi} is any (finite or infinite) sequence of pairwise disjoint Borel sets,
set F = ∪Fi. Then, clearly the questions {qAFi} are mutually compatible,
since they are all functions of the observable A. Also, for any state α we
have

mqAF
(α) = µα,qAF ({1})

= µα,χF (A)({1})
= µα,A(F )

= µα,A(∪Fi)

=
∑
i

µα,A(Fi)

=
∑
i

µα,χFi (A)({1})

=
∑
i

mqAFi
(α).

Now let {Ei} be a sequence of pairwise disjoint Borel sets. The preced-
ing calculation, as applied to every subset of the Ei’s, shows that the
questions {qAEi} are mutually summable and that

qAE =
∑

qAEi .

And, in particular, since the qAEi ’s are pairwise summable, they are pair-
wise orthogonal.
Finally, if A and B are distinct observables, then, by Axiom 2, there
exists a state α such that µα,A 6= µα,B . Hence, there is a Borel set E
such that

µα,A(E) 6= µα,B(E),

or

µα,χE(A)({1}) 6= µα,χE(B)({1}),

or qAE 6= qBE , as desired.

DEFINITION. A mapping E → qE , from the σ-algebra B of Borel
sets into Q, which satisfies the two properties below, is called a question-
valued measure.
(1) qR = 1 and q∅ = 0.
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(2) If {Ei} is a sequence of pairwise disjoint Borel sets, then {qEi}
is a sequence of mutually compatible, mutually summable, (pairwise
orthogonal) questions, and

q∪Ei =
∑
i

qEi .

REMARK. Theorem 7.3 asserts that each observable A determines a
question-valued measure qA and that the assignment A→ qA is 1-1.

EXERCISE 7.8. Let E → qE be a question-valued measure.
(a) Prove that if E ⊆ F, then qE ≤ qF ; i.e., E → qE is order-preserving.
(b) Show that qẼ = q̃E ; i.e., E → qE is complement-preserving.

AXIOM 5. If E → qE is a question-valued measure, then there exists
an observable A such that qE = qAE for all Borel sets E.

EXERCISE 7.9. Discuss the intuitive legitimacy of Axiom 5.

EXERCISE 7.10. Let {q1, q2, . . . } be a mutually summable set of ques-
tions for which

∑
i qi = 1. Prove that the qi’s are mutually compatible.

HINT: Define a question-valued measure E → qE by setting q{i} = qi
for each i = 1, 2, . . . , and define

qE =
∑
i∈E

q{i}.

then use Axiom 5.

THEOREM 7.4. Let p and q be questions. Then p and q are compatible
if and only if there exist mutually summable questions r1, r2, r3 and r4

satisfying:

(1) p = r1 + r2.
(2) q = r2 + r3.
(3) r1 + r2 + r3 + r4 = 1.

PROOF. If p and q are compatible, let A be an observable and let f
and g be Borel functions such that p = f(A) and q = g(A). By Theorem
7.1, we may assume that f = χE and g = χF , where E and F are Borel
sets in R. Define four pairwise disjoint Borel sets as follows:

E1 = E − F, E2 = E ∩ F, E3 = F − E, E4 = R− (E ∪ F ).
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Now, define ri = χEi(A). The desired properties of the ri’s follow di-
rectly. For example,

mp(α) = µα,χE(A)({1})
= µα,A(E)

= µα,A(E1 ∪ E2)

= µα,A(E1) + µα,A(E2)

= µα,χE1
(A)({1}) + µα,χE2

(A)({1})
= mr1(α) +mr2(α),

showing that p = r1 + r2 as desired. We leave the other verifications to
the exercise that follows.
Conversely, given r1, . . . , r4 satisfying the conditions in the statement
of the theorem, define a mapping E → qE of the σ-algebra B of Borel
sets into Q as follows:

qE =
∑
i∈E

ri,

with the convention that qE = 0 if E does not contain any of the numbers
1,2,3,4. Then E → qE is a question-valued measure. (See the preceding
exercise.) By Axiom 5, there exists an observable A such that qE = qAE
for all E, and clearly p = χ[1,2](A) and q = χ[2,3](A) are both functions
of A, as desired.

EXERCISE 7.11. Verify that q = r1 +r3 and that r1 +r2 +r3 +r4 = 1
in the first part of the preceding proof.

EXERCISE 7.12. (a) Prove that the map q → mq is 1-1.
(b) Show, by identifying q with mq, that the set Q can be given a natural
Hausdorff topology.
(c) Let q be a question. Show that the set of all questions p, for which
p ≤ q, and the set of all questions p such that p is orthogonal to q are
closed subsets of Q in the topology from part b.
(d) Prove that the map q → q̃ is continuous with respect to the topology
on Q from part b.

REMARK. We equip the set Q of all questions with the topology from
the preceding exercise. That is, we identify each question q with the
corresponding function mq and use the topology of pointwise conver-
gence of these functions. In this way, the set Q is a partially-ordered
Hausdorff topological space having a maximum element and a minimum
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element. In addition to these topological and order structures on Q,
there are notions of complement, of orthogonality, of summability, and
of compatibility. We shall be interested in finding a mathematical object
having these attributes.

EXERCISE 7.13. (a) Show that the closed interval [0, 1] has all the
properties of Q. That is, show that [0, 1] is a partially-ordered topological
space having a maximum and a minimum, and show that there is a
notion of summability (not the usual one) on [0, 1] such that each element
has a complement. Finally, prove that any two elements of [0, 1] that
are summable are compatible. In a way, [0, 1] is the simplest model for
Q. HINT: Use the characterization of compatibility in Theorem 7.4.
(b) Is the unit circle a possible model for Q?

Having described the set O of observables as question-valued measures,
we turn next to the set S of states. We want to describe the states also
in terms of the set Q.

DEFINITION. By an automorphism of Q we mean a 1-1 map φ of Q
onto itself that satisfies:

(1) If p ≤ q, then φ(p) ≤ φ(q); i.e., φ is order-preserving.

(2) φ(q̃) = φ̃(q) for all q ∈ Q; i.e., φ is complement-preserving.
(3) If {qi} is a summable set of questions, then {φ(qi)} is a summable

set of questions, and

φ(
∑
i

qi) =
∑
i

φ(qi).

If φ and φ−1 are Borel maps of the topological space Q, then φ is called
a Borel automorphism.
By a character of the set Q of questions, we mean a continuous function
µ : Q→ [0, 1] that satisfies:

(1) If p ≤ q, then µ(p) ≤ µ(q); i.e., µ is order-preserving.
(2) µ(q̃) = 1− µ(q); i.e., µ is complement-preserving.
(3) If {qi} is a summable sequence of questions, then µ(

∑
qi) =∑

µ(qi); i.e., µ is additive when possible.

DEFINITION. For each state α, define a function µα on Q by

µα(q) = mq(α) = µα,q({1}).

EXERCISE 7.14. (a) Show that each function µα is a continuous
order-preserving map of Q into [0,1].
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(b) Show that µα(q̃) = 1− µα(q) for all q ∈ Q and all α ∈ S.
(c) If {qi} is a summable sequence of questions with q =

∑
qi, show that

µα(q) =
∑

µα(qi).

(d) Conclude that each function µα is a continuous character of Q.
(e) Show that the composition of a character of Q (e.g., µα) and a
question-valued measure E → qE defines a probability measure on the
Borel subsets of R.
(f) Show that the map α → µα is 1-1 on S. Show further that if α is a
mixed state, say α =

∑n
i=1 tiαi, then

µα =

n∑
i=1

tiµαi ;

i.e., α→ µα is an affine map on S.

REMARK. We give to S the Hausdorff topology obtained by identify-
ing α with the continuous function µα on Q and considering this space
of functions as topologized by the topology of pointwise convergence.
Thus, we identify the set S of states of our system with certain con-
tinuous functions (characters) from the set Q of questions into [0, 1]. Of
course, not every continuous function f : Q→ [0, 1] need correspond to a
state. Indeed, the functions corresponding to states must be characters.

We turn now to the evolution of the system in time. The axiom we take
assumes that the system has always existed and will always exist. That
is, the system can be thought of as evolving backward in time as well as
forward. See part d of Exercise 7.15.

AXIOM 6. (Time Evolution of the System) For each nonnegative
real number t, there exists a 1-1 transformation φt of S onto itself that
describes the evolution of the system in time. In addition, for each non-
negative real number t, there exists a corresponding 1-1 transformation
φ′t, of the set Q onto itself, so that

(1) φt+s = φt ◦ φs for all nonnegative s, t.
(2) For all α ∈ S, q ∈ Q, and t ≥ 0, we have

µφt(α),q = µα,φ′t(q).

(3) The map (t, α)→ φt(α) is a Borel map of [0,∞)× S into S.
(4) The map (t, q)→ φ′t(q) is a Borel map of [0,∞)×Q into Q.
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EXERCISE 7.15. (a) Discuss the intuitive legitimacy of Axiom 6. In
particular, what is the interpretation of the transformation φ′t?
(b) Show that φ′t+s = φ′t ◦ φ′s for all nonnegative t and s.
(c) Show that φ′t is uniquely determined by φt and that φt is uniquely
determined by φ′t.
(d) Suppose α is a state. Given t > 0, show that there exists a unique
state β such that if the system is in the state α now, then it was in the
state β t units of time ago. (In other words, the evolution of the system
can be reversed in time.)

REMARK. Of course, the primary goal of experimental investigation
is to discover how to predict what will happen to a system as time goes
by. In our development, then, we would want to discover the evolution
transformations φt of S into itself.

Next, we turn to the notion of a symmetry of the system.

DEFINITION. If g denotes a (possibly hypothetical) 1-1 transforma-
tion of space, of the observer, of the system, etc., and if α ∈ S and
A ∈ O are given, we write µgα,A for the probability measure obtained
by assuming that this transformation g has been performed, supposing
that the system is in the state α, and by making the observation A. The
transformation g is called a symmetry of the system if each µgα,A = µα,A,
i.e., if the “measurements” of the system are unchanged by performing
the transformation g.

REMARK. We assume that the set G of all symmetries forms a group
of transformations.

AXIOM 7. To each symmetry g of the system there corresponds a
1-1 transformation πg of S onto itself and a 1-1 transformation π′g of Q
onto itself such that
(1) πg1g2 = πg1 ◦ πg2 for all g1, g2 ∈ G.
(2) For all α ∈ S and all q ∈ Q, we have

µπg(α),q = µα,π′g(q).

(3) If a subgroup H of the group of all symmetries has some “natural”
topological structure, then the maps (h, α)→ πh(α) and (h, q)→ π′h(q)
are Borel maps from H × S into S and H ×Q into Q respectively.
(4) πg commutes with each evolution transformation φt; i.e., πg ◦ φt =
φt ◦ πg for all t ≥ 0 and all g ∈ G.
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EXERCISE 7.16. (a) Discuss the intuitive legitimacy of Axiom 7. In
particular, what is the interpretation of the assumption that each πg
commutes with each evolution transformation φt?
(b) Show that each π′g is uniquely determined by πg, and that π′g1g2 =
π′g1 ◦ π

′
g2 for all g1, g2 ∈ G.

(c) Prove that each transformation π′g commutes with each evolution
transformation φ′t.

THEOREM 7.5. Each of the time evolution transformations φ′t and
each of the symmetry transformations π′g are Borel automorphisms of
the set Q. That is,

(1) φ′t, π
′
g, and their inverses are Borel maps of Q onto itself.

(2) if p ≤ q, then φ′t(p) ≤ φ′t(q) and π′g(p) ≤ π′g(q).
(3) φ′t(q̃) = φ̃′t(q) and π′g(q̃) = π̃′g(q).
(4) If {qi} is a summable sequence of questions, then {φ′t(qi)} and
{π′g(qi)} are summable sequences of questions, and

φ′t(
∑

qi) =
∑

φ′t(qi)

and
π′g(
∑

qi) =
∑

π′g(qi).

PROOF. Suppose p ≤ q are questions. We have then for any α that

mφ′t(q)
(α) = µα,φ′t(q)({1})

= µφt(α),q({1})
= mq(φt(α))

≥ mp(φt(α))

= mφ′t(p)
(α),

showing that φ′t(q) ≥ φ′t(p). An analogous computation shows that
π′g(q) ≥ π′g(p).
We leave the rest of the proof to the exercise that follows.

EXERCISE 7.17. Complete the proof to the preceding theorem.

We summarize the ingredients in our model as follows:
(1) There exists a Hausdorff space Q that is a partially ordered set,
having a maximum element 1 and a minimum element 0. There are
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notions of compatibility, orthogonality, and summability for certain of
the elements of Q. Compatibility is characterized in Theorem 7.4.
(2) Each q ∈ Q has a complementary element q̃ satisfying q + q̃ = 1.
(3) The set S of states is represented as a set of continuous homomor-
phisms (characters) µ of Q into [0,1]. Each of these homomorphisms is
continuous, order-preserving, additive when possible, and complement-
preserving. This set S of states is a topological space and is closed under
convex combinations.
(4) The set O of observables is identified with the set of Q-valued mea-
sures.
(5) The time evolution of the system is described by a one-parameter
semigroup φ′t of Borel transformations (automorphisms) of Q. These
transformations are additive when possible, complement-preserving, and
order-preserving.
(6) To each symmetry g of the system there corresponds a 1-1 transfor-
mation (automorphism) π′g of Q onto itself. The transformation π′g is
Borel, preserves order, addition when possible, and complements. Each
symmetry transformation π′g commutes with each evolution transforma-
tion φ′t.

The goal is to find concrete mathematical examples of the objectsQ,S, φ′t
and π′g. Initially, we will select a model for Q, and this selection will de-
pend very much on which particular system we are studying. The set
S is then a subset of the characters of Q, which, in any particular case,
we can hope to describe concretely. Of course, the ultimate aim is to
determine the evolution transformations φt of S into itself. Sometimes it
is possible to describe the symmetry transformations π′g by using group
theory. If so, we may be able to describe the evolution transformations
φ′t by examining what transformations commute with the concrete π′g’s
we have. However, our first task is to find an appropriate model for Q,
and this we do in the next chapter.
We mention next some possibly less intuitively acceptable axioms. From
a mathematical point of view, however, they are technically simplifying.

AXIOM 8. If {αi} is a sequence of states, and if {ti} is a sequence
of positive real numbers for which

∑
ti = 1, then there exists a state α,

which we denote by
∑
tiαi, such that

µα,A =
∑

tiµαi,A

for every observable A.
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AXIOM 9. If {qi} is a net of questions, such that the net {mqi} of
functions converges pointwise to a function m on S, then there exists a
question q such that mq = m.

AXIOM 10. If {αi} is a net of states, for which the net {µαi} of
characters on Q converges pointwise to a character µ, then there exists
a state α such that µα = µ.

AXIOM 11. If µ is a character of Q, then there exists a state α for
which µα = µ.

EXERCISE 7.18. Discuss the intuitive legitimacy of Axioms 8, 9, 10,
and 11.

AXIOM 12. If p and q are (compatible) questions, such that p ≤ q
and p ≤ q̃, then p = 0.

EXERCISE 7.19. (a) Discuss the intuitive legitimacy of Axiom 12.
(b) Suppose that for each nonzero question q there exists a state α such
that mq(α) > 1/2. Show that Axiom 12 must then be valid.

CHAPTER VIII

HILBERT SPACES

DEFINITION Let X and Y be two complex vector spaces. A map
T : X → Y is called a conjugate-linear transformation if it is a real-
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linear transformation from X into Y, and if

T (λx) = λT (x)

for all x ∈ X and λ ∈ C.
Let X be a complex vector space. An inner product or Hermitian form
on X is a mapping from X×X into C (usually denoted by (x, y)) which
satisfies the following conditions:

(1) (x, y) = (y, x) for all x, y ∈ X.
(2) For each fixed y ∈ X, the map x → (x, y) is a linear functional

on X.
(3) (x, x) > 0 for all nonzero x ∈ X.

Note that conditions 1 and 2 imply that for each fixed vector x the
map y → (x, y) is conjugate-linear. It also follows from condition 2 that
(0, x) = 0 for all x ∈ X.
The complex vector space X, together with an inner product ( , ), is
called an inner product space.

REMARK. We treat here primarily complex inner product spaces and
complex Hilbert spaces. Corresponding definitions can be given for real
inner product spaces and real Hilbert spaces, and the results about these
spaces are occasionally different from the complex cases.

EXERCISE 8.1. (a) Let X be the complex vector space of all contin-
uous complex-valued functions on [0,1], and define

(f, g) =

∫ 1

0

f(x)g(x) dx.

Show that X, with this definition of ( , ), is an inner product space.
(b) Let X = Cn, and define

(x, y) =

n∑
j=1

xjyj ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Prove that X, with this
definition of ( , ), is an inner product space.
(c) (General l2) Let µ be counting measure on a countable set (sequence)
S. Let X = L2(µ), and for f, g ∈ X define

(f, g) =

∫
S

f(s)g(s) dµ(s) =
∑
s∈S

f(s)g(s).
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Prove that X is an inner product space with respect to this definition.
(d) Specialize the inner product space defined in part c to the two cases
first where S is the set of nonnegative integers and then second where
S is the set Z of all integers.

THEOREM 8.1. Let X be an inner product space.

(1) (Cauchy-Schwarz Inequality) For all x, y ∈ X,

|(x, y)| ≤
√

(x, x)
√

(y, y).

(2) The assignment x →
√

(x, x) is a norm on X, and X equipped
with this norm is a normed linear space.

PROOF. Fix x and y inX. If either x or y is 0, then part 1 is immediate.
Otherwise, define a function f of a complex variable λ by

f(λ) = (x+ λy , x+ λy),

and note that f(λ) ≥ 0 for all λ. We have that

f(λ) = (x, x) + λ(y, x) + λ(x, y) + (y, y)|λ|2.

Substituting λ = −(x, y)/(y, y), and using the fact that f(λ) ≥ 0 for all
λ, the general case of part 1 follows.
To see that x →

√
(x, x) defines a norm ‖x‖ on X, we need only check

that ‖x+ y‖ ≤ ‖x‖+ ‖y‖. But

‖x+ y‖2 = (x+ y , x+ y)

= (x, x) + 2<((x, y)) + (y, y)

≤ ‖x‖2 + 2|(x, y)|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2,

which completes the proof of part 2.

EXERCISE 8.2. (a) Show that equality holds in the Cauchy-Schwarz
inequality, i.e.,

|(x, y)| = ‖x‖‖y‖,

if and only if one of the vectors is a scalar multiple of the other. Conclude
that equality holds in the triangle inequality for the norm if and only if
one of the vectors is a nonnegative multiple of the other.
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(b) Let y and z be elements of an inner product space X. Show that
y = z if and only if (x, y) = (x, z) for all x ∈ X.
(c) Prove the polarization identity and the parallelogram law in an inner
product space X; i.e., show that for x, y ∈ X, we have

(x, y) = (1/4)

3∑
j=0

ij‖x+ ijy‖2

and

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

(d) Suppose X and Y are inner product spaces and that T is a linear
isometry of X into Y. Prove that T preserves inner products. That is,
if x1, x2 ∈ X, then

(T (x1), T (x2)) = (x1, x2).

(e) Suppose X is an inner product space, that Y is a normed linear space,
and that T is a linear isometry of X onto Y. Show that there exists an
inner product ( , ) on Y such that ‖y‖ =

√
(y, y) for every y ∈ Y ; i.e.,

Y is an inner product space and the norm on Y is determined by that
inner product.
(f) Suppose Y is a normed linear space whose norm satisfies the paral-
lelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

for all x, y ∈ Y. Show that there exists an inner product ( , ) on Y such

that ‖y‖ =
√

(y, y) for every y ∈ Y ; i.e., Y is an inner product space and
the given norm on Y is determined by that inner product. HINT: Use the
polarization identity to define (x, y). Show directly that (y, x) = (x, y)
and that (x, x) > 0 if x 6= 0. For a fixed y, define f(x) = (x, y). To see
that f is linear, first use the parallelogram law to show that

f(x+ x′) + f(x− x′) = 2f(x),

from which it follows that f(λx) = λf(x) for all x ∈ Y and λ ∈ C. Then,
for arbitrary elements u, v ∈ Y, write u = x+ x′ and v = x− x′.
(g) Show that the inner product is a continuous function of X ×X into
C. In particular, the map x→ (x, y) is a continuous linear functional on
X for every fixed y ∈ X.
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DEFINITION. A (complex) Hilbert space is an inner product space
that is complete in the metric defined by the norm that is determined
by the inner product. An inner product space X is called separable if
there exists a countable dense subset of the normed linear space X.

REMARK. Evidently, a Hilbert space is a special kind of complex Ba-
nach space. The inner product spaces and Hilbert spaces we consider
will always be assumed to be separable.

EXERCISE 8.3. Let X be an inner product space. Show that any sub-
space M ⊆ X is an inner product space, with respect to the restriction
of the inner product on X, and show that a closed subspace of a Hilbert
space is itself a Hilbert space. If M is a closed subspace of a Hilbert
space H, is the quotient space H/M necessarily a Hilbert space?

DEFINITION. Let X be an inner product space. Two vectors x and y
in X are called orthogonal or perpendicular if (x, y) = 0. Two subsets S
and T are orthogonal if (x, y) = 0 for all x ∈ S and y ∈ T. If S is a subset
of X, then S⊥ will denote what we call the orthogonal complement to S
and consists of the elements x ∈ X for which (x, y) = 0 for all y ∈ S. A
collection of pairwise orthogonal unit vectors is called an orthonormal
set.

EXERCISE 8.4. Let X be an inner product space.
(a) Show that a collection x1, . . . , xn of nonzero pairwise orthogonal
vectors in X is a linearly independent set. Verify also that

‖
n∑
i=1

cixi‖2 =

n∑
i=1

|ci|2‖xi‖2.

(b) (Gram-Schmidt Process) Let x1, . . . be a (finite or infinite) sequence
of linearly independent vectors in X. Show that there exists a sequence
w1, . . . of orthonormal vectors such that the linear span of x1, . . . , xi
coincides with the linear span of w1, . . . , wi for all i ≥ 1. HINT: Define
the wi’s recursively by setting

wi =
xi −

∑i−1
k=1(xi, wk)wk

‖xi −
∑i−1
k=1(xi, wk)wk‖

.

(c) Show that if X is a separable inner product space, then there exists
an orthonormal sequence {xi} whose linear span is dense in X.
(d) If M is a subspace of X, show that the set M⊥ is a closed subspace
of X. Show further that M ∩M⊥ = {0}.
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(e) Let X = C([0, 1]) be the inner product space from part a of Exercise
8.1. For each 0 < t < 1, let Mt be the set of all f ∈ X for which∫ t

0
f(x) dx = 0. Show that the collection {Mt} forms a pairwise distinct

family of closed subspaces of X. Show further that M⊥t = {0} for all
0 < t < 1. Conclude that, in general, the map M →M⊥ is not 1-1.
(f) Suppose X is a Hilbert Space. If M and N are orthogonal closed
subspaces ofX, show that the subspaceM+N, consisting of the elements
x+ y for x ∈M and y ∈ N, is a closed subspace.

THEOREM 8.2. Let H be a separable infinite-dimensional (complex)
Hilbert space. Then

(1) Every orthonormal set must be countable.
(2) Every orthonormal set in H is contained in a (countable) max-

imal orthonormal set. In particular, there exists a (countable)
maximal orthonormal set.

(3) If {φ1, φ2, . . . } is an orthonormal sequence in H, and {c1, c2, . . . }
is a square summable sequence of complex numbers, then the
infinite series

∑
cnφn converges to an element in H.

(4) (Bessel’s Inequality) If φ1, φ2, . . . is an orthonormal sequence in
H, and if x ∈ H, then∑

n

|(x, φn)|2 ≤ ‖x‖2,

implying that the sequence {(x, φn)} is square-summable.
(5) If {φn} denotes a maximal orthonormal sequence (set) in H, then

every element x ∈ H is uniquely expressible as a (infinite) sum

x =
∑
n

cnφn,

where the sequence {cn} is a square summable sequence of com-
plex numbers. Indeed, we have that cn = (x, φn).

(6) If {φn} is any maximal orthonormal sequence in H, and if x, y ∈
H, then

(x, y) =
∑
n

(x, φn)(y, φn).

(7) (Parseval’s Equality) For any x ∈ H and any maximal orthonor-
mal sequence {φn}, we have

‖x‖2 =
∑
n

|(x, φn)|2.
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(8) Let {φ1, φ2, . . . } be a maximal orthonormal sequence in H, and
define T : l2 → H by

T ({cn}) =

∞∑
n=1

cnφn.

Then T is an isometric isomorphism of l2 onto H. Consequently,
any two separable infinite-dimensional Hilbert spaces are isomet-
rically isomorphic.

PROOF. Suppose an orthonormal set in H is uncountable. Then, since
the distance between any two distinct elements of this set is

√
2, it

follows that there exists an uncountable collection of pairwise disjoint
open subsets of H, whence H is not separable. Hence, any orthonormal
set must be countable, i.e., a sequence.
Let S be an orthonormal set in H. The existence of a maximal orthonor-
mal set containing S now follows from the Hausdorff maximality princi-
ple, applied to the collection of all orthonormal sets in H that contain
S.
Next, let {φ1, φ2, . . . } be an orthonormal sequence, and let x ∈ H be
given. For each positive integer i, set ci = (x, φi). Then, for each positive
integer n We have

0 ≤ ‖x−
n∑
i=1

ciφi‖2

= ((x−
n∑
i=1

ciφi), (x−
n∑
j=1

cjφj))

= (x, x)−
n∑
j=1

cj(x, φj)−
n∑
i=1

ci(φi, x) +

n∑
i=1

n∑
j=1

cicj(φi, φj)

= (x, x)−
n∑
j=1

cjcj −
n∑
i=1

cici +

n∑
i=1

n∑
j=1

cicjδij

= ‖x‖2 −
n∑
i=1

|ci|2.

Since this is true for an arbitrary n, Bessel’s inequality follows.
If {φ1, φ2, . . . } is an orthonormal sequence and {c1, c2, . . . } is a square
summable sequence of complex numbers, then the sequence of partial
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sums of the infinite series
∞∑
n=1

cnφn

is a Cauchy sequence. Indeed,

‖
j∑

n=1

cnφn −
k∑

n=1

cnφn‖2 =

j∑
n=k+1

|cn|2.

See part a of Exercise 8.4. This proves part 4.
Now, if {φ1, φ2, . . . } is a maximal orthonormal sequence in H, and x is
an element of H, we have from Bessel’s inequality that

∑
n |(x, φn)|2 is

finite, and therefore
∑

(x, φn)φn converges in H by part 4. If we define

y =
∑
n

(x, φn)φn.

Clearly ((x − y), φn) = 0 for all n, implying that, if x − y 6= 0, then
(x− y)/‖x− y‖ is a unit vector that is orthogonal to the set {φn}. But
since this set is maximal, no such vector can exist, and we must have
x = y as desired. To see that this representation of x as an infinite
series is unique, suppose x =

∑
c′nφn, where {c′n} is a square-summable

sequence of complex numbers. Then, for each k, we have

(x, φk) =
∑
n

c′n(φn, φk) = c′k,

showing the uniqueness of the coefficients.
Because the inner product is continuous in both variables, we have that

(x, y) =
∑
n

∑
k

((x, φn)φn, (y, φk)φk) =
∑
n

(x, φn)(y, φn),

proving part 6.
Parseval’s equality follows from part 6 by setting y = x.
Part 7 is now immediate, and this completes the proof.

DEFINITION. We call a maximal orthonormal sequence in a separable
Hilbert space H an orthonormal basis of H.

EXERCISE 8.5. (a) Prove that L2[0, 1] is a Hilbert space with respect
to the inner product defined by

(f, g) =

∫ 1

0

f(x)g(x) dx.
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(b) For each integer n, define an element φn ∈ L2[0, 1] by φn(x) = e2πinx.
Show that the φn’s form an orthonormal sequence in L2[0, 1].
(c) For each 0 < r < 1, define a function kr on [0, 1] by

kr(x) =
1− r2

1 + r2 − 2r cos(2πx)
.

(See part d of Exercise 6.7.) Show that

kr(x) =

∞∑
n=−∞

r|n|φn(x),

whence
∫ 1

0
kr(x) dx = 1 for every 0 < r < 1. Show further that if

f ∈ L2[0, 1], then
f = lim

r→1
kr ∗ f,

where the limit is taken in L2, and where ∗ denotes convolution; i.e.,

(kr ∗ f)(x) =

∫ 1

0

kr(x− y)f(y) dy.

(d) Suppose f ∈ L2[0, 1] satisfies (f, φn) = 0 for all n. Show that f is
the 0 element of L2[0, 1]. HINT: (kr ∗ f)(x) = 0 for every r < 1.
(e) Conclude that the set {φn} forms an orthonormal basis for L2[0, 1].
(f) Using f(x) = x, show that

∞∑
n=1

1/n2 = π2/6.

Then, using f(x) = x2 − x, show that
∞∑
n=1

1/n4 = π4/90.

HINT: Parseval’s equality.
(g) Let M be the set of all functions f =

∑
cnφn in L2[0, 1] for which

c2n+1 = 0 for all n, and let N be the set of all functions g =
∑
cnφn in

L2[0, 1] for which c2n = (1 + |n|)c2n+1 for all n. Prove that both M and
N are closed subspaces of L2[0, 1].
(h) ForM andN as in part g, show thatM+N contains each φn and so is
a dense subspace of L2[0, 1]. Show further that if h =

∑
n cnφn ∈M+N,

then ∑
n

n2|c2n+1|2 <∞.

(i) Conclude that the sum of two arbitrary closed subspaces of a Hilbert
space need not be closed. Compare this with part f of Exercise 8.4.
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THEOREM 8.3. (Projection Theorem) Let M be a closed subspace of
a separable Hilbert space H. Then:

(1) H is the direct sum H = M
⊕
M⊥ of the closed subspaces M

and M⊥; i.e., every element x ∈ H can be written uniquely as
x = y + z for y ∈M and z ∈M⊥.

(2) For each x ∈ H there exists a unique element y ∈ M for which
x− y ∈M⊥. We denote this unique element y by pM (x).

(3) The assignment x→ pM (x) of part 2 defines a continuous linear
transformation pM of H onto M that satisfies p2

M = pM .

PROOF. We prove part 1 and leave the rest of the proof to an exercise.
Let {φn} be a maximal orthonormal sequence in the Hilbert space M,
and extend this set, by Theorem 8.2, to a maximal orthonormal sequence
{φn} ∪ {ψk} in H. If x ∈ H, then, again according to Theorem 8.2, we
have

x =
∑
n

(x, φn)φn +
∑
k

(x, ψk)ψk = y + z,

where y =
∑
n(x, φn)φn and z =

∑
k(x, ψk)ψk. Clearly, y ∈ M and

z ∈ M⊥. If x = y′ + z′, for y′ ∈ M and z′ ∈ M⊥, then the element
y − y′ = z′ − z belongs to M ∩ M⊥, whence is 0. This shows the
uniqueness of y and z and completes the proof of part 1.

EXERCISE 8.6. (a) Complete the proof of the preceding theorem.
(b) For pM as in part 3 of the preceding theorem, show that

‖pM (x)‖ ≤ ‖x‖

for all x ∈ H; i.e., pM is norm-decreasing.
(c) Again, for pM as in part 3 of the preceding theorem, show that

(pM (x), y) = (x, pM (y))

for all x, y ∈ H.
(d) Let S be a subset of a Hilbert space H. Show that (S⊥)⊥ is the
smallest closed subspace of H that contains S. Conclude that if M is a
closed subspace of a Hilbert space H, then M = (M⊥)⊥.
(e) Let M be a subspace of a Hilbert space H. Show that M is dense in H
if and only if M⊥ = {0}. Give an example of a proper closed subspace
M of an inner product space X (necessarily not a Hilbert space) for
which M⊥ = {0}.
(f) Let M be a closed subspace of a Hilbert space H. Define a map
T : M⊥ → H/M by T (x) = x + M. Prove that T is an isometric
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isomorphism of M⊥ onto H/M. Conclude then that the quotient space
H/M, known to be a Banach space, is in fact a Hilbert space.

DEFINITION. If M is a closed subspace of a separable Hilbert space
H, then the transformation pM of the preceding theorem is called the
projection of Honto M.

REMARK. The set M of all closed subspaces of a Hilbert space H
is a candidate for the set Q of questions in our mathematical model
of experimental science. (See Chapter VII.) Indeed, M is obviously a
partially-ordered set by inclusion; it contains a maximum element H and
a minimum element {0}; the sum of two orthogonal closed subspaces is a
closed subspace, so that there is a notion of summability for certain pairs
of elements ofM; each elementM ∈M has a complementM⊥ satisfying
M +M⊥ = H. Also, we may define M and N to be compatible if there
exist four pairwise orthogonal closed subspaces M1, . . . ,M4 satisfying

(1) M = M1 +M2.
(2) N = M2 +M3.
(3) M1 +M2 +M3 +M4 = H.

We study this candidate for Q in more detail later by putting it in 1-1
correspondence with the corresponding set of projections.

DEFINITION. Let {Hn} be a sequence of Hilbert spaces. By the
Hilbert space direct sum

⊕
Hn of the Hn’s, we mean the subspace of

the direct product
∏
nHn consisting of the sequences {xn}, for which

xn ∈ Hn for each n, and for which
∑
n ‖xn‖2 <∞.

EXERCISE 8.7. (a) Prove that the Hilbert space direct sum
⊕
Hn of

Hilbert spaces {Hn} is a Hilbert space, where the vector space operations
are componentwise and the inner product is defined by

({xn}, {yn}) =
∑
n

(xn, yn).

Show that the ordinary (algebraic) direct sum of the vector spaces {Hn}
can be naturally identified with a dense subspace of the Hilbert space
direct sum of the Hn’s. Verify that if each Hn is separable then so is⊕

nHn.
(b) Suppose {Mn} is a pairwise orthogonal sequence of closed subspaces
of a Hilbert space H and that M is the smallest closed subspace of H
that contains each Mn. Construct an isometric isomorphism between M
and the Hilbert space direct sum

⊕
Mn, where we regard each closed

subspace Mn as a Hilbert space in its own right.
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THEOREM 8.4. (Riesz Representation Theorem for Hilbert Space)
Let H be a separable Hilbert space, and let f be a continuous lin-
ear functional on H. Then there exists a unique element yf of H for
which f(x) = (x, yf ) for all x ∈ H. That is, the linear functional f can
be represented as an inner product. Moreover, the map f → yf is a
conjugate-linear isometric isomorphism of the conjugate space H∗ onto
H.

PROOF. Let {φ1, φ2, . . . } be a maximal orthonormal sequence in H,
and for each n, define cn = f(φn). Note that |cn| ≤ ‖f‖ for all n;
i.e., the sequence {cn} is bounded. For any positive integer n, write
wn =

∑n
j=1 cjφj , and note that

‖wn‖2 =

n∑
j=1

|cj |2 = |f(wn)| ≤ ‖f‖‖wn‖,

whence
n∑
j=1

|cj |2 ≤ ‖f‖2,

showing that the sequence {cn} belongs to l2. Therefore, the series∑∞
n=1 cnφn converges in H to an element yf . We see immediately that

(yf , φn) = cn for every n, and that ‖yf‖ ≤ ‖f‖. Further, for each x ∈ H,
we have by Theorem 8.2 that

f(x) = f(
∑

(x, φn)φn)

=
∑

(x, φn)cn

=
∑

(x, φn)(yf , φn)

= (x, yf ),

showing that f(x) = (x, yf ) as desired.
From the Cauchy-Schwarz inequality, we then see that ‖f‖ ≤ ‖yf‖, and
we have already seen the reverse inequality above. Hence, ‖f‖ = ‖yf‖.
We leave the rest of the proof to the exercise that follows.

EXERCISE 8.8. (a) Prove that the map f → yf of the preceding the-
orem is conjugate linear, isometric, and onto H. Conclude that the map
f → yf is a conjugate-linear, isometric isomorphism of the conjugate
space H∗ of H onto H. Accordingly, we say that a Hilbert space is self
dual.
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(b) Let H be a Hilbert space. Show that a net {xα} of vectors in H
converges to an element x in the weak topology of H if and only if

(x, y) = lim
α

(xα, y)

for every y ∈ H.
(c) Show that the map f → yf of the preceding theorem is a homeo-
morphism of the topological vector space (H∗,W∗) onto the topological
vector space (H,W).
(d) Let H be a separable Hilbert space. Prove that the closed unit ball
in H is compact and metrizable in the weak topology.
(e) Let H be a separable Hilbert space and let {xn} be a sequence of
vectors in H. If {xn} converges weakly to an element x ∈ H, show that
the sequence {xn} is uniformly bounded in norm. Conversely, if the
sequence {xn} is uniformly bounded in norm, prove that there exists a
subsequence {xnk} of {xn} that is weakly convergent. HINT: Uniform
Boundedness Principle and Alaoglu’s Theorem.

DEFINITION. Let H be a Hilbert space, and let B(H) denote the
set L(H,H) of all bounded linear transformations of H into itself. If
T ∈ B(H) and x, y ∈ H, we call the number (T (x), y) a matrix coefficient
for T.
Let T be an element of B(H). Define, as in Chapter IV, ‖T‖ by

‖T‖ = sup
x∈H
‖x‖≤1

‖T (x)‖.

EXERCISE 8.9. (a) For T ∈ B(H), show that

‖T‖ = sup
x,y∈H

‖x‖≤1,‖y‖≤1

|(T (x), y)|.

(b) For T ∈ B(H) and x, y ∈ H, prove the following polarization iden-
tity:

(T (x), y) = (1/4)

3∑
j=0

ij(T (x+ ijy), (x+ ijy)).

(c) If S, T ∈ B(H), show that ‖TS‖ ≤ ‖T‖‖S‖. Conclude that B(H)
is a Banach algebra; i.e., B(H) is a Banach space on which there is
also defined an associative multiplication ×, which is distributive over
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addition, commutes with scalar multiplication, and which satisfies ‖T ×
S‖ ≤ ‖T‖‖S‖.
(d) If S, T ∈ B(H) satisfy (T (x), y) = (S(x), y) for all x, y ∈ H (i.e.,
they have the same set of matrix coefficients), show that S = T. Show
further that T = S if and only if (T (x), x) = (S(x), x) for all x ∈ H.
(This is a result that is valid in complex Hilbert spaces but is not valid
in Hilbert spaces over the real field. Consider the linear transformation

on R2 determined by the matrix
[

0 1

−1 0

]
.)

(e) If F,G are continuous linear transformations of H into any topo-
logical vector space X, and if F (φn) = G(φn) for all φn in a maximal
orthonormal sequence, show that F = G.

THEOREM 8.5. Let H be a complex Hilbert space, and let L be a
mapping of H ×H into C satisfying:

(1) For each fixed y, the map x → L(x, y) is a linear functional on
H.

(2) For each fixed x, the map y → L(x, y) is a conjugate linear trans-
formation of H into C.

(3) There exists a positive constant M such that

|L(x, y)| ≤M‖x‖‖y‖

for all x, y ∈ H.
(Such an L is called a bounded Hermitian form on H.) Then there exists
a unique element S ∈ B(H) such that

L(x, y) = (x, S(y))

for all x, y ∈ H.

PROOF. For each fixed y ∈ H, we have from assumptions (1) and (3)
that the map x→ L(x, y) is a continuous linear functional on H. Then,
by the Riesz representation theorem (Theorem 8.4), there exists a unique
element z ∈ H for which L(x, y) = (x, z) for all x ∈ H. We denote z by
S(y), and we need to show that S is a continuous linear transformation
of H into itself.
Clearly,

(x, S(y1 + y2)) = L(x, y1 + y2)

= L(x, y1) + L(x, y2)

= (x, S(y1)) + (x, S(y2))

= (x, S(y1) + S(y2))
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for all x, showing that S(y1 + y2) = S(y1) + S(y2). Also,

(x, S(λy)) = L(x, λy)

= λL(x, y)

= λ(x, S(y))

= (x, λS(y))

for all x, showing that S(λy) = λS(y), whence S is linear.
Now, since |(x, S(y))| = |L(x, y)| ≤ M‖x‖‖y‖, it follows by setting x =
S(y) that S is a bounded operator of norm ≤M on H, as desired.
Finally, the uniqueness of S is evident since any two such operators S1

and S2 would have identical matrix coefficients and so would be equal.

DEFINITION. Let T be a bounded operator on a (complex) Hilbert
space H. Define a map LT on H ×H by

LT (x, y) = (T (x), y).

By the adjoint of T, we mean the unique bounded operator S = T ∗,
whose existence is guaranteed by the previous theorem, that satisfies

(x, T ∗(y)) = LT (x, y) = (T (x), y)

for all x, y ∈ H.
THEOREM 8.6. The adjoint mapping T → T ∗ on B(H) satisfies the
following for all T, S ∈ B(H) and λ ∈ C.

(1) (T + S)∗ = T ∗ + S∗.
(2) (λT )∗ = λT ∗.
(3) (TS)∗ = S∗T ∗.
(4) If T is invertible, then so is T ∗, and (T ∗)−1 = (T−1)∗.
(5) The kernel of T ∗ is the orthogonal complement of the range of

T ; i.e., y ∈M⊥ if and only if T ∗(y) = 0.
(6) (T ∗)∗ = T.
(7) ‖T ∗‖ = ‖T‖.
(8) ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2.

PROOF. We prove parts 3 and 8 and leave the remaining parts to an
exercise.
We have

(x, (TS)∗(y)) = (T (S(x)), y)

= (S(x), T ∗(y))

= (x, S∗(T ∗(y))),
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showing part 3.

Next, we have that ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2 by part 7, so to obtain
part 8 we need only show the reverse inequality. Thus,

‖T‖2 = sup
x∈H
‖x‖≤1

‖T (x)‖2

= sup
x∈H
‖x‖≤1

(T (x), T (x))

= sup
x∈H
‖x‖≤1

(x, T ∗(T (x)))

≤ ‖T ∗T‖,

as desired.

EXERCISE 8.10. Prove the remaining parts of Theorem 8.6.

DEFINITION. Let H be a (complex) Hilbert space. An element T ∈
B(H) is called unitary if it is an isometry of H onto H. A linear trans-
formation U from one Hilbert space H1 into another Hilbert space H2

is called a unitary map if it is an isometry of H1 onto H2.

An element T ∈ B(H) is called selfadjoint or Hermitian if T ∗ = T.

An element T ∈ B(H) is called normal if T and T ∗ commute, i.e., if
TT ∗ = T ∗T.

An element T in B(H) is called positive if (T (x), x) ≥ 0 for all x ∈ H.
An element T ∈ B(H) is called idempotent if T 2 = T.

If p ∈ B(H) is selfadjoint and idempotent, we say that p is an orthogonal
projection or (simply) a projection.

An eigenvector for an operator T ∈ B(H) is a nonzero vector x ∈ H
for which there exists a scalar λ satisfying T (x) = λx. The scalar λ is
called an eigenvalue for T, and the eigenvector x is said to belong to the
eigenvalue λ.

EXERCISE 8.11. (a) Prove that the L2 Fourier transform U is a uni-
tary operator on L2(R).

(b) Suppose µ and ν are σ-finite measures on a σ-algebra B of subsets
of a set S, and assume that ν is absolutely continuous with respect to
µ. Let f denote the Radon-Nikodym derivative of ν with respect to µ,
and define U : L2(ν)→ L2(µ) by

U(g) =
√
fg.
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Prove that U is a norm-preserving linear transformation of L2(ν) into
L2(µ), and that it is a unitary transformation between these two Hilbert
spaces if and only if µ and ν are mutually absolutely continuous.
(c) (Characterization of unitary transformations) Let U be a linear trans-
formation of a Hilbert space H1 into a Hilbert space H2. Prove that U
is a unitary operator if and only if it is onto H2 and is inner-product
preserving; i.e.,

(U(x), U(y)) = (x, y)

for all x, y ∈ H1.
(d) (Another characterization of unitary operators) Let U be an element
of B(H). Prove that U is a unitary operator if and only if

UU∗ = U∗U = I.

(e) (The bilateral shift) Let Z denote the set of all integers, let µ be
counting measure on Z, and let H be L2(µ). Define a transformation U
on H by

[U(x)]n = xn+1.

Prove that U is a unitary operator on H. Compute its adjoint (inverse)
U∗.
(f) (The unilateral shift) Let S be the set of all nonnegative integers, let
µ be counting measure on S, and let H = L2(µ). Define a transformation
T on H by

[T (x)]n = xn+1.

Show that T is not a unitary operator. Compute its adjoint T ∗.

THEOREM 8.7. Let H be a (complex) Hilbert space.

(1) If T ∈ B(H), then there exist unique selfadjoint operators T1 and
T2 such that T = T1 + iT2. T1 and T2 are called respectively the
real and imaginary parts of the operator T.

(2) The set of all selfadjoint operators forms a real Banach space
with respect to the operator norm, and the set of all unitary op-
erators forms a group under multiplication.

(3) An element T ∈ B(H) is selfadjoint if and only if (T (x), x) =
(x, T (x)) for all x in a dense subset of H.

(4) An element T ∈ B(H) is selfadjoint if and only if (T (x), x) is real
for every x ∈ H. If λ is an eigenvalue for a selfadjoint operator
T, then λ is real.

(5) Every positive operator is selfadjoint.



160 CHAPTER VIII

(6) Every orthogonal projection is positive.
(7) If T is selfadjoint, then I ± iT is 1-1, onto, and ‖(I ± iT )(x)‖ ≥
‖x‖ for all x ∈ H, whence (I ± iT )−1 is a bounded operator on
H.

(8) If T is selfadjoint, then U = (I − iT )(I + iT )−1 is a unitary
operator, for which -1 is not an eigenvalue; i.e., I + U is 1-1.
Moreover,

T = −i(I − U)(I + U)−1.

This unitary operator U is called the Cayley transform of T.
(9) A continuous linear transformation U : H1 → H2 is unitary if

and only if its range is a dense subspace of H2, and

(U(x), U(x)) = (x, x)

for all x in a dense subset of H1.

PROOF. Defining T1 = (1/2)(T + T ∗) and T2 = (1/2i)(T − T ∗), we
have that T = T1 + iT2, and both T1 and T2 are selfadjoint. Further, if
T = S1 + iS2, where both S1 and S2 are selfadjoint, then T ∗ = S1− iS2,
whence 2S1 = T + T ∗ and 2iS2 = T − T ∗, from which part 1 follows.
Parts 2 through 6 are left to the exercises.
To see part 7, notice first that

‖(I + iT )(x)‖2 = ((I + iT )(x), (I + iT )(x))

= (x, x) + i(T (x), x)− i(x, T (x)) + (T (x), T (x))

= ‖x‖2 + ‖T (x)‖2

≥ ‖x‖2,

which implies that I + iT is 1-1 and norm-increasing. Moreover, it
follows that the range of I + iT is closed in H. For, if y ∈ H and y =
lim yn = lim(I + iT )(xn), then the sequence {yn} is Cauchy, and hence
the sequence {xn} must be Cauchy by the above inequality. Therefore
{xn} converges to an x ∈ H. Then y = (I + iT )(x), showing that the
range of I + iT is closed.
If z ∈ H is orthogonal to the range of I + iT, then ((I + iT )(z), z) = 0,
which implies that (z, z) = −i(T (z), z), which can only happen if z = 0,
since (T (z), z) is real if T is selfadjoint. Hence, the range of I + iT only
has 0 in its orthogonal complement; i.e., this range is dense. Since it is
also closed, we have that the range of I + iT = H, and I + iT is onto.
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Since I + iT is norm-increasing, we see that (I + iT )−1 exists and is
norm-decreasing, hence is continuous.
Of course, an analogous argument proves that (I − iT )−1 is continuous.
Starting with

(I + iT )(I + iT )−1 = I,

we see by taking the adjoint of both sides that

((I + iT )−1)∗ = (I − iT )−1.

It follows also then that I − iT and (I + iT )−1 commute. But now

I = (I − iT )(I − iT )−1(I + iT )−1(I + iT )

= (I − iT )(I + iT )−1(I − iT )−1(I + iT )

= (I − iT )(I + iT )−1[(I − iT )(I + iT )−1]∗,

showing that U = (I − iT )(I + iT )−1 is unitary. See part d of Exercise
8.11. Also,

I + U = (I + iT )(I + iT )−1 + (I − iT )(I + iT )−1

= 2(I + iT )−1,

showing that I + U is 1-1 and onto. Finally,

I − U = (I + iT )(I + iT )−1 − (I − iT )(I + iT )−1 = 2iT (I + iT )−1,

whence

−i(I − U)(I + U)−1 = −i× 2iT (I + iT )−1(1/2)(I + iT ) = T,

as desired.
Finally, if a continuous linear transformation U : H1 → H2 is onto
a dense subspace of H2, and (U(x), U(x)) = (x, x) for all x in a dense
subset of H1, we have that U is an isometry on this dense subset, whence
is an isometry of all of H1 into H2. Since H1 is a complete metric space,
it follows that the range of U is complete, whence is a closed subset of
H2. Since this range is assumed to be dense, it follows that the range of
U = H2, and U is unitary.

EXERCISE 8.12. Prove parts 2 through 6 of the preceding theorem.

EXERCISE 8.13. Let H be a Hilbert space.
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(a) If φ(z) =
∑∞
n=0 anz

n is a power series function with radius of con-
vergence r, and if T is an element of B(H) for which ‖T‖ < r, show that
the infinite series

∑∞
n=0 anT

n converges to an element of B(H). (We
may call this element φ(T ).)
(b) Use part a to show that I + T has an inverse in B(H) if ‖T‖ < 1.
(c) For each T ∈ B(H), define

eT =

∞∑
n=0

Tn/n!.

Prove that
eT+S = eT eS

if T and S commute. HINT: Show that the double series
∑
Tn/n! ×∑

Sj/j! converges independent of the arrangement of the terms. Then,
rearrange the terms into groups where n+ j = k.
(d) Suppose T is selfadjoint. Show that

eiT =

∞∑
n=0

(iT )n/n!

is unitary.

EXERCISE 8.14. (Multiplication Operators) Let (S, µ) be a σ-finite
measure space. For each f ∈ L∞(µ), define the operator mf on the
Hilbert space L2(µ) by

mf (g) = fg.

These operators mf are called multiplication operators.
(a) Show that each operator mf is bounded and that

‖mf‖ = ‖f‖∞.

(b) Show that (mf )∗ = mf . Conclude that each mf is normal, and that
mf is selfadjoint if and only if f is real-valued a.e.µ.
(c) Show that mf is unitary if and only if |f | = 1 a.e.µ.
(d) Show that mf is a positive operator if and only if f(x) ≥ 0 a.e.µ.
(e) Show that mf is a projection if and only if f2 = f a.e.µ, i.e., if and
only if f is the characteristic function of some set E.
(f) Show that λ is an eigenvalue for mf if and only if µ(f−1({λ})) > 0.
(g) Suppose φ(z) =

∑∞
n=0 anz

n is a power series function with radius of
convergence r, and suppose f ∈ L∞(µ) satisfies ‖f‖∞ < r. Show that
φ(mf ) = mφ◦f . (See the previous exercise.)
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EXERCISE 8.15. Let H be the complex Hilbert space L2(R). For
f ∈ L1(R), write Tf for the operator on H determined by convolution
by f. That is, for g ∈ L2(R), we have Tf (g) = f ∗ g. See Theorem 6.2.

(a) Prove that Tf ∈ B(H) and that the map f → Tf is a norm-decreasing
linear transformation of L1(R) into B(H). See Theorem 6.2.

(b) For g, h ∈ L2(R) and f ∈ L1(R), show that

(Tf (g), h) = (f̂U(g), U(h)) = (mf̂ (U(g)), U(h)),

where f̂ denotes the Fourier transform of f and U(g) and U(h) denote
the L2 Fourier transforms of g and h. Conclude that the map f → Tf is
1-1.

(c) Show that T ∗f = Tf∗ , where f∗(x) = f(−x).

(d) Show that

Tf1∗f2 = Tf1 ◦ Tf2

for all f1, f2 ∈ L1(R). Conclude that Tf is always a normal operator,

and that it is selfadjoint if and only if f(−x) = f(x) for almost all x.
HINT: Fubini’s Theorem.

(e) Prove that Tf is a positive operator if and only if f̂(ξ) ≥ 0 for all
ξ ∈ R.
(f) Show that Tf is never a unitary operator and is never a nonzero
projection. Can Tf have any eigenvectors?

We return now to our study of the set M of all closed subspaces of a
Hilbert space H. The next theorem shows that M is in 1-1 correspon-
dence with a different, and perhaps more tractable, set P.

THEOREM 8.8. Let p be an orthogonal projection on a Hilbert space
H, let Mp denote the range of p and let Kp denote the kernel of p. Then:

(1) x ∈Mp if and only if x = p(x).
(2) Mp = K⊥p , whence Mp is a closed subspace of H. Moreover, p is

the projection of H onto Mp.
(3) The assignment p→Mp is a 1-1 correspondence between the set
P of all orthogonal projections on H and the set M of all closed
subspaces of H.

(4) Mp and Mq are orthogonal subspaces if and only if pq = qp = 0
which implies that p+q is a projection. In fact, Mp+q = Mp+Mq.

(5) Mp ⊆Mq if and only if pq = qp = p, which implies that r = q−p
is a projection, and q = p+ r.
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PROOF. We leave the proof of part 1 to the exercise that follows.
If x ∈Mp, and y ∈ Kp, then, x = p(x) by part 1. Therefore,

(x, y) = (p(x), y) = (x, p(y)) = 0,

showing that Mp ⊆ K⊥p . Conversely, if x ∈ K⊥p , then x− p(x) is also in

K⊥p . But

p(z − p(z)) = p(z)− p2(z) = 0

for any z ∈ H, whence x − p(x) ∈ Kp ∩ K⊥p , and this implies that
x = p(x), and x ∈ Mp. This proves the first part of 2. We see also that
for any z ∈ H we have that

z = p(z) + (z − p(z)),

and that p(z) ∈Mp, and z−p(z) ∈ Kp. It follows then that p is the pro-
jection of H onto the closed subspace Mp. See the Projection Theorem
(8.3).
Part 3 follows directly from Theorem 8.3.
Let Mp and Mq be orthogonal subspaces. If x is any element of H,
then q(x) ∈ Mq and Mq ⊆ Kp. Therefore p(q(x)) = 0 for every x ∈ H;
i.e., pq = 0. A similar calculation shows that qp = 0. Then it follows
directly that p + q is selfadjoint and that (p + q)2 = p + q. Conversely,
if pq = qp = 0, then Mp ⊆ Kq, whence Mp is orthogonal to Mq.
We leave part 5 to the exercises.

EXERCISE 8.16. (a) Prove parts 1 and 5 of the preceding theorem.
(b) Let p be a projection with range Mp. Show that a vector x belongs
to Mp if and only if ‖p(x)‖ = ‖x‖.
REMARK. We now examine the set P of all projections on a separable
complex Hilbert space H as a candidate for the set Q of all questions
in our development of axiomatic experimental science. The preceding
theorem shows that P is in 1-1 correspondence with the set M of all
closed subspaces, and we saw earlier that M could serve as a model for
Q. The following theorem spells out the properties of P that are relevant
if we wish to use P as a model for Q.

THEOREM 8.9. Consider the set P of all projections on a separable
complex Hilbert space H as being in 1-1 correspondence with the set M
of all closed subspaces of H, and equip P with the notions of partial
order, complement, orthogonality, sum, and compatibility coming from
this identification with M. Then:

(1) p ≤ q if and only if pq = qp = p.
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(2) p and q are orthogonal if and only if pq = qp = 0.
(3) p and q are summable if and only if they are orthogonal.
(4) p and q are compatible if and only if they commute, i.e., if and

only if pq = qp.
(5) If {pi} is a sequence of pairwise orthogonal projections, then

there exists a (unique) projection p such that p(x) =
∑
i pi(x)

for all x ∈ H.

PROOF. Parts 1 and 2 follow from the preceding theorem. It also
follows from that theorem that if p and q are orthogonal then p+ q is a
projection, implying that p and q are summable. Conversely, if p and q
are summable, then p+ q is a projection, and

p+ q = (p+ q)2 = p2 + pq + qp+ q2 = p+ q + pq + qp,

whence pq = −qp. But then

−pq = −p2q2

= −ppqq
= p(−pq)q
= pqpq

= (−qp)(−qp)
= qpqp

= q(−qp)p
= −qp,

implying that pq = qp. But then pq = qp = 0, whence p and q are
orthogonal. This completes the proof of part 3.
Suppose now that p and q commute, and write r2 = pq. Let r1 = p− r2,
r3 = q− r2, and r4 = I− r1− r2− r3. It follows directly that the ri’s are
pairwise orthogonal projections, that p = r1 + r2 and that q = r2 + r3.
Hence p and q are compatible. Conversely, if p and q are compatible,
and p = r1 + r2 and q = r2 + r3, where r1, r2, r3 are pairwise orthogonal
projections, then pq = qp = r2 and p and q commute.
Finally, to see part 5, let M be the Hilbert space direct sum

⊕
Mpi of

the closed subspaces {Mpi}, and let p be the projection of H onto M.
Then, if x ∈M⊥, we have that p(x) = pi(x) = 0 for all i, whence

p(x) =
∑

pi(x).
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On the other hand, if x′ ∈M, then x′ =
∑
x′i, where for each i, x′i ∈Mpi .

Obviously then p(x′) =
∑
pi(x

′
i) =

∑
pi(x

′). Finally, if z ∈ H, then
z = x+x′, where x ∈M⊥ and x′ ∈M. Clearly, we have p(z) =

∑
pi(z),

and the proof is complete.

DEFINITION. Let H be a separable Hilbert space. If {pi} is a se-
quence of pairwise orthogonal projections in B(H), then the projection
p =

∑
i pi from part 5 of the preceding theorem is called the sum of the

pi’s.

EXERCISE 8.17. (a) Show that the set P satisfies all the requirements
of the set Q of all questions. (See Chapter VII.)
(b) Show that in P a stronger property holds than is required for Q.
That is, show that a sequence {pi} is mutually summable if and only if
it is pairwise orthogonal.

CHAPTER IX

PROJECTION-VALUED MEASURES

DEFINITION Let S be a set and let B be a σ-algebra of subsets of S.
We refer to the elements of B as Borel subsets of S and we call the pair
(S,B) a Borel space.
If H is a separable (complex) Hilbert space, we say that a mapping
E → pE , of B into the set P of projections on H, is a projection-valued
measure (or an H-projection-valued measure) on (S,B) if:

(1) pS = I, and p∅ = 0.
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(2) If {Ei} is a countable collection of pairwise disjoint elements of
B, then {pEi} is a pairwise orthogonal collection of projections,
and p∪Ei =

∑
pEi .

If p (E → pE) is an H-projection-valued measure and M is a closed
subspace of H, for which pE(M) ⊆ M for all E ∈ B, then M is called
an invariant subspace for p or simply a p-invariant subspace. The as-
signment E → (pE)|M is called the restriction of p to M. See Exercise
9.1.
Two functions f and g on S are said to agree a.e.p if the set E of all x
for which f(x) 6= g(x) satisfies pE = 0.
A function f : S → C is called a Borel function or B-measurable if
f−1(U) ∈ B whenever U is an open subset of C. A complex-valued B-
measurable function f is said to belong to L∞(p) if there exists a positive
real number M such that

p|f |−1(M,∞) = p{x:|f(x)|>M} = 0,

and the L∞ norm (really only a seminorm) of such a function f is defined
to be the infimum of all such numbers M. By L∞(p), we mean the vector
space (or algebra) of all L∞ functions f equipped with the∞-norm. See
Exercise 9.1.
If H and H ′ are two separable Hilbert spaces, and if E → pE is an
H-projection-valued measure and E → p′E is an H ′-projection-valued
measure, both defined on the same Borel space (S,B), we say that p
and p′ are unitarily equivalent if there exists a unitary transformation
U : H → H ′ such that

U ◦ pE ◦ U−1 = p′E

for every E ∈ B.

If we are thinking of the set P as a model for the set Q of all questions
(see Chapter VII), and the Borel space S is the real line R, then the
set of projection-valued measures will correspond to the set O of all
observables.

EXERCISE 9.1. Let E → pE be a projection-valued measure on (S,B).
(a) If E ∈ B, show that pẼ = I − pE .
(b) If E,F ∈ B, show that pE∩F = pEpF . HINT: Show first that if
E ∩F = ∅, then pE and pF are orthogonal, i.e., that pEpF = pF pE = 0.
(c) If S is the increasing union ∪En of elements of B, show that the
union of the ranges of the projections pEn is dense in H. HINT: Write
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F1 = E1, and for n > 1 define Fn = En − En−1. Note that S = ∪Fn,
whence x =

∑
pFn(x) for each x ∈ H.

(d) Suppose {En} is a sequence of elements of B for which pEn = 0 for
all n. Prove that p∪En = 0.
(e) Show that ‖f‖∞ is a seminorm on L∞(p). Show further that ‖fg‖∞ ≤
‖f‖∞‖g‖∞ for all f, g ∈ L∞(p). If M denotes the subset of L∞(p) con-
sisting of the functions f for which ‖f‖∞ = 0, i.e., the functions that are
0 a.e.p, prove that L∞(p)/M is a Banach space (even a Banach algebra).
See part c of Exercise 4.3. Sometimes the notation L∞(p) stands for this
Banach space L∞(p)/M.
(f) Suppose M is a closed invariant subspace for p. Show that the as-
signment E → (pE)|M is an M -projection-valued measure.
(g) Let {Hi} be a sequence of separable Hilbert spaces, and for each i let
E → piE be an Hi-projection-valued measure on the Borel space (S,B).
Let H =

⊕
Hi be the Hilbert space direct sum of the Hi’s, and define

a map E → pE of B into the set of projections on H by

pE =
∑
i

piE .

Prove that E → pE is a projection-valued measure. This projection-
valued measure is called the direct sum of the projection-valued measures
{pi}.

THEOREM 9.1. Let (S,B) be a Borel space, let H be a separable
Hilbert space, and let E → pE be an H-projection-valued measure on
(S,B). If x ∈ H, define µx on B by

µx(E) = (pE(x), x).

Then µx is a finite positive measure on the σ-algebra B and µx(S) =
‖x‖2.

EXERCISE 9.2. (a) Prove Theorem 9.1.
(b) Show that each measure µx, as defined in the preceding theorem, is
absolutely continuous with respect to p. That is, show that if pE = 0
then µx(E) = 0.
(c) Let S,B, H and p be as in the preceding theorem. If x and y are
vectors in H, and if µx,y is defined on B by

µx,y(E) = (pE(x), y),
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show that µx,y is a finite complex measure on B. Show also that

‖µx,y‖ ≤ ‖x‖‖y‖.

See Exercise 5.12.
(d) Let S,B, H, p, and µx be as in the preceding theorem. Suppose p′

is any H-projection-valued measure on B for which µx(E) = (p′E(x), x)
for all x ∈ H. Show that p′ = p. That is, the measures {µx} uniquely
determine the projection-valued measure p.
(e) Let φ be a B-measurable simple function on S, and suppose

φ =

n∑
i=1

aiχEi

and

φ =

m∑
j=1

bjχFj

are two different representations of φ as finite linear combinations of
characteristic functions of elements of B. Prove that for each x ∈ H, we
have

n∑
i=1

aipEi(x) =

m∑
j=1

bjpFj (x).

HINT: Show this by taking inner products.

THEOREM 9.2. Let (S, µ) be a σ-finite measure space, let B be the
σ-algebra of µ-measurable subsets of S, and let H = L2(µ). For each
measurable set E ⊆ S, define pE to be the projection in B(H) given by
pE = mχE . That is,

pE(f) = χEf.

Then E → pE is a projection-valued measure on H.

DEFINITION. The projection-valued measure of the preceding theo-
rem is called the canonical projection-valued measure on L2(µ).

EXERCISE 9.3. (a) Prove Theorem 9.2.
(b) Let U denote the L2 Fourier transform on L2(R), and, for each Borel
subset E ⊆ R, define an operator pE on L2(R) by

pE(f) = U−1(χEU(f)).
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Show that each operator pE is a projection on L2(R) and that E → pE is
a projection-valued measure. Note that this projection-valued measure
is unitarily equivalent to the canonical one on L2(R). Show that p[−1,1]

can be expressed as a convolution operator:

p[−1,1]f(t) =

∫ ∞
−∞

k(t− s)f(s) ds,

where k is a certain L2 function.
(c) Let (S,B) and (S′,B′) be two Borel spaces, and let h be a map of S
into S′ for which h−1(E′) ∈ B whenever E′ ∈ B′. Such a map h is called
a Borel map of S into S′. Suppose E → pE is an H-projection-valued
measure on (S,B), and define a map E′ → qE′ on B′ by

qE′ = ph−1(E′).

Prove that E′ → qE′ is an H-projection-valued measure on (S′,B′). This
projection-valued measure q is frequently denoted by h∗(p).

EXERCISE 9.4. Let (S, µ) be a σ-finite measure space, and let E →
pE be the canonical projection-valued measure on L2(µ). Prove that
there exists a vector f in L2(µ) such that the linear span of the vectors
pE(f), for E running over the µ-measurable subsets of S, is dense in
L2(µ). HINT: Do this first for a finite measure µ.

DEFINITION. Let (S,B) be a Borel space, letH be a separable Hilbert
space, and let E → pE be an H-projection-valued measure on (S,B).
A vector x ∈ H is called a cyclic vector for p if the linear span of the
vectors pE(x), for E ∈ B, is dense in H.
A vector x is a separating vector for p if: pE = 0 if and only if pE(x) = 0.
A vector x is a supporting vector for p if the measure µx of Theorem
9.1 satisfies: µx(E) = 0 if and only if pE = 0.

EXERCISE 9.5. (a) Show that a canonical projection-valued measure
has a cyclic vector. (See Exercise 9.4.)
(b) Show that every cyclic vector for a projection-valued measure is a
separating vector.
(c) Show that a vector x is a separating vector for a projection-valued
measure if and only if it is a supporting vector.
(d) Give an example to show that not every separating vector need be
cyclic. HINT: Use a one-point set S and a 2 dimensional Hilbert space.
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THEOREM 9.3. An H-projection-valued measure E → pE on a Borel
space (S,B) has a cyclic vector if and only if there exists a finite measure
µ on (S,B) such that p is unitarily equivalent to the canonical projection-
valued measure on L2(µ).

PROOF. The “if” part follows from part a of Exercise 9.5. Conversely,
let x be a cyclic vector for p and write µ for the (finite) measure µx of
Theorem 9.1 on B. For each B-measurable simple function φ =

∑
aiχEi

on S, define U(φ) ∈ H by

U(φ) =
∑

aipEi(x).

Then U(φ) is well-defined by part e of Exercise 9.2, and the range of
U is dense in H because x is a cyclic vector. It follows directly that U
is a well-defined linear transformation of the complex vector space X
of all simple B-measurable functions on S into H. Furthermore, writing
φ =

∑
aiχEi , where Ei ∩ Ej = ∅ for i 6= j, then

‖U(φ)‖2 = (
∑
i

aipEi(x) ,
∑
j

ajpEj (x))

=
∑∑

aiaj(pEi(x), pEj (x))

=
∑∑

aiaj(pEj∩Ei(x), x)

=
∑
|ai|2(pEi(x), x)

=
∑
|ai|2µ(Ei)

=

∫
|φ|2 dµ

= ‖φ‖22,

showing that U is an isometry of X onto a dense subspace of H.

Therefore, U has a unique extension from the dense subspace X to a
unitary operator from all of L2(µ) onto all of H.

Finally, if p′ denotes the canonical projection-valued measure on L2(µ),
φ =

∑
aiχEi is an element of X, and y = U(φ) is the corresponding
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element in the range of U on X, we have

(U ◦ p′E ◦ U−1)(y) = (U ◦ p′E)(φ)

= U(χEφ)

= U(χE
∑

aiχEi)

= U(
∑

aiχE∩Ei)

=
∑

aipE∩Ei(x)

=
∑

aipE(pEi(x))

= pE(
∑

aipEi(x))

= pE(U(φ))

= pE(y),

which shows that U ◦ p′E ◦U−1 and pE agree on a dense subspace of H,
whence are equal everywhere. This completes the proof.

EXERCISE 9.6. Let E → pE be an H-projection-valued measure.
(a) Let x be an element of H, and let M be the closed linear span of the
vectors pE(x) for E ∈ B. Prove that M is invariant under p, and that
the restriction of p to M has a cyclic vector.
(b) Use the Hausdorff Maximality Principle to prove that there exists
a sequence {Mi} of pairwise orthogonal closed p-invariant subspaces of
H, such that E → (pE)|Mi has a cyclic vector for each i, and such that
H is the Hilbert space direct sum

⊕
Mi.

We next take up the notion of integrals with respect to a projection-
valued measure.

THEOREM 9.4. Let p be an H-projection-valued measure on a Borel
space (S,B). Let φ be a B-measurable simple function, and suppose that

φ =
∑

aiχEi =
∑

bjχFj ,

where each Ei and Fj are elements of B and each ai and bj are complex
numbers. Then ∑

aipEi =
∑

bjpFj .

EXERCISE 9.7. Prove Theorem 9.4.
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DEFINITION. If p is anH-projection-valued measure on a Borel space
(S,B), and φ is a B-measurable simple function on S, we define an op-
erator, which we denote by

∫
φdp, on H by∫
φdp =

∑
aipEi ,

where φ =
∑
aiχEi . This operator is well-defined in view of the preced-

ing theorem.

THEOREM 9.5. Let p be an H-projection-valued measure on a Borel
space (S,B), and let X denote the space of all B-measurable simple func-
tions on S. Then the map L that sends φ to

∫
φdp has the following

properties:

(1) L(φ) =
∫
φdp is a bounded operator on H, and

‖L(φ)‖ = ‖
∫
φdp‖ = ‖φ‖∞.

(2) L is linear; i.e.,∫
(φ+ ψ) dp =

∫
φdp+

∫
ψ dp

and ∫
λφ dp = λ

∫
φdp

for all complex numbers λ and all φ, ψ ∈ X.
(3) L is multiplicative; i.e.,∫

(φψ) dp =

∫
φdp ◦

∫
ψ dp

for all φ, ψ ∈ X.
(4) L is essentially 1-1, i.e.;

∫
φdp =

∫
ψ dp if and only if φ = ψ

a.e.p.
(5) For each φ ∈ X, we have

(

∫
φdp)∗ =

∫
φdp,

whence
∫
φdp is selfadjoint if and only if φ is real-valued a.e.p.

(6)
∫
φdp is a positive operator if and only if φ is nonnegative a.e.p.

(7)
∫
φdp is unitary if and only if |φ| = 1 a.e.p.

(8)
∫
φdp is a projection if and only if φ2 = φ a.e.p; i.e., if and only

if φ agrees with a characteristic function a.e.p.
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PROOF. Let x and y be unit vectors in H, and let µx,y be the complex
measure on S defined in part c of Exercise 9.2. Then

|([
∫
φdp](x), y)| = |(

∑
aipEi(x), y)|

= |
∑

aiµx,y(Ei)|

= |
∫
φdµx,y|

≤ ‖φ‖∞‖µx,y‖
≤ ‖φ‖∞,

showing that
∫
φdp is a bounded operator and that ‖

∫
φdp‖ ≤ ‖φ‖∞.

See part c of Exercise 9.2 and part c of Exercise 5.12. On the other hand,
we may assume that the sets {Ei} are pairwise disjoint, that pE1

6= 0,
and that |a1| = ‖φ‖∞. Choosing x to be any unit vector in the range of
pE1 , we see that

[

∫
φdp](x) =

∑
aipEi(pE1

(x))

=
∑

aipEi∩E1(x)

= a1pE1
(x)

= a1x,

showing that ‖[
∫
φdp](x)‖ = ‖φ‖∞, and this finishes the proof of part

1.

Part 2 is left to the exercises.
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To see part 3, write φ =
∑n
i=1 aiχEi , and ψ =

∑m
j=1 bjχFj . Then

∫
φψ dp =

∫
(

n∑
i=1

m∑
j=1

aibjχEiχFj ) dp

=

∫
(

n∑
i=1

m∑
j=1

aibjχEi∩Fj ) dp

=

n∑
i=1

m∑
j=1

aibjpEi∩Fj

=

n∑
i=1

m∑
j=1

aibjpEipFj

=

n∑
i=1

aipEi ◦
m∑
j=1

bjpFj

=

∫
φdp ◦

∫
ψ dp,

proving part 3.

We have next that
∫
φdp =

∫
ψ dp if and only if

([

∫
φdp](x), x) = ([

∫
ψ dp](x), x)

for every x ∈ H. Therefore
∫
φdp =

∫
ψ dp if and only if

∫
φdµx =∫

ψ dµx for every x ∈ H. If φ = ψ a.e.p, then φ = ψ a.e.µx for every x ∈
H, whence

∫
φdµx =

∫
ψ dµx for all x, and

∫
φdp =

∫
ψ dp. Conversely,

if φ and ψ are not equal a.e.p, then, without loss of generality, we may
assume that there exists a set E ⊆ S and a δ > 0 such that φ(s)−ψ(s) >
δ for all s ∈ E and pE 6= 0. Letting x be a unit vector in the range of
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the projection pE , we have that

([

∫
φdp](x), x)− ([

∫
ψ dp](x), x) = ([

∫
(φ− ψ) dp](x), x)

= ([

∫
(φ− ψ) dp](pE(x)), x)

= ([

∫
(φ− ψ) dp][

∫
χE dp](x), x)

= ([

∫
(φ− ψ)χE dp](x), x)

=

∫
(φ− ψ)χE dµx

≥
∫
δχE dµx

= δ

∫
χE dµx

= δ(pE(x), x)

= δ(x, x)

> 0,

proving that
∫
φdp 6=

∫
ψ dp, which gives part 4.

To see part 5, let x and y be arbitrary vectors in H. Then

([

∫
φdp]∗(x), y) = (x, [

∫
φdp](y))

= (x, (
∑

aipEi(y)))

=
∑

ai(x, pEi(y))

=
∑

ai(pEi(x), y)

= ((
∑

aipEi)(x), y)

= ([

∫
φdp](x), y).

Parts 6, 7, and 8 now follow from parts 4 and 5, and we leave the details
to the exercises.

EXERCISE 9.8. Prove parts 2,6,7, and 8 of Theorem 9.5.
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THEOREM 9.6. Let p be an H-projection-valued measure on a Borel
space (S,B). Then the map φ → L(φ) =

∫
φdp, of the space X of all

B-measurable simple functions on S into B(H), extends uniquely to a
map (also called L) of L∞(p) into B(H) that satisfies:

(1) L is linear.
(2) L is multiplicative; i.e., L(fg) = L(f)L(g) for all f, g ∈ L∞(p).
(3) ‖L(f)‖ = ‖f‖∞ for all f ∈ L∞(p).

EXERCISE 9.9. (a) Prove Theorem 9.6.

(b) If M denotes the subspace of L∞(p) consisting of the functions f
for which f = 0 a.e.p, show that the map L of Theorem 9.6 induces an
isometric isomorphism of the Banach algebra L∞(p)/M. See part e of
Exercise 9.1.

DEFINITION. If f ∈ L∞(p), for p an H-projection-valued measure
on (S,B), we denote the bounded operator that is the image of f under
the isometry L of the preceding theorem by

∫
f dp or

∫
f(s) dp(s), and

we call it the integral of f with respect to the projection-valued measure
p.

EXERCISE 9.10. Verify the following properties of the integral with
respect to a projection-valued measure p.

(a) Suppose f ∈ L∞(p) and x, y ∈ H. Then the matrix coefficient
([
∫
f dp](x), y) is given by

([

∫
f dp](x), y) =

∫
f dµx,y,

where µx,y is the complex measure defined in part c of Exercise 9.2.

(b) [
∫
f dp]∗ =

∫
f dp, whence

∫
f dp is selfadjoint if and only if f is

real-valued a.e.p.

(c)
∫
f dp is a unitary operator if and only if |f | = 1 a.e.p.

(d)
∫
f dp is a positive operator if and only if f is nonnegative a.e.p.

(e) We say that an element f in L∞(p) is essentially bounded away from
0 if and only if there exists a δ > 0 such that

pf−1(Bδ(0)) = 0.

Show that
∫
f dp is invertible in B(H) if and only if f is essentially

bounded away from zero. HINT: If f is not essentially bounded away
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from 0, let {xn} be a sequence of unit vectors for which xn belongs to
the range of the projection pf−1(B1/n(0)). Show that

‖[
∫
f dp](xn)‖ ≤ 1/n,

so that no inverse of
∫
f dp could be bounded.

EXERCISE 9.11. Let p be a projection-valued measure on the Borel
space (S,B).
(a) Suppose there exists a point s ∈ S for which p{s} 6= 0. Show that,

for each f ∈ L∞(p), the operator
∫
f dp has an eigenvector belonging to

the eigenvalue λ = f(s). Indeed, any nonzero vector in the range of p{s}
will suffice.
(b) Let f be an element of L∞(p), let λ0 be a complex number, let ε > 0
be given, and write Bε(λ0) for the open ball of radius ε around λ0. Define
E = f−1(Bε(λ0)), and let x be a vector in H. Prove that x belongs to
the range of pE if and only if

lim
n→∞

1

εn
‖(
∫
f dp− λ0I)n(x)‖ = 0.

If x is in the range of pE , show that

(|λ0| − ε)‖x‖ ≤ ‖[
∫
f dp](x)‖ ≤ (|λ0|+ ε)‖x‖.

More particularly, suppose f is real-valued, that 0 < a < b ≤ ∞, and
let E = f−1(a, b). If x is in the range of pE , show that

a‖x‖ ≤ ‖[
∫
f dp](x)‖ ≤ b‖x‖.

(c) Suppose f ∈ L∞(p) is such that the operator T =
∫
f dp has an

eigenvector with eigenvalue λ. Define E = f−1({λ}). Prove that pE 6= 0,
and show further that x ∈ H is an eigenvector for T belonging to the
eigenvalue λ if and only if x belongs to the range of pE .

EXERCISE 9.12. Let E → pE be the canonical projection-valued mea-
sure on L2(µ). Verify that

∫
f dp is the multiplication operator mf for

every f ∈ L∞(p). HINT: Do this first for characteristic functions χE .

EXERCISE 9.13. (Change of Variables) Let (S,B) and (S′,B′) be two
Borel spaces, and let h be a Borel map from S into S′; i.e., h maps S into
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S′ and h−1(E′) ∈ B whenever E′ ∈ B′. Suppose p is a projection-valued
measure on (S,B), and as in part c of Exercise 9.3 define a projection-
valued measure q = h∗(p) on (S′,B′) by

qE = ph−1(E).

If f is any bounded B′-measurable function on S′, show that∫
f dq =

∫
(f ◦ h) dp.

HINT: Check this equality for characteristic functions, then simple func-
tions, and finally bounded functions.

THEOREM 9.7. (A “Riesz” Representation Theorem) Let ∆ be a sec-
ond countable compact Hausdorff space, let H be a separable Hilbert
space, and let T be a linear transformation from the complex normed
linear space C(∆) of all continuous complex-valued functions on ∆ into
B(H). Assume that T satisfies

(1) T (fg) = T (f) ◦ T (g) for all f, g ∈ C(∆).
(2) T (f) = [T (f)]∗ for all f ∈ C(∆).
(3) T (1) = I, where 1 denotes the identically 1 function and I de-

notes the identity operator on H.

Then there exists a unique projection-valued measure E → pE from the
σ-algebra B of Borel subsets of ∆ such that

T (f) =

∫
f dp

for every f ∈ C(∆).

PROOF. Note first that assumptions 1 and 2 imply that T (f) is a
positive operator if f ≥ 0. Consequently, since |f(s)|2 ≤ ‖f‖2∞, we have
that ‖f‖2∞I − T (f̄) ◦ T (f) is a positive operator. Hence,

‖f‖2∞‖x‖2 ≥ ([T (f̄) ◦ T (f)](x), x) = ‖[T (f)](x)‖2,

showing that ‖T (f)‖ ≤ ‖f‖∞ for all f ∈ C(∆). That is, T is a bounded
linear transformation of norm ≤ 1.
Next, for each pair (x, y) of vectors in H, define φx,y on C(∆) by

φx,y(f) = (T (f)(x), y).
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Then φx,y is a bounded linear functional on C(∆), and we write νx,y for
the unique finite complex Borel measure on ∆ for which

φx,y(f) =

∫
f dνx,y

for all f ∈ C(∆). See Theorem 1.5 and Exercise 1.12. We see immedi-
ately that

(1) The linear functional φx,x is a positive linear functional, whence
the measure νx,x is a positive measure.

(2) For each fixed y ∈ H, the map x→ νx,y is a linear transformation
of H into the vector space M(∆) of all finite complex Borel
measures on ∆.

(3) νx,y = νy,x for all x, y ∈ H.
(4) ‖νx,y‖ = ‖φx,y‖ ≤ ‖x‖‖y‖.

For each bounded, real-valued, Borel function h on ∆, consider the map
Lh : H ×H → C given by

Lh(x, y) =

∫
h dνx,y.

It follows from the results above that for each fixed y ∈ H the map
x→ Lh(x, y) is linear. Also,

Lh(y, x) =

∫
h dνy,x

=

∫
h dν̄y,x

=

∫
h̄ dν̄y,x

=

∫
h dνx,y

= Lh(x, y)

for all x, y ∈ H. Furthermore, using Exercise 5.12 we have that

|Lh(x, y)| = |
∫
h dνx,y|

≤ ‖h‖∞‖νx,y‖
≤ ‖h‖∞‖x‖‖y‖.
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Now, using Theorem 8.5, let T (h) be the unique bounded operator on
H for which

Lh(x, y) = (T (h)(x), y)

for all x, y ∈ H. Note that since the measures νx,x are positive measures,
it follows that the matrix coefficients

(T (h)(x), x) = Lh(x, x) =

∫
h dνx,x

are all real, implying that the operator T (h) is selfadjoint.
If E is a Borel subset of ∆, set pE = T (χE). We will eventually see that
the assignment E → pE is a projection-valued measure on (∆,B).
Fix g ∈ C(∆) and x, y ∈ H. Note that the two bounded linear functionals

f →
∫
fg dνx,y = φx,y(fg) = (T (fg)(x), y)

and

f →
∫
f dνT (g)(x),y = φT (g)(x),y(f) = (T (f)(T (g)(x)), y)

agree on C(∆). Since they are both represented by integrals (Theorem
1.5), it follows that ∫

hg dνx,y =

∫
h dνT (g)(x),y

for every bounded Borel function h. Now, for each fixed bounded, real-
valued, Borel function h and each pair x, y ∈ H, the two bounded linear
functionals

g →
∫
gh dνx,y =

∫
hg dνx,y

and

g →
∫
h dνT (g)(x),y = (T (h)(T (g)(x)), y)

= (T (g)(x), T (h)(y))

=

∫
g dνx,T (h)(y)

agree on C(∆). Again, since both functionals can be represented as
integrals, it follows that∫

hk dνx,y =

∫
k dνx,T (h)(y)
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for all bounded, real-valued, Borel functions h and k. Therefore,

(T (hk)(x), y) = Lhk(x, y)

=

∫
hk dνx,y

=

∫
k dνx,T (h)(y)

= Lk(x, T (h)(y))

= (T (k)(x), T (h)(y))

= (T (h)(T (k)(x)), y),

showing that T (hk) = T (h)T (k) for all bounded, real-valued, Borel func-
tions h and k.

We see directly from the preceding calculation that each pE = T (χE)
is a projection. Clearly p∆ = T (1) = I and p∅ = T (0) = 0, so that
to see that E → pE is a projection-valued measure we must only check
the countable additivity condition. Thus, let {En} be a sequence of
pairwise disjoint Borel subsets of ∆, and write E = ∪En. For any vectors
x, y ∈ H, we have

(pE(x), y) = (T (χE)(x), y)

= LχE (x, y)

=

∫
χE dνx,y

= νx,y(E)

=
∑

νx,y(En)

=
∑

(pEn(x), y)

= ([
∑

pEn ](x), y),

as desired.

Finally, let us show that T (f) =
∫
f dp for every f ∈ C(∆). Note that,

for vectors x, y ∈ H, we have that the measure νx,y agrees with the
measure µx,y, where µx,y is the measure defined in part c of Exercise 9.2
by

µx,y(E) = (pE(x), y).



184 CHAPTER IX

We then have
(T (f)(x), y) = φx,y(f)

=

∫
f dνx,y

=

∫
f dµx,y

= ([

∫
f dp](x), y),

by part a of Exercise 9.10. This shows the desired equality of T (f) and∫
f dp.

The uniqueness of the projection-valued measure p, satisfying T (f) =∫
f dp for all f ∈ C(∆), follows from part d of Exercise 9.2 and part a

of Exercise 9.10.

We close this chapter by attempting to extend the definition of integral
with respect to a projection-valued measure to unbounded measurable
functions. For simplicity, we will restrict our attention to real-valued
functions.

DEFINITION. Let p be an H-projection-valued measure on the Borel
space (S,B), and let f be a real-valued, B-measurable function on S. For
each integer n, define En = f−1(−n, n), and write Tn for the bounded
selfadjoint operator on H given by Tn =

∫
fχEn dp. We define D(f)

to be the set of all x ∈ H for which limn Tn(x) exists, and we define
Tf : D(f)→ H by Tf (x) = limTn(x).

EXERCISE 9.14. Using the notation of the preceding definition, show
that
(a) If x is in the range of pEn , then x ∈ D(f), and Tf (x) = Tn(x).
(b) x ∈ D(f) if and only if the sequence {Tn(x)} is bounded. HINT:
x = pEn(x) + pẼn(x). Show further that the sequence {‖Tn(x)‖} is non-
decreasing.
(c) D(f) is a subspace of H and Tf is a linear transformation of D(f)
into H.

THEOREM 9.8. Let the notation be as in the preceding definition.

(1) D(f) is a dense subspace of H.
(2) Tf is symmetric on D(f); i.e.,

(Tf (x), y) = (x, Tf (y))

for all x, y ∈ D(f).
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(3) The graph of Tf is a closed subspace in H ×H.
(4) The following are equivalent: i) D(f) = H; ii) Tf is continuous

from D(f) into H; iii) f ∈ L∞(p).
(5) The linear transformations I ± iTf are both 1-1 and onto from

D(f) to H.
(6) The linear transformation Uf = (I − iTf )(I + iTf )−1 is 1-1 and

onto from H to H and is in fact a unitary operator for which
-1 is not an eigenvalue. (This operator Uf is called the Cayley
transform of Tf .)

(7) The range of I + Uf equals D(f), and

Tf = −i(I − Uf )(I + Uf )−1.

PROOF. That D(f) is dense in H follows from part a of Exercise 9.14
and part c of Exercise 9.1.
Each operator Tn is selfadjoint. So, if x, y ∈ D(f), then

(Tf (x), y) = lim(Tn(x), y) = lim(x, Tn(y)) = (x, Tf (y)),

showing that Tf is symmetric on its domain D(f).
The graph of Tf , like the graph of any linear transformation of H into
itself, is clearly a subspace of H × H. To see that the graph of Tf is
closed, let (x, y) be in the closure of the graph, i.e., x = limxj and
y = limTf (xj), where each xj ∈ D(f). We must show that x ∈ D(f) and
then that y = Tf (x). Now the sequence {Tf (xj)} is bounded in norm,
and for each n we have from the preceding exercise that ‖Tn(xj)‖ ≤
‖Tf (xj)‖. Hence, there exists a constant M such that ‖Tn(xj)‖ ≤M for
all n and j. Writing Tn(x) = Tn(x− xj) + Tn(xj), we have that

‖Tn(x)‖ ≤ lim
j
‖Tn(x− xj)‖+M = M

for all n, whence x ∈ D(f) by Exercise 9.14. Now, for any z ∈ D(f) we
have

(y, z) = lim(Tf (xj), z)

= lim(xj , Tf (z))

= (x, Tf (z))

= (Tf (x), z),

proving that y = Tf (x) since D(f) is dense in H.
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We prove part 4 by showing that i) implies ii), ii) implies iii), and iii)
implies i). First, if D(f) = H, then by the Closed Graph Theorem we
have that Tf is continuous. Next, if f is not an element of L∞(p), then
there exists an increasing sequence {nk} of positive integers for which
either

pf−1(nk,nk+1) 6= 0

for all k, or
pf−1(−nk+1,−nk) 6= 0

for all k. Without loss of generality, suppose that

pf−1(nk,nk+1) 6= 0

for all k. Write Fk = f−1(nk, nk+1), and note that Fk ⊆ Enk+1
. Now, for

each k, let xk be a unit vector in the range of pFk . Then each xk ∈ D(f),
and

(Tf (xk), xk) = (Tnk+1
(xk), xk)

= ((Tnk+1
◦ pFk)(xk), xk)

=

∫
fχFk dµxk

≥ nk‖xk‖2

= nk,

proving that ‖Tf (xk)‖ ≥ nk, whence Tf is not continuous. Finally, if
f ∈ L∞(p), then clearly Tf = Tn for any n ≥ ‖f‖∞, and D(f) = H.
This proves part 4.
We show part 5 for I + iTf . An analogous argument works for I − iTf .
Observe that, for x ∈ D(f), we have

‖(I + iTf )(x)‖2 = ((I + iTf )(x), (I + iTf )(x)) = ‖x‖2 + ‖Tf (x)‖2.

Therefore, I + iTf is norm-increasing, whence is 1-1. Now, if {(I +
iTf )(xj)} is a sequence of elements in the range of I+iTf that converges
to a point y ∈ H, then the sequence {(I+iTf )(xj)} is a Cauchy sequence
and therefore, since I + iTf is norm-increasing, the sequence {xj} is a
Cauchy sequence as well. Let x = limj xj . It follows that y = x + iz,
where z = limj Tf (xj). Since the graph of Tf is closed, we must have
that x ∈ D(f) and z = Tf (x). Hence, y = (I + iTf )(x) belongs to the
range of I + iTf , showing that this range is closed. We complete the
proof then of part 5 by showing that the range of I + iTf is dense in H.
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Thus, if y ∈ H is orthogonal to every element of the range of I + iTf ,
then for each n we have

0 = ((I + iTf )(pEn(y)), y)

= ((I + iTf )(p2
En(y)), y)

= ((I + iTn)(pEn(y)), y)

= (pEn(I + iTn)pEn(y), y)

= ((I + iTn)pEn(y), pEn(y))

= ‖pEn(y)‖2 + i(Tn(pEn(y)), pEn(y))

= ‖pEn(y)‖2 + i(Tn(y), y).

But then ‖pEn(y)‖2 = −i(Tn(pEn(y)), pEn(y)), which, since Tn is self-
adjoint, can happen only if pEn(y) = 0. But then y = limn pEn(y) must
be 0. Therefore, the range of I + iTf is dense, whence is all of H.
Next, since I+iTf and I−iTf are both 1-1 from D(f) onto H, it follows
that Uf = (I−iTf )(I+iTf )−1 is 1-1 from H onto itself. Further, writing
y ∈ D(f) as (I + iTf )−1(x), we have

‖Uf (x)‖2 = ‖(I − iTf )((I + iTf )−1(x))‖2

= ‖(I − iTf )(y)‖2

= ‖y‖2 + ‖Tf (y)‖2

= ‖(I + iTf )(y)‖2

= ‖x‖2,
proving that Uf is unitary. Writing the identity operator I as (I +
iTf )(I + iTf )−1, we have that I + Uf = 2(I + iTf )−1, which is 1-1.
Consequently, -1 is not an eigenvalue for Uf .
We leave the verification of part 7 to the exercises. This completes the
proof.

DEFINITION. We call the operator Tf : D(f) → H of the preceding
theorem the integral of f with respect to p, and we denote it by

∫
f dp

or
∫
f(s) dp(s). It is not in general an element of B(H). Indeed, as we

have seen in the preceding theorem,
∫
f dp is in B(H) if and only if f is

in L∞(p).

EXERCISE 9.15. (a) Prove part 7 of Theorem 9.8.
(b) Suppose (S, µ) is a σ-finite measure space, that p is the canonical
projection-valued measure on L2(µ), and that f is a real-valued measur-
able function on S. Verify that D(f) is the set of all L2functions g for
which fg ∈ L2(µ), and that [

∫
f dp](g) = fg for all g ∈ D(f).
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(c) Suppose (S,B) and p are as in the preceding theorem. Suppose g
is an everywhere nonzero, bounded, real-valued, measurable function on
S, and write T for the bounded operator

∫
g dp. Prove that the operator∫

(1/g) dp is a left inverse for the operator T.
(d) Let (S,B) and (S′,B′) be two Borel spaces, and let h be a Borel map
from S into S′. Suppose p is a projection-valued measure on (S,B), and
as in part c of Exercise 9.3 define a projection-valued measure q = h∗(p)
on (S′,B′) by

qE = ph−1(E).

If f is any (possibly unbounded) real-valued B′-measurable function on
S′, show that ∫

f dq =

∫
(f ◦ h) dp.

EXERCISE 9.16. Let p be the projection-valued measure on the Borel
space (R,B) of part b of Exercise 9.3.
(a) Show that ∫

f dp = U−1 ◦mf ◦ U

for every f ∈ L∞(p).
(b) If f(x) = x, and Tf =

∫
f dp, show that D(f) consists of all the

L2 functions g for which x[U(g)](x) ∈ L2(R), and then show that every
such g is absolutely continuous and has an L2 derivative.
(c) Conclude that the operator

∫
f dp of part b has for its domain the

set of all L2 absolutely continuous functions having L2derivatives, and
that [

∫
f dp](g) = (1/2πi)g′.

CHAPTER X

THE SPECTRAL THEOREM OF GELFAND
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DEFINITION A Banach algebra is a complex Banach space A on which
there is defined an associative multiplication × for which:

(1) x× (y + z) = x× y + x× z and (y + z)× x = y × x+ z × x for
all x, y, z ∈ A.

(2) x× (λy) = λx× y = (λx)× y for all x, y ∈ A and λ ∈ C.
(3) ‖x× y‖ ≤ ‖x‖‖y‖ for all x, y ∈ A.

We call the Banach algebra commutative if the multiplication in A is
commutative.

An involution on a Banach algebra A is a map x → x∗ of A into itself
that satisfies the following conditions for all x, y ∈ A and λ ∈ C.

(1) (x+ y)∗ = x∗ + y∗.
(2) (λx)∗ = λx∗.
(3) (x∗)∗ = x.
(4) (x× y)∗ = y∗ × x∗.
(5) ‖x∗‖ = ‖x‖.

We call x∗ the adjoint of x. A subset S ⊆ A is called selfadjoint if x ∈ S
implies that x∗ ∈ S.
A Banach algebra A on which there is defined an involution is called a
Banach *-algebra.

An element of a Banach *-algebra is called selfadjoint if x∗ = x. If a
Banach *-algebra A has an identity I, then an element x ∈ A, for which
x × x∗ = x∗ × x = I, is called a unitary element of A. A selfadjoint
element x, for which x2 = x, is called a projection in A. An element x
that commutes with its adjoint x∗ is called a normal element of A.

A Banach algebra A is a C∗-algebra if it is a Banach *-algebra, and if
the equation

‖x× x∗‖ = ‖x‖2

holds for all x ∈ A. A sub C∗-algebra of a C∗-algebra A is a subalgebra
B of A that is a closed subset of the Banach space A and is also closed
under the adjoint operation.

REMARK. We ordinarily write xy instead of x × y for the multipli-
cation in a Banach algebra. It should be clear that the axioms for a
Banach algebra are inspired by the properties of the space B(H) of
bounded linear operators on a Hilbert space H.

EXERCISE 10.1. (a) Let A be the set of all n× n complex matrices,
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and for M = [aij ] ∈ A define

‖M‖ =

√√√√ n∑
i=1

n∑
j=1

|aij |2.

Prove that A is a Banach algebra with identity I. Verify that A is a
Banach ∗-algebra if M∗ is defined to be the complex conjugate of the
transpose of M. Give an example to show that A is not a C∗-algebra.
(b) Suppose H is a Hilbert space. Verify that B(H) is a C∗-algebra.
Using as H the Hilbert space C2, give an example of an element x ∈
B(H) for which ‖x2‖ 6= ‖x‖2. Observe that this example is not the same
as that in part a. (The norms are different.)
(c) Verify that L1(R) is a Banach algebra, where multiplication is defined

to be convolution. Show further that, if f∗(x) is defined to be f(−x),
then L1(R) is a Banach *-algebra. Give an example to show that L1(R)
is not a C∗-algebra.
(d) Verify that C0(∆) is a Banach algebra, where ∆ is a locally compact
Hausdorff space, the algebraic operations are pointwise, and the norm
on C0(∆) is the supremum norm. Show further that C0(∆) is a C∗-
algebra, if we define f∗ to be f. Show that C0(∆) has an identity if and
only if ∆ is compact.
(e) Let A be an arbitrary Banach algebra. Prove that the map (x, y)→
xy is continuous from A×A into A.
(f) Let A be a Banach algebra. Suppose x ∈ A satisfies ‖x‖ < 1. Prove
that 0 = limn x

n.
(g) Let M be a closed subspace of a Banach algebra A, and assume that
M is a two-sided ideal in (the ring) A; i.e., xy ∈M and yx ∈M if x ∈ A
and y ∈M. Prove that the Banach space A/M is a Banach algebra and
that the natural map π : A → A/M is a continuous homomorphism of
the Banach algebra A onto the Banach algebra A/M.
(h) Let A be a Banach algebra with identity I and let x be an element of
A. Show that the smallest subalgebra B of A that contains x coincides
with the set of all polynomials in x, i.e., the set of all elements y of the
form y =

∑n
j=0 ajx

j , where each aj is a complex number and x0 = I. We

denote this subalgebra by [x] and call it the subalgebra of A generated
by x.
(i) Let A be a Banach *-algebra. Show that each element x ∈ A can be
written uniquely as x = x1 + ix2, where x1 and x2 are selfadjoint. Show
further that if A contains an identity I, then I∗ = I. If A is a C∗-algebra
with identity, and if U is a unitary element in A, show that ‖U‖ = 1.



192 CHAPTER X

(j) Let x be a selfadjoint element of a C∗-algebra A. Prove that ‖xn‖ =
‖x‖n for all nonnegative integers n. HINT: Do this first for n = 2k.

EXERCISE 10.2. (Adjoining an Identity) Let A be a Banach algebra,
and let B be the complex vector space A × C. Define a multiplication
on B by

(x, λ)× (x′, λ′) = (xx′ + λx′ + λ′x , λλ′),

and set ‖(x, λ)‖ = ‖x‖+ |λ|.
(a) Prove that B is a Banach algebra with identity.
(b) Show that the map x → (x, 0) is an isometric isomorphism of the
Banach algebra A onto an ideal M of B. Show that M is of codimension
1; i.e., the dimension of B/M is 1. (This map x → (x, 0) is called the
canonical isomorphism of A into B.)
(c) Conclude that every Banach algebra is isometrically isomorphic to
an ideal of codimension 1 in a Banach algebra with identity.
(d) Suppose A is a Banach algebra with identity, and let B be the
Banach algebra A × C constructed above. What is the relationship, if
any, between the identity in A and the identity in B?
(e) If A is a Banach ∗-algebra, can A be imbedded isometrically and
isomorphically as an ideal of codimension 1 in a Banach ∗-algebra?

THEOREM 10.1. Let x be an element of a Banach algebra A with
identity I, and suppose that ‖x‖ = α < 1. Then the element I − x is
invertible in A and

(I − x)−1 =

∞∑
n=0

xn.

PROOF. The sequence of partial sums of the infinite series
∑∞
n=0 x

n

forms a Cauchy sequence in A, for

‖
j∑

n=0

xn −
k∑

n=0

xn‖ = ‖
j∑

n=k+1

xn‖

≤
j∑

n=k+1

‖xn‖

≤
j∑

n=k+1

‖x‖n

=

j∑
n=k+1

αn.
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We write

y =

∞∑
n=0

xn = lim
j

j∑
n=0

xn = lim
j
Sj .

Then
(I − x)y = lim

j
(I − x)Sj

= lim
j

(I − x)

j∑
n=0

xn

= lim
j

(I − xj+1)

= I,

by part f of Exercise 10.1, showing that y is a right inverse for I − x.
That y also is a left inverse follows similarly, whence y = (I − x)−1, as
desired.

EXERCISE 10.3. Let A be a Banach algebra with identity I.
(a) If x ∈ A satisfies ‖x‖ < 1, show that I + x is invertible in A.
(b) Suppose y ∈ A is invertible, and set δ = 1/‖y−1‖. Prove that x is
invertible in A if ‖x− y‖ < δ. HINT: Write x = y(I + y−1(x− y)).
(c) Conclude that the set of invertible elements in A is a nonempty,
proper, open subset of A.
(d) Prove that the map x → x−1 is continuous on its domain. HINT:
y−1 − x−1 = y−1(x− y)x−1.
(e) Let x be an element of A. Show that the infinite series

∞∑
n=0

xn/n!

converges to an element of A. Define

ex =

∞∑
n=0

xn/n!.

Show that
ex+y = exey

if xy = yx. Compare with part c of Exercise 8.13.
(f) Suppose in addition that A is a Banach *-algebra and that x is
a selfadjoint element of A. Prove that eix is a unitary element of A.
Compare with part d of Exercise 8.13.
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THEOREM 10.2. (Mazur’s Theorem) Let A be a Banach algebra with
identity I, and assume further that A is a division ring, i.e., that every
nonzero element of A has a multiplicative inverse. Then A consists of
the complex multiples λI of the identity I, and the map λ → λI is a
topological isomorphism of C onto A.

PROOF. Assume false, and let x be an element of A that is not a
complex multiple of I. This means that each element xλ = x − λI has
an inverse.
Let f be an arbitrary element of the conjugate space A∗ of A, and define
a function F of a complex variable λ by

F (λ) = f(x−1
λ ) = f((x− λI)−1).

We claim first that F is an entire function of λ. Thus, let λ be fixed. We
use the factorization formula

y−1 − z−1 = y−1(z − y)z−1.

We have
F (λ+ h)− F (λ) = f(x−1

λ+h)− f(x−1
λ )

= f(x−1
λ+h(xλ − xλ+h)x−1

λ )

= hf(x−1
λ+hx

−1
λ ).

So,

lim
h→0

F (λ+ h)− F (λ)

h
= f(x−2

λ ),

and F is differentiable everywhere. See part d of Exercise 10.3.
Next, observe that

lim
λ→∞

F (λ) = lim
λ→∞

f((x− λI)−1)

= lim
λ→∞

(1/λ)f(((x/λ)− I)−1)

= 0.

Therefore, F is a bounded entire function, and so by Liouville’s Theorem,
F (λ) = 0 identically. Consequently, f(x−1

0 ) = f(x−1) = 0 for all f ∈ A∗.
But this would imply that x−1 = 0, which is a contradiction.

We introduce next a dual object for Banach algebras that is analogous
to the conjugate space of a Banach space.
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DEFINITION. Let A be a Banach algebra. By the structure space of
A we mean the set ∆ of all nonzero continuous algebra homomorphisms
(linear and multiplicative) φ : A→ C. The structure space is a (possibly
empty) subset of the conjugate space A∗, and we think of ∆ as being
equipped with the inherited weak* topology.

THEOREM 10.3. Let A be a Banach algebra, and let ∆ denote its
structure space. Then ∆ is locally compact and Hausdorff. Further, if A
is a separable Banach algebra, then ∆ is second countable and metrizable.
If A contains an identity I, then ∆ is compact.

PROOF. ∆ is clearly a Hausdorff space since the weak* topology on
A∗ is Hausdorff.
Observe next that if φ ∈ ∆, then ‖φ‖ ≤ 1. Indeed, for any x ∈ A, we
have

|φ(x)| = |φ(xn)|1/n ≤ ‖φ‖1/n‖x‖ → ‖x‖,

implying that ‖φ‖ ≤ 1, as claimed. It follows then that ∆ is contained
in the closed unit ball B1 of A∗. Since the ball B1 in A∗ is by Alaoglu’s
Theorem compact in the weak* topology, we could show that ∆ is com-
pact by verifying that it is closed in B1. This we can do if A contains
an identity I. Thus, let {φα} be a net of elements of ∆ that converges
in the weak* topology to an element φ ∈ B1. Since this convergence is
pointwise convergence on A, it follows that φ(xy) = φ(x)φ(y), for all
x, y ∈ A, whence φ is a homomorphism of the algebra A into C. Also,
since every nonzero homomorphism of A must map I to 1, it follows
that φ(I) = 1, whence φ is not the 0 homomorphism. Hence, φ ∈ ∆, as
desired.
We leave the proof that ∆ is always locally compact to the exercises.
Of course, if A is separable, then the weak* topology on B1 is compact
and metrizable, so that ∆ is second countable and metrizable in this
case, as desired.

EXERCISE 10.4. Let A be a Banach algebra.
(a) Suppose that the elements of the structure space ∆ of A separate
the points of A. Prove that A is commutative.
(b) Suppose A is the algebra of all n × n complex matrices as defined
in part a of Exercise 10.1. Prove that the structure space ∆ of A is the
empty set if n > 1.
(c) If A has no identity, show that ∆ is locally compact. HINT: Show
that the closure of ∆ in B1 is contained in the union of ∆ and {0},
whence ∆ is an open subset of a compact Hausdorff space.
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(d) Let B be the Banach algebra with identity constructed from A as
in Exercise 10.2, and identify A with its canonical isomorphic image
in B. Prove that every element φ in the structure space ∆A of A has
a unique extension to an element φ′ in the structure space ∆B of B.
Show that there exists a unique element φ0 ∈ ∆B whose restriction
to A is identically 0. Show further that the above map φ → φ′ is a
homeomorphism of ∆A onto ∆B − {φ0}.

DEFINITION. Let A be a Banach algebra and let ∆ be its structure
space. For each x ∈ A, define a function x̂ on ∆ by

x̂(φ) = φ(x).

The map x → x̂ is called the Gelfand transform of A, and the function
x̂ is called the Gelfand transform of x.

EXERCISE 10.5. Let A be the Banach algebra L1(R) of part c of
Exercise 10.1, and let ∆ be its structure space.
(a) If λ is any real number, define φλ : A→ C by

φλ(f) =

∫
f(x)e−2πiλx dx.

Show that φλ is an element of ∆.
(b) Let φ be an element of ∆, and let h be the L∞ function satisfying

φ(f) =

∫
f(x)h(x) dx.

Prove that h(x + y) = h(x)h(y) for almost all pairs (x, y) ∈ R2. HINT:
Show that∫ ∫

f(x)g(y)h(x+ y) dydx =

∫ ∫
f(x)g(y)h(x)h(y) dydx

for all f, g ∈ L1(R).
(c) Let φ and h be as in part b, and let f be an element of L1(R) for
which φ(f) 6= 0. Write fx for the function defined by fx(y) = f(x+ y).
Show that the map x→ φ(fx) is continuous, and that

h(x) = φ(f−x)/φ(f)

for almost all x. Conclude that h may be chosen to be a continuous
function in L∞(R), in which case h(x+ y) = h(x)h(y) for all x, y ∈ R.
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(d) Suppose h is a bounded continuous map of R into C, which is not
identically 0 and which satisfies h(x + y) = h(x)h(y) for all x and y.
Show that there exists a real number λ such that h(x) = e2πiλx for
all x. HINT: If h is not identically 1, show that there exists a smallest
positive number δ for which h(δ) = 1. Show then that h(δ/2) = −1
and h(δ/4) = ±i. Conclude that λ = ±(1/δ) depending on whether
h(δ/4) = i or −i.
(e) Conclude that the map λ → φλ of part a is a homeomorphism
between R and the structure space ∆ of L1(R). HINT: To prove that the
inverse map is continuous, suppose that {λn} does not converge to λ.
Show that there exists an f ∈ L1(R) such that

∫
f(x)e−2πiλnx dx does

not approach
∫
f(x)e−2πiλx dx.

(f) Show that, using the identification of ∆ with R in part e, that the
Gelfand transform on L1(R) and the Fourier transform on L1(R) are
identical. Conclude that the Gelfand transform is 1-1 on L1(R).

THEOREM 10.4. Let A be a Banach algebra. Then the Gelfand trans-
form of A is a norm-decreasing homomorphism of A into the Banach
algebra C(∆) of all continuous complex-valued functions on ∆.

EXERCISE 10.6. (a) Prove Theorem 10.4.
(b) If A is a Banach algebra without an identity, show that each function
x̂ in the range of the Gelfand transform is an element of C0(∆). HINT:
The closure of ∆ in B1 is contained in the union of ∆ and {0}.

DEFINITION. Let A be a Banach algebra with identity I, and let x
be an element of A. By the resolvent of x we mean the set resA(x) of
all complex numbers λ for which λI − x has an inverse in A. By the
spectrum spA(x) of x we mean the complement of the resolvent of x;
i.e., spA(x) is the set of all λ ∈ C for which λI − x does not have an
inverse in A. We write simply res(x) and sp(x) when it is unambiguous
what the algebra A is.
By the spectral radius (relative to A) of x we mean the extended real
number ‖x‖sp defined by

‖x‖sp = sup
λ∈spA(x)

|λ|.

EXERCISE 10.7. Let A be a Banach algebra with identity I, and let
x be an element of A.
(a) Show that the resolvent resA(x) of x is open in C, whence the spec-
trum spA(x) of x is closed.
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(b) Show that the spectrum of x is nonempty, whence the spectral radius
of x is nonnegative. HINT: Make an argument similar to the proof of
Mazur’s theorem.
(c) Show that ‖x‖sp ≤ ‖x‖, whence the spectrum of x is compact. HINT:
If λ 6= 0, then λI − x = λ(I − (x/λ)).
(d) Show that there exists a λ ∈ spA(x) such that ‖x‖sp = |λ|; i.e., the
spectral radius is attained.
(e) (Spectral Mapping Theorem) If p(z) is any complex polynomial, show
that

spA(p(x)) = p(spA(x));

i.e., µ ∈ spA(p(x)) if and only if there exists a λ ∈ spA(x) such that
µ = p(λ). HINT: Factor the polynomial p(z)− µ as

p(z)− µ = c

n∏
i=1

(z − λi),

whence

p(x)− µI = c

n∏
i=1

(x− λiI).

Now, the left hand side fails to have an inverse if and only if some one
of the factors on the right hand side fails to have an inverse.

THEOREM 10.5. Let A be a commutative Banach algebra with iden-
tity I, and let x be an element of A. Then the spectrum spA(x) of x
coincides with the range of the Gelfand transform x̂ of x. Consequently,
we have

‖x‖sp = ‖x̂‖∞.

PROOF. If there exists a φ in the structure space ∆ of A for which
x̂(φ) = λ, then

φ(λI − x) = λ− φ(x) = λ− x̂(φ) = 0,

from which it follows that λI − x cannot have an inverse. Hence, the
range of x̂ is contained in sp(x).
Conversely, let λ be in the spectrum of x. Let J be the set of all multiples
(λI − x)y of λI − x by elements of A. Then J is an ideal in A, and it
is a proper ideal since λI − x has no inverse (I is not in J). By Zorn’s
Lemma, there exists a maximal proper ideal Mcontaining J. Now the
closure of M is an ideal. If this closure of M is all of A, then there must
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exist a sequence {mn} of elements of M that converges to I. But, since
the set of invertible elements in A is an open set, it must be that some
mn is invertible. But then M would not be a proper ideal. Therefore,
M is proper, and since M is maximal it follows that M is itself closed.
Now A/M is a Banach algebra by part g of Exercise 10.1. Also, since
M is maximal, we have that A/M is a field. By Mazur’s Theorem
(Theorem 10.2), we have that A/M is topologically isomorphic to the
set of complex numbers. The natural map π : A → A/M is then a
continuous nonzero homomorphism of A onto C, i.e., π is an element of
∆. Further, π(λI − x) = 0 since λI − x ∈ J ⊆ M. Hence, x̂(π) = λ,
showing that λ belongs to the range of x̂.

EXERCISE 10.8. Suppose A is a commutative Banach algebra with
identity I, and let ∆ be its structure space. Assume that x is an element
of A for which the subalgebra [x] generated by x is dense in A. (See part
h of Exercise 10.1.) Prove that x̂ is a homeomorphism of ∆ onto the
spectrum spA(x) of x.

THEOREM 10.6. Let A be a commutative C∗-algebra with identity I.
Then, for each x ∈ A, we have x̂∗ = x̂.

PROOF. The theorem will follow if we show that x̂ is real-valued if
x is selfadjoint. (Why?) Thus, if x is selfadjoint, and if U = eix =∑∞
n=0(ix)n/n!, then we have seen in part f of Exercise 10.2 and part i of

Exercise 10.1 that U is unitary and that ‖U‖ = ‖U−1‖ = 1. Therefore,
if φ is an element of the structure space ∆ of A, then |φ(U)| ≤ 1 and
1/|φ(U)| = |φ(U−1)| ≤ 1, and this implies that |φ(U)| = 1. On the other
hand,

φ(U) =

∞∑
n=0

(iφ(x))n/n! = eiφ(x).

But |eit| = 1 if and only if t is real. Hence, x̂(φ) = φ(x) is real for every
φ ∈ ∆.

The next result is an immediate consequence of the preceding theorem.

THEOREM 10.7. If x is a selfadjoint element of a commutative C∗-
algebra A with identity, then the spectrum spA(x) of x is contained in
the set of real numbers.

EXERCISE 10.9. (A Formula for the Spectral Radius) Let A be a
Banach algebra with identity I, and let x be an element of A. Write
sp(x) for spA(x).
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(a) If n is any positive integer, show that µ ∈ sp(xn) if and only if there
exists a λ ∈ sp(x) such that µ = λn, whence

‖x‖sp = ‖xn‖1/nsp .

Conclude that

‖x‖sp ≤ lim inf ‖xn‖1/n.

(b) If f is an element of A∗, show that the function λ→ f((λI − x)−1)
is analytic on the (open) resolvent res(x) of x. Show that the resolvent
contains all λ for which |λ| > ‖x‖sp.
(c) Let f be in A∗. Show that the function F (µ) = µf((I − µx)−1) is
analytic on the disk of radius 1/‖x‖sp around 0 in C. Show further that

F (µ) =
∞∑
n=0

f(xn)µn+1

on the disk of radius 1/‖x‖ and hence also on the (possibly) larger disk
of radius 1/‖x‖sp.
(d) Using the Uniform Boundedness Principle, show that if |µ| < 1/‖x‖sp,
then the sequence {µn+1xn} is bounded in norm, whence

lim sup ‖xn‖1/n ≤ 1/|µ|

for all such µ. Show that this implies that

lim sup ‖xn‖1/n ≤ ‖x‖sp.

(e) Derive the spectral radius formula:

‖x‖sp = lim ‖xn‖1/n.

(f) Suppose that A is a C∗-algebra and that x is a selfadjoint element
of A. Prove that

‖x‖ = sup
λ∈sp(x)

|λ| = ‖x‖sp.
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THEOREM 10.8. (Gelfand’s Theorem) Let A be a commutative C∗-
algebra with identity I. Then the Gelfand transform is an isometric iso-
morphism of the Banach algebra A onto C(∆), where ∆ is the structure
space of A.

PROOF. We have already seen that x → x̂ is a norm-decreasing ho-
momorphism of A into C(∆). We must show that the transform is an
isometry and is onto.
Now it follows from part f of Exercise 10.9 and Theorem 10.4 that ‖x‖ =
‖x̂‖∞ whenever x is selfadjoint. For an arbitrary x, write y = x∗x. Then

‖x‖ =
√
‖y‖

=
√
‖ŷ‖∞

=

√
‖x̂∗x‖∞

=

√
‖x̂∗x̂‖∞

=
√
‖|x̂|2‖∞

=
√
‖x̂‖2∞

= ‖x̂‖∞,

showing that the Gelfand transform is an isometry.

By Theorem 10.6, we see that the range Â of the Gelfand transform
is a subalgebra of C(∆) that separates the points of ∆ and is closed
under complex conjugation. Then, by the Stone-Weierstrass Theorem,
Âmust be dense in C(∆). But, since A is itself complete, and the Gelfand

transform is an isometry, it follows that Â is closed in C(∆), whence is
all of C(∆).

EXERCISE 10.10. Let A be a commutative C∗-algebra with identity
I, and let ∆ denote its structure space. Verify the following properties
of the Gelfand transform on A.
(a) x is invertible if and only if x̂ is never 0.
(b) x = yy∗ if and only if x̂ ≥ 0.
(c) x is a unitary element of A if and only if |x̂| ≡ 1.
(d) A contains a nontrivial projection if and only if ∆ is not connected.

EXERCISE 10.11. Let A and B be commutative C∗-algebras, each
having an identity, and let ∆A and ∆B denote their respective structure
spaces. Suppose T is a (not a priori continuous) homomorphism of the
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algebra A into the algebra B. If φ is any linear functional on B, define
T ′(φ) on A by

T ′(φ) = φ ◦ T.

(a) Suppose φ is a positive linear functional on B; i.e., φ(xx∗) ≥ 0 for
all x ∈ B. Show that φ is necessarily continuous.
(b) Prove that T ′ is a continuous map of ∆B into ∆A.

(c) Show that x̂(T ′(φ)) = T̂ (x)(φ) for each x ∈ A.
(d) Show that ‖T (x)‖ ≤ ‖x‖ and conclude that T is necessarily contin-
uous.
(e) Prove that T ′ is onto if and only if T is 1-1. HINT: T is not 1-1 if
and only if there exists a nontrivial continuous function on ∆A that is
identically 0 on the range of T ′.
(f) Prove that T ′ is 1-1 if and only if T is onto.
(g) Prove that T ′ is a homeomorphism of ∆B onto ∆A if and only if T
is an isomorphism of A onto B.

EXERCISE 10.12. (Independence of the Spectrum)
(a) Suppose B is a commutative C∗-algebra with identity I, and that A
is a sub-C∗-algebra of B containing I. Let x be an element of A. Prove
that spA(x) = spB(x). HINT: Let T be the injection map of A into B.
(b) Suppose C is a (not necessarily commutative) C∗-algebra with iden-
tity I, and let x be a normal element of C. Suppose A is the smallest sub-
C∗-algebra of C that contains x, x∗, and I. Prove that spA(x) = spC(x).
HINT: If λ ∈ spA(x), and λI−x has an inverse in C, let B be the small-
est sub-C∗-algebra of C containing x, I, and (λI − x)−1. Then use part
a.
(c) Let H be a separable Hilbert space, and let T be a normal element
of B(H). Let A be the smallest sub-C∗-algebra of B(H) containing T,
T ∗, and I. Show that the spectrum sp(T ) of the operator T coincides
with the spectrum spA(T ) of T thought of as an element of A.

THEOREM 10.9. (Spectral Theorem) Let H be a separable Hilbert
space, let A be a separable, commutative, sub-C∗-algebra of B(H) that
contains the identity operator I, and let ∆ denote the structure space
of A. Write B for the σ-algebra of Borel subsets of ∆. Then there exists
a unique H-projection-valued measure p on (∆,B) such that for every
operator S ∈ A we have

S =

∫
Ŝ dp.

That is, the inverse of the Gelfand transform is the integral with respect
to p.
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PROOF. Since A contains I, we know that ∆ is compact and metriz-
able. Since the inverse T of the Gelfand transform is an isometric iso-
morphism of the Banach algebra C(∆) onto A, we see that T satisfies
the three conditions of Theorem 9.7.

(1) T (fg) = T (f)T (g) for all f, g ∈ C(∆).
(2) T (f) = [T (f)]∗ for all f ∈ C(∆).
(3) T (1) = I.

The present theorem then follows immediately from Theorem 9.7.

THEOREM 10.10. (Spectral Theorem for a Bounded Normal Opera-
tor) Let T be a bounded normal operator on a separable Hilbert space
H. Then there exists a unique H-projection-valued measure p on (C,B)
such that

T =

∫
f dp =

∫
f(λ) dp(λ),

where f(λ) = λ. (We also use the notation T =
∫
λ dp(λ).) Furthermore,

psp(T ) = I; i.e., p is supported on the spectrum of T.

PROOF. Let A0 be the set of all elements S ∈ B(H) of the form

S =

n∑
i=0

m∑
j=0

aijT
iT ∗j ,

where each aij ∈ C, and let A be the closure in B(H) of A0. We have
that A is the smallest sub-C∗-algebra of B(H) that contains T, T ∗, and
I. It follows that A is a separable commutative sub-C∗-algebra of B(H)
that contains I. If ∆ denotes the structure space of A, then, by Theorem
10.9, there exists a unique projection-valued measure q on (∆,B) such
that

S =

∫
Ŝ dq =

∫
Ŝ(φ) dq(φ)

for every S ∈ A.
Note next that the function T̂ is 1-1 on ∆. For, if T̂ (φ1) = T̂ (φ2), then

T̂ ∗(φ1) = T̂ ∗(φ2), and hence Ŝ(φ1) = Ŝ(φ2) for every S ∈ A0. Therefore,

Ŝ(φ1) = Ŝ(φ2) for every S ∈ A, showing that φ1 = φ2. Hence, T̂ is a
homeomorphism of ∆ onto the subset spA(T ) of C. By part c of Exercise
10.12, spA(T ) = sp(T ).

Define a projection-valued measure p = T̂∗q on sp(T ) by

pE = T̂∗qE = qT̂−1(E).
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See part c of Exercise 9.3. Then p is a projection-valued measure on
(C,B), and p is supported on sp(T ).
Now, let f be the identity function on C, i.e., f(λ) = λ. Then, by
Exercise 9.13, we have that∫

λ dp(λ) =

∫
f dp

=

∫
(f ◦ T̂ ) dq

=

∫
T̂ dq

= T,

as desired.
Finally, let us show that the projection-valued measure p is unique.
Suppose p′ is another projection-valued measure on (C,B), supported
on sp(T ), such that

T =

∫
λ dp′(λ) =

∫
λ dp(λ).

It follows also that

T ∗ =

∫
λ̄ dp′(λ) =

∫
λ̄ dp(λ).

Then, for every function P of the form

P (λ) =

n∑
i=1

m∑
j=1

cijλ
iλ̄j ,

we have ∫
P (λ) dp′(λ) =

∫
P (λ) dp(λ).

Whence, by the Stone-Weierstrass Theorem,∫
f(λ) dp′(λ) =

∫
f(λ) dp(λ)

for every continuous complex-valued function f on sp(T ). If q′ = T̂−1
∗ p′

is the projection-valued measure on ∆ defined by

q′E = p′
T̂ (E)

,
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then, for any continuous function g on ∆, we have∫
g dq′ =

∫
(g ◦ T̂−1) dp′

=

∫
(g ◦ T̂−1) dp

=

∫
(g ◦ T̂−1 ◦ T̂ ) dq

=

∫
g dq.

So, by the uniqueness assertion in the general spectral theorem, we have
that q′ = q. But then

p′ = T̂∗q
′ = T̂∗q = p,

and the uniqueness is proved.

DEFINITION. The projection-valued measure p, associated as in the
above theorem to a normal operator T, is called the spectral measure
for T.

The next result is an immediate consequence of the preceding theorem.

THEOREM 10.11. (Spectral Theorem for a Bounded Selfadjoint Op-
erator) Let H be a separable Hilbert space, and let T be a selfadjoint
element in B(H). Then there exists a unique projection-valued measure
p on (R,B) for which T =

∫
λ dp(λ). Further, p is supported on the

spectrum of T.

REMARK. A slightly different notation is frequently used to indicate
the spectral measure for a selfadjoint operator. Instead of writing T =∫
λ dp(λ), one often writes T =

∫
λ dEλ. Also, such a projection-valued

measure is sometimes referred to as a resolution of the identity.

EXERCISE 10.13. Let T be a normal operator in B(H) and let p be
its spectral measure.
(a) If U is a nonempty (relatively) open subset of sp(T ), show that
pU 6= 0. If U is an infinite set, show that the range of pU is infinite
dimensional.
(b) Show that if E is a closed subset of C for which pE = I, then
E contains sp(T ). Conclude that the smallest closed subset of C that
supports p is the spectrum of T.
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(c) If T is invertible, show that the function 1/λ is bounded on sp(T )
and that T−1 =

∫
(1/λ) dp(λ).

(d) If sp(T ) contains at least two distinct points, show that T = T1 +T2,
where T1 and T2 are both nonzero normal operators and T1 ◦ T2 = 0.
(e) Suppose S is a bounded operator on H that commutes with both
T and T ∗. Prove that S commutes with every projection pE for E a
Borel subset of sp(T ). HINT: Do this first for open subsets of sp(T ),
and then consider the collection of all sets E for which pES = SpE . (It
is a monotone class.)
(f) Suppose S is a bounded operator that commutes with T. Let E =
sp(T ) ∩Bε(λ0), where ε > 0 and λ0 is a complex number. Show that, if
x belongs to the range of pE , then S(x) also belongs to the range of pE ,
implying that S commutes with pE . (Use part b of Exercise 9.11.) De-
duce the Fuglede-Putnam-Rosenbloom Theorem: If a bounded operator
S commutes with a bounded normal operator T, then S also commutes
with T ∗.

EXERCISE 10.14. Let T be a normal operator on a separable Hilbert
space H, let A be a sub-C∗-algebra of B(H) that contains T and I, let
f be a continuous complex-valued function on the spectrum sp(T ) of T,

and suppose S is an element of A for which Ŝ = f ◦ T̂ .
(a) Show that the spectrum sp(S) of S equals f(sp(T )). Compare this
result with the spectral mapping theorem (part e of Exercise 10.7).
(b) Let pT denote the spectral measure for T and pS denote the spectral
measure for S. In the notation of Exercises 9.3 and 9.13, show that

pS = f∗(p
T ).

HINT: Show that S =
∫
λ df∗(p

T )(λ), and then use the uniqueness as-
sertion in the Spectral Theorem for a normal operator.
(c) Apply parts a and b to describe the spectral measures for S = q(T )
for q a polynomial and S = eT .

EXERCISE 10.15. Let p be an H-projection-valued measure on the
Borel space (S,B). If f is an element of L∞(p), define the essential range
of f to be the set of all λ ∈ C for which

pf−1(Bε(λ)) 6= 0

for every ε > 0.
(a) Let f be an element of L∞(p). If T is the bounded normal operator∫
f dp, show that the spectrum of T coincides with the essential range

of f. See part e of Exercise 9.10.
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(b) Let f be an element of L∞(p), and let T =
∫
f dp. Prove that

the spectral measure q for T is the projection-valued measure f∗p. See
Exercises 9.3 and 9.13.

EXERCISE 10.16. Let (S, µ) be a σ-finite measure space. For each
f ∈ L∞(µ), let mf denote the multiplication operator on L2(µ) given
by mfg = fg. Let p denote the canonical projection-valued measure on
L2(µ).

(a) Prove that the operator mf is a normal operator and that

mf =

∫
f dp.

Find the spectrum sp(mf ) of mf .

(b) Using S = [0, 1] and µ as Lebesgue measure, find the spectrum and
spectral measures for the following mf ’s:

(1) f = χ[0,1/2],
(2) f(x) = x,
(3) f(x) = x2,
(4) f(x) = sin(2πx), and
(5) f is a step function f =

∑n
i=1 aiχIi , where the ai’s are complex

numbers and the Ii’s are disjoint intervals.

(c) Let S and µ be as in part b. Compute the spectrum and spectral
measure for mf if f is the Cantor function.

DEFINITION. We say that an operator T ∈ B(H) is diagonalizable
if it can be represented as the integral of a function with respect to a
projection-valued measure. That is, if there exists a Borel space (S,B)
and an H-projection-valued measure p on (S,B) such that T =

∫
f dp

for some bounded B-measurable function f. A collection B of operators
is called simultaneously diagonalizable if there exists a projection-valued
measure p on a Borel space (S,B) such that each element of B can be
represented as the integral of a function with respect to p.

REMARK. Theorem 10.11 and Theorem 10.10 show that selfadjoint
and normal operators are diagonalizable. It is also clear that simultane-
ously diagonalizable operators commute.

EXERCISE 10.17. (a) Let H be a separable Hilbert space. Suppose
B is a commuting, separable, selfadjoint subset of B(H). Prove that the
elements of B are simultaneously diagonalizable.
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(b) Let H be a separable Hilbert space. Show that a separable, selfad-
joint collection S of operators in B(H) is simultaneously diagonalizable
if and only if S is contained in a commutative sub-C∗-algebra of B(H).
(c) Let A be an n × n complex matrix for which aij = aji. Use the
Spectral Theorem to show that there exists a unitary matrix U such
that UAU−1 is diagonal. That is, use the Spectral Theorem to prove
that every Hermitian matrix can be diagonalized.

One of the important consequences of the spectral theorem is the fol-
lowing:

THEOREM 10.12. (Stone’s Theorem) Let t→ Ut be a map of R into
the set of unitary operators on a separable Hilbert space H, and suppose
that this map satisfies:

(1) Ut+s = Ut ◦ Us for all t, s ∈ R.
(2) The map t→ (Ut(x), y) is continuous for every pair x, y ∈ H.

Then there exists a unique projection-valued measure p on (R,B) such
that

Ut =

∫
e−2πiλt dp(λ)

for each t ∈ R.

PROOF. For each f ∈ L1(R), define a map Lf from H ×H into C by

Lf (x, y) =

∫
R
f(s)(Us(x), y) ds.

It follows from Theorem 8.5 (see the exercise below) that for each f ∈
L1(R) there exists a unique element Tf ∈ B(H) such that

Lf (x, y) = (Tf (x), y)

for all x, y ∈ H. Let B denote the set of all operators on H of the form
Tf for f ∈ L1(R). Again by the exercise below, it follows that B is a
separable commutative selfadjoint subalgebra of B(H).
We claim first that the subspace H0 spanned by the vectors of the form
y = Tf (x), for f ∈ L1(R) and x ∈ H, is dense in H. Indeed, if z ∈ H is
orthogonal to every element of H0, then

0 = (Tf (z), z)

=

∫
R
f(s)(Us(z), z) ds
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for all f ∈ L1(R), whence

(Us(z), z) = 0

for almost all s ∈ R. But, since this is a continuous function of s, it
follows that

(Us(z), z) = 0

for all s. In particular,

(z, z) = (U0(z), z) = 0,

proving that H0 is dense in H as claimed.
We let A denote the smallest sub-C∗-algebra of B(H) that contains B
and the identity operator I, and we denote by ∆ the structure space
of A. We see that A is the closure in B(H) of the set of all elements
of the form λI + Tf , for λ ∈ C and f ∈ L1(R). So A is a separable
commutative C∗-algebra. Again, by Exercise 10.18 below, we have that
the map T that sends f ∈ L1(R) to the operator Tf is a norm-decreasing
homomorphism of the Banach ∗-algebra L1(R) into the C∗-algebra A.
Recall from Exercise 10.5 that the structure space of the Banach algebra
L1(R) is identified, specifically as in that exercise, with the real line R.
With this identification, we define T ′ : ∆→ R by

T ′(φ) = φ ◦ T.
Because the topologies on the structures spaces of A and L1(R) are the
weak∗ topologies, it follows directly that T ′ is continuous. For each
f ∈ L1(R) we have the formula

f̂(T ′(φ)) = [T ′(φ)](f) = φ(Tf ) = T̂f (φ).

By the general Spectral Theorem, we let q be the unique projection-
valued measure on ∆ for which

S =

∫
Ŝ(φ) dq(φ)

for all S ∈ A, and we set p = T ′∗q. Then p is a projection-valued measure
on (R,B), and we have∫

f̂ dp =

∫
(f̂ ◦ T ′) dq

=

∫
f̂(T ′(φ)) dq(φ)

=

∫
T̂f (φ) dq(φ)

= Tf
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for all f ∈ L1(R).
Now, for each f ∈ L1(R) and each real t we have

(Ut(Tf (x)), y) =

∫
R
f(s)(Ut(Us(x)), y) ds

=

∫
R
f(s)(Ut+s(x), y) ds

=

∫
R
f−t(s)(Us(x), y) ds

= (Tf−t(x), y)

= ([

∫
f̂−t(λ) dp(λ)](x), y)

= ([

∫
e−2πiλtf̂(λ) dp(λ)](x), y)

= ([

∫
e−2πiλt dp(λ)](Tf (x)), y),

where f−t is defined by f−t(x) = f(x− t). So, because the set H0 of all
vectors of the form Tf (x) span a dense subspace of H,

Ut =

∫
e−2πiλt dp(λ),

as desired.
We have left to prove the uniqueness of p. Suppose p̃ is a projection-
valued measure on (R,B) for which Ut =

∫
e−2πiλt dp̃(λ) for all t. Now

for each vector x ∈ H, define the two measures µx and µ̃x by

µx(E) = (pE(x), x)

and

µ̃x(E) = (p̃E(x), x).

Our assumption on p̃ implies then that∫
e−2πiλt dµx(λ) =

∫
e−2πiλt dµ̃x(λ)

for all real t. Using Fubini’s theorem we then have for every f ∈ L1(R)
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that ∫
f̂(λ) dµx(λ) =

∫ ∫
f(t)e−2πiλt dtdµx(λ)

=

∫
f(t)

∫
e−2πiλt dµx(λ) dt

=

∫
f(t)

∫
e−2πiλt dµ̃x(λ) dt

=

∫
f̂(λ) dµ̃x(λ).

Since the set of Fourier transforms of L1 functions is dense in C0(R), it
then follows that ∫

g dµx =

∫
g dµ̃x

for every g ∈ C0(R). Therefore, by the Riesz representation theorem,
µx = µ̃x. Consequently, p = p̃ (see part d of Exercise 9.2), and the proof
is complete.

EXERCISE 10.18. Let the map t→ Ut be as in the theorem above.
(a) Prove that U0 is the identity operator on H and that U∗t = U−t for
all t.
(b) If f ∈ L1(R), show that there exists a unique element Tf ∈ B(H)
such that ∫

R
f(s)(Us(x), y) ds = (Tf (x), y)

for all x, y ∈ H. HINT: Use Theorem 8.5.
(c) Prove that the assignment f → Tf defined in part b satisfies

‖Tf‖ ≤ ‖f‖1

for all f ∈ L1(R),
Tf∗g = Tf ◦ Tg

for all f, g ∈ L1(R) and
Tf∗ = T ∗f

for all f ∈ L1(R), where

f∗(s) = f(−s).

(d) Conclude that the set of all Tf ’s, for f ∈ L1(R), is a separable
commutative selfadjoint algebra of operators.
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EXERCISE 10.19. Let H be a separable Hilbert space, let A be a sep-
arable, commutative, sub-C∗-algebra of B(H), assume that A contains
the identity operator I, and let ∆ denote the structure space of A. Let
x be a vector in H, and let M be the closure of the set of all vectors
T (x), for T ∈ A. That is, M is a cyclic subspace for A. Prove that there
exists a finite Borel measure µ on ∆ and a unitary operator U of L2(µ)
onto M such that

U−1 ◦ T ◦ U = mT̂

for every T ∈ A. HINT: Let G denote the inverse of the Gelfand trans-
form of A. Define a positive linear functional L on C(∆) by L(f) =
([G(f)](x), x), use the Riesz Representation Theorem to get a measure
µ, and then define U(f) = [G(f)](x) on the dense subspace C(∆) of
L2(µ).

CHAPTER XI

APPLICATIONS OF SPECTRAL THEORY

Let H be a separable, infinite-dimensional, complex Hilbert space. We
exploit properties of the Spectral Theorem to investigate and classify
operators on H. As usual, all Hilbert spaces considered will be assumed
to be complex and separable, even if it is not explicitly stated.
If T is an element of the C∗-algebra B(H), recall that the resolvent of
T is the set res(T ) of all complex numbers λ for which λI − T has a
two-sided inverse in B(H). The spectrum sp(T ) of T is the complement
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of the resolvent of T. That is, λ belongs to sp(T ) if λI−T does not have
a bounded two-sided inverse.

THEOREM 11.1. (Existence of Positive Square Roots of Positive Op-
erators) Let H be a Hilbert space, and let T be a positive operator in
B(H); i.e., (T (x), x) ≥ 0 for all x ∈ H. Then:

(1) There exists an element R in B(H) such that T = R∗R.
(2) There exists a unique positive square root of T, i.e., a unique

positive operator S such that T = S2. Moreover, S belongs to
the smallest sub-C∗-algebra of B(H) that contains T and I.

(3) If T is invertible, then its positive square root S is also invertible.

PROOF. We know that a positive operator T is necessarily selfadjoint.
Hence, writing T =

∫
R λ dp(λ), let us show that p(−∞,0) = 0. That is,

the spectrum of T is contained in the set of nonnegative real numbers.
If not, there must exist a δ > 0 such that p(−∞,−δ] 6= 0. If x is a nonzero
vector in the range of p(−∞,−δ], then

(T (x), x) = (T (p(−∞,−δ](x)), x)

=

∫ −δ
−∞

λ dµx(λ)

≤ −δ‖x‖2

< 0.

But this would imply that T is not a positive operator. Hence, p is
supported on [0,∞). Clearly then T = S2 = S∗S, where

S =

∫ √
λ dp(λ).

Setting R = S gives part 1.
Since S is the integral of a nonnegative function with respect to a
projection-valued measure, it follows that S is a positive operator, so
that S is a positive square root of T. We know from the Weierstrass
Theorem that the continuous function

√
λ is the uniform limit on the

compact set sp(T ) of a sequence of polynomials in λ. It follows that S is
an element of the smallest sub-C∗-algebra A of B(H) containing T and
I.
Now, if S′ is any positive square root of T, then S′ certainly commutes

with T = S′
2
. Hence, S′ commutes with every element of the algebra A
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and hence in particular with S. Let A′ be the smallest sub-C∗-algebra
of B(H) that contains I, T and S′. Then A′ is a separable commutative
C∗-algebra with identity, and S and S′ are two positive elements of A′

whose square is T. But the Gelfand transform on A′ is 1-1 and, by part
1 of this theorem and part b of Exercise 10.10, sends both S and S′ to

the function
√
T̂ . Hence, S = S′, completing the proof of part 2.

Finally, if T is invertible, say TU = I, then S(SU) = I, showing that
S has a right inverse. Also, (US)S = I, showing that S also has a left
inverse so is invertible.

EXERCISE 11.1. (a) Let T be a selfadjoint element of B(H). Prove
that there exist unique positive elements T+ and T− such that T = T+−
T−, T+ and T− commute with T and with each other, and T+T− = 0.
HINT: Use the Gelfand transform. T+ and T− are called the positive
and negative parts of the selfadjoint operator T.
(b) Let T, T+, and T− be as in part a. Verify that, for any x ∈ H, we
have

‖T (x)‖2 = ‖T+(x)‖2 + ‖T−(x)‖2.

Show further that
√
T 2 = T+ + T−. How are T+ and T− represented

in terms of the spectral measure for T? Conclude that every element
T ∈ B(H) is a complex linear combination of four positive operators.
(c) Suppose T is a positive operator, and let p denote its spectral mea-
sure. Suppose 0 ≤ a < b < ∞ and that x is an element of the range of
p[a,b]. Show that a‖x‖ ≤ ‖T (x)‖ ≤ b‖x‖.
(d) If U is a unitary operator, prove that there exists a selfadjoint op-
erator T ∈ B(H) for which U = eiT . HINT: Show that the function

Û = eir for some bounded real-valued Borel function r.
(e) If T is a positive operator, show that I + T is invertible.
(f) Suppose T and S are invertible positive operators that commute.
Assume that S − T is a positive operator, i.e., that S ≥ T. Prove that
T−1 − S−1 is a positive operator, i.e., that T−1 ≥ S−1.
(g) Suppose T is a positive operator and that S is a positive invertible
operator not necessarily commuting with T. Prove that S+T is positive
and invertible.

DEFINITION. Let M be a subspace of a Hilbert space H. By a partial
isometry of M into H we mean an element V of B(H) that is an isometry
on M and is 0 on the orthogonal complement M⊥ of M.

EXERCISE 11.2. Let V be a partial isometry of M into H.
(a) Show that (V (x), V (y)) = (x, y) for all x, y ∈ M̄.
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(b) Show that V ∗V is the projection pM̄ of H onto M̄ and that V V ∗ is

the projection p
V (M)

of H onto V (M).

(c) Show that V ∗ is a partial isometry of V (M) into H.
(d) Let H be the set of square-summable sequences {a1, a2, . . . }, and
let M be the subspace determined by the condition a1 = 0. Define
V : M → H by [V ({an})]n = an+1. Show that V is a partial isometry
of M into H. Compute V ∗. (This V is often called the unilateral shift.)

THEOREM 11.2. (Polar Decomposition Theorem) Let H be a Hilbert
space, and let T be an element of B(H). Then there exist unique oper-
ators P and V satisfying:

(1) P is a positive operator, and V is a partial isometry from the
range of P into H.

(2) T = V P and P = V ∗T.

Moreover, if T is invertible, then P is invertible and V is a unitary
operator.

PROOF. Let P =
√
T ∗T . Then P is positive. Observe that ‖P (x)‖ =

‖T (x)‖ for all x, whence, if P (x) = 0 then T (x) = 0. Indeed,

(P (x), P (x)) = (P 2(x), x) = (T ∗T (x), x) = (T (x), T (x)).

Therefore, the map V, that sends P (x) to T (x), is an isometry from the
range M of P onto the range of T. Defining V to be its unique isometric
extension to M̄ on all of M̄ and to be 0 on the orthogonal complement
M⊥ of M, we have that V is a partial isometry of M into H. Further,
T (x) = V (P (x)), and T = V P, as desired. Further, from the preceding
exercise, V ∗V is the projection onto the closure M̄ of the range M of P,
so that V ∗T = V ∗V P = P.
If Q is a positive operator and W is a partial isometry of the range of Q
into H for which T = WQ and Q = W ∗T, then W ∗W is the projection
onto the closure of the range of Q. Hence,

T ∗T = QW ∗WQ = Q2,

whence Q = P since positive square roots are unique. But then V = W,
since they are both partial isometries of the range of P into H, and
they agree on the range of P. Therefore, the uniqueness assertion of the
theorem is proved.
Finally, if T is invertible, then P is invertible, and the partial isometry
V = TP−1 is invertible. An isometry that is invertible is of course a
unitary operator.
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DEFINITION. The operator P =
√
T ∗T of the preceding theorem is

called the absolute value of T and is often denoted by |T |.

REMARK. We have defined the absolute value of an operator T to
be the square root of the positive operator T ∗T. We might well have
chosen to define the absolute value of T to be the square root of the
(probably different) positive operator TT ∗. Though different, either of
these choices would have sufficed for our eventual purposes. See part c
of the following exercise.

EXERCISE 11.3. Let T be an operator in B(H).
(a) Prove that ‖|T |(x)‖ = ‖T (x)‖ for every x ∈ H.
(b) If T is a selfadjoint operator, and we write T = T+ − T− (as in
Exercise 11.1), show that |T | = T+ + T−.
(c) Show that there exists a unique positive operator P ′ and a unique
partial isometry V ′ of the range of T ∗ into H such that T = P ′V ′ and
P ′ = TV ′

∗
. Is either P ′ or V ′ identical with the P and V of the preceding

theorem?

We introduce next a number of definitions concerning the spectrum of
an operator.

DEFINITION. Let T be a normal operator, and let p be its spectral
measure.
(1) A complex number λ is said to belong to the point spectrum spp(T )
of T if p{λ} 6= 0. In this case we say that the multiplicity of λ is the
dimension m(λ) of the range of p{λ}.
(2) An element λ of the spectrum of T, which is not in the point spec-
trum, is said to belong to the continuous spectrum spc(T ) of T. The
multiplicity m(λ) of an element λ of the continuous spectrum is defined
to be 0.
(3) A complex number λ is said to belong to the discrete spectrum spd(T )
of T if {λ} is an isolated point in the compact set sp(T ). Note that if
λ ∈ spd(T ), then {λ} is a relatively open subset of sp(T ). It follows then
from part a of Exercise 10.13 that spd(T ) ⊆ spp(T ).
(4) A complex number λ is said to belong to the essential spectrum
spe(T ) if it is not an element of the discrete spectrum with finite multi-
plicity.
(5) T is said to have purely atomic spectrum if p is supported on a
countable subset of C.

EXERCISE 11.4. (Characterization of the Point Spectrum) Suppose
T is a normal operator, that p is its spectral measure, and that v is a
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unit vector for which T (v) = 0. Write µv for the measure on sp(T ) given
by µv(E) = (pE(v), v).
(a) Prove that 0 ∈ sp(T ).
(b) Show that

∫
λn dµv(λ) = 0 for all positive integers n.

(c) Prove that
∫
f(λ) dµv(λ) = f(0) for all f ∈ C(sp(T )).

(d) Show that µv = δ0, whence p{0} 6= 0.
(e) Let T be an arbitrary normal operator. Prove that λ0 ∈ spp(T ) if
and only if λ0 is an eigenvalue for T. HINT: Write S = T −λ0I, and use
Exercise 10.14.

EXERCISE 11.5. Let H be the Hilbert space l2 consisting of the
square summable sequences {a1, a2, . . . }. Let r1, r2, . . . be a sequence
of (not necessarily distinct) numbers in the interval [0,1], and define an
operator T on l2 by

T ({an}) = {rnan}.
(a) Prove that T is a selfadjoint operator–even a positive operator.
(b) Show that the point spectrum of T is the set of rn’s.
(c) Find the spectrum of T.
(d) Find the discrete spectrum of T.
(e) Find the essential spectrum of T.
(f) Choose the sequence {rn} so that spd(T ) ⊂ spp(T ) and spe(T ) ⊂
sp(T ).
(g) Construct a sequence {Tj} of positive operators that converges in
norm to a positive operator T, but for which the sequence {spd(Tj)} of
subsets of R in no way converges to spd(T ). Test a few other conjectures
concerning the continuity of the map T → sp(T ).

THEOREM 11.3. Let H be a separable Hilbert space, and let T be a
normal operator in B(H). Then the following are equivalent:

(1) T has purely atomic spectrum.
(2) There exists an orthonormal basis for H consisting of eigenvec-

tors for T.
(3) There exists a sequence {pi} of pairwise orthogonal projections

and a sequence {λi} of complex numbers such that

I =

∞∑
i=1

pi

and

T =

∞∑
i=1

λipi.



APPLICATIONS OF SPECTRAL THEORY 219

PROOF. If T has purely atomic spectrum, and if λ1, λ2, . . . denotes
a countable set on which the spectral measure p is concentrated, let
pi = p{λi}. Then the pi’s are pairwise orthogonal, and

I =

∞∑
i=1

pi,

and

T =

∫
λ dp(λ)

=

∞∑
i=1

λip{λi}

=

∞∑
i=1

λipi,

showing that 1 implies 3.

Next, suppose T =
∑∞
i=1 λipi, where {pi} is a sequence of pairwise or-

thogonal projections for which I =
∑
pi. We may make an orthonormal

basis for H by taking the union of orthonormal bases for the ranges Mpi

of the pi’s. Clearly, each vector in this basis is an eigenvector for T,
whence, 3 implies 2.

Finally, suppose there exists an orthonormal basis for H consisting of
eigenvectors for T, and let {λ1, λ2, . . . } be the set of distinct eigenvalues
for T. Because T is a bounded operator, this set of λi’s is a bounded
subset of C. For each i = 1, 2, . . . , letMi be the eigenspace corresponding
to the eigenvalue λi, and write pi for the projection onto Mi. Then the
pi’s are pairwise orthogonal, and I =

∑
pi.

Now, for each subset E ⊆ C, define

pE =
∑
λi∈E

pi.

Then E → pE is a projection-valued measure supported on the compact
set {λi}, and we let S be the normal operator given by S =

∫
λ dp(λ).

If v ∈Mi, then v belongs to the range of p{λi}, whence v = p{λi}(v). It
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follows then that

T (v) = λiv

= λip{λi}(v)

= [

∫
λχ{λi}(λ) dp(λ)](v)

= [

∫
λ dp(λ)]([

∫
χ{λi}(λ) dp(λ)](v))

= S(p{λi}(v))

= S(v).

Since this holds for each i, we have that T = S, showing that 2 implies
1.

The next theorem describes a subtle but important distinction between
the spectrum and the essential spectrum. However, the true essence of
the essential spectrum is only evident in Theorem 11.9.

THEOREM 11.4. Let T be a normal operator on a separable Hilbert
space H. Then

(1) λ0 ∈ sp(T ) if and only if there exists a sequence {vn} of unit
vectors in H such that

lim ‖T (vn)− λ0vn‖ = 0.

(2) λ0 ∈ spe(T ) if and only if there exists an infinite sequence {vn}
of orthonormal vectors for which

lim ‖T (vn)− λ0vn‖ = 0.

PROOF. (1) If λ0 belongs to the point spectrum of T, then there exists
a unit vector v (any unit vector in the range of p{λ0}) such that T (v)−
λ0v = 0. Therefore, the constant sequence vn ≡ v satisfies

lim ‖T (vn)− λ0vn‖ = 0.

(2) If λ0 belongs to the point spectrum of T, and the multiplicity m(λ0)
is infinity, then there exists an infinite orthonormal sequence {vn} in the
range of p{λ0} such that T (vn)− λ0vn ≡ 0.
(3) Suppose λ0 ∈ sp(T ) but λ0 /∈ spd(T ). For each positive integer k,
let Uk = sp(T ) ∩ B1/k(λ0). Then each Uk is a nonempty open subset
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of sp(T ), whence pUk 6= 0 for all k. In fact, since λ0 is not a discrete
point in the spectrum of T, there exists an increasing sequence {kn} of
positive integers such that pFn 6= 0 for every n, where Fn = Ukn−Ukn+1

.
(Why?) Choosing vn to be a unit vector in the range of the projection
pFn , we see that the sequence {vn} is infinite and orthonormal. Further,
we have

‖T (vn)− λ0vn‖ = ‖T (pFn(vn))− λ0pFn(vn)‖

= ‖[
∫
λχFn(λ) dp(λ)](vn)− [

∫
λ0χFn(λ) dp(λ)](vn)‖

= ‖[
∫

(λ− λ0)χFn(λ) dp(λ)](vn)‖

≤ sup
λ∈Fn

|λ− λ0|

≤ sup
λ∈Ukn

|λ− λ0|

≤ 1/kn.

This shows that limn ‖T (vn)− λ0vn‖ = 0.
(4) If λ0 /∈ sp(T ), then T − λ0I is invertible in B(H). So, if {vn} were a
sequence of unit vectors, for which limn(T (vn)−λ0vn) = 0, then lim vn =
lim(T − λ0I)−1((T − λ0I)(vn)) = 0, which would be a contradiction.
The completion of this proof is left to the exercise that follows.

EXERCISE 11.6. Use results 1-4 above to complete the proof of The-
orem 11.4.

We next introduce some important classes of operators on an infinite
dimensional Hilbert space. Most of these classes are defined in terms of
the spectral measures of their elements.

DEFINITION. LetH be an infinite-dimensional separable Hilbert space.
(1) An element T ∈ B(H) is a finite rank operator if its range is finite
dimensional.
(2) A positive operator T is a compact operator if it has purely atomic
spectrum, and this spectrum consists of a (possibly finite) strictly de-
creasing sequence {λi} of nonnegative numbers, such that 0 = limλi,
and such that the multiplicity m(λi) is finite for every λi > 0 ∈ sp(T ).
(If the sequence λ1, λ2, . . . is finite, then the statement 0 = limλi means
that λN = 0 for some (the last) N. Evidently each positive element λi
of this spectrum is a discrete point, whence each positive λi of the spec-
trum is an eigenvalue for T.) A selfadjoint element T = T+−T− ∈ B(H)
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is a compact operator if its positive and negative parts T+ and T− are
compact operators, and a general element T = T1 + iT2 ∈ B(H) is a
compact operator if its real and imaginary parts T1 and T2 are compact
operators.
(3) A positive operator T is a trace class operator if it is a compact
operator, with positive eigenvalues λ1, λ2, . . . , for which∑

λim(λi) <∞.

A selfadjoint element T = T+ − T− ∈ B(H) is a trace class operator if
its positive and negative parts T+ and T− are trace class operators, and
a general T = T1 + iT2 ∈ B(H) is a trace class operator if its real and
imaginary parts T1 and T2 are trace class operators.
(4) A positive operator T is a Hilbert-Schmidt operator if it is a compact
operator, with positive eigenvalues λ1, λ2, . . . , for which∑

λ2
im(λi) <∞.

A selfadjoint element T = T+ − T− ∈ B(H) is a Hilbert-Schmidt oper-
ator if its positive and negative parts T+ and T− are Hilbert-Schmidt
operators, and a general T = T1 + iT2 ∈ B(H) is a Hilbert-Schmidt
operator if its real and imaginary parts T1 and T2 are Hilbert-Schmidt
operators.

EXERCISE 11.7. Let H be a Hilbert space.
(a) Let T be in B(H). Prove that the closure of the range of T is the
orthogonal complement of the kernel of T ∗. Conclude that T is a finite
rank operator if and only if T ∗ is a finite rank operator.
(b) Show that the set of finite rank operators forms a two-sided selfad-
joint ideal in B(H).
(c) Show that T is a finite rank operator if and only if |T | is a finite rank
operator.
(d) Show that every finite rank operator is a trace class operator, and
that every trace class operator is a Hilbert-Schmidt operator.
(e) Using multiplication operators on l2 (see Exercise 11.5), show that
the inclusions in part d are proper. Show also that the set of Hilbert-
Schmidt operators is a proper subset of the set of compact operators on
l2 and that the set of compact operators is a proper subset of B(l2).
(f) Prove that every normal compact operator T has purely atomic spec-
trum. Conclude that, if T is a compact normal operator, then there
exists an orthonormal basis of H consisting of eigenvectors for T.
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THEOREM 11.5. (Characterization of Compact Operators) Suppose
T is a bounded operator on a separable infinite-dimensional Hilbert
space H. Then the following properties are equivalent:

(1) T is a compact operator.
(2) If {xn} is any bounded sequence of vectors in H, then {T (xn)}

has a convergent subsequence.
(3) T (B1) has a compact closure in H.
(4) If {xn} is a sequence of vectors in H that converges weakly to 0,

then the sequence {T (xn)} converges in norm to 0.
(5) T is the limit in B(H) of a sequence of finite rank operators.

PROOF. Let us first show that 1 implies 5. It will suffice to show
this for T a positive compact operator. Thus, let {λ1, λ2, . . . } be the
strictly decreasing (finite or infinite) sequence of positive elements of
sp(T ). Using the Spectral Theorem and the fact that T has purely atomic
spectrum, write

T =

∫
λ dp(λ) =

∑
i

λip{λi}.

Evidently, if there are only a finite number of λi’s, then T is itself a
finite rank operator, since the dimension of the range of each p{λi}, for
λi > 0, is finite, and 5 follows. Hence, we may assume that the sequence
{λi} is infinite. Define a sequence {Tk} of operators by

Tk =

k∑
i=1

λip{λi}

=

∫
χ[λk,∞)(λ)λ dp(λ).

Then each Tk is a finite rank operator. Further,

‖T − Tk‖ = ‖
∫
χ[0,λk)(λ)λ dp(λ)‖ ≤ λk.

Hence, T = limTk in norm, giving 5.
We show next that 5 implies 4. Suppose then that T = limTk in norm,
where each Tk is a finite rank operator. Let {xn} be a sequence in H
that converges weakly to 0, and let ε > 0 be given. Then, by the Uniform
Boundedness Theorem, the sequence {xn} is uniformly bounded, and

‖T (xn)‖ ≤ ‖(T − Tk)xn‖+ ‖Tk(xn)‖.
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Choose k so that ‖(T −Tk)(xn)‖ < ε/2 for all n. For this k, the sequence
{Tk(xn)} is contained in the finite dimensional subspace M that is the
range of Tk, and converges weakly to 0 there. Since all vector space
topologies are identical on a finite dimensional space, we have that, for
this fixed k, the sequence {Tk(xn)} also converges to 0 in norm. Choose
N so that ‖Tk(xn)‖ < ε/2 for all n ≥ N. Then ‖T (xn)‖ < ε if n ≥ N,
and the sequence {T (xn)} converges to 0 in norm, as desired.
We leave to the exercises the fact that properties 2,3, and 4 are equivalent
(for any element of B(H)). Let us show finally that 4 implies 1. Thus,
suppose T satisfies 4. Then T ∗ also satisfies 4. For, if the sequence {xn}
converges to 0 weakly, then the sequence {T ∗(xn)} also converges to 0
weakly. Hence, the sequence {T (T ∗(xn))} converges to 0 in norm. Since

‖T ∗(xn)‖2 = (T ∗(xn), T ∗(xn)) = (T (T ∗(xn)), xn) ≤ ‖T (T ∗(xn))‖‖xn‖,

it follows that the sequence {T ∗(xn)} converges to 0 in norm. Conse-
quently, the real and imaginary parts T1 and T2 of T satisfy 4, and we
may assume that T is selfadjoint. Write T = T+ − T− in terms of its
positive and negative parts. By part b of Exercise 11.1, we see that
both T+ and T− satisfy 4, so that we may assume that T is a positive
operator. Let p be the spectral measure for T, and note that for each
positive ε, we must have that the range of p(ε,∞) must be finite dimen-
sional. Otherwise, there would exist an orthonormal sequence {xn} in
this range. Such an orthonormal sequence converges to 0 weakly, but,
by part b of Exercise 9.11, ‖T (xn)‖ ≥ ε for all n, contradicting 4. Hence,
sp(T )∩ (ε,∞) is a finite set for every positive ε, whence the spectrum of
T consists of a decreasing sequence of nonnegative numbers whose limit
is 0. It also follows as in the above that each p{λ}, for λ > 0 ∈ sp(T ),
must have a finite dimensional range, whence T is a compact operator,
completing the proof that 4 implies 1.

EXERCISE 11.8. (Completing the Proof of the Preceding Theorem)
Let T be an arbitrary element of B(H).
(a) Assume 2. Show that T (B1) is totally bounded in H, and then
conclude that 3 holds. (A subset E of a metric space X is called totally
bounded if for every positive ε the set E is contained in a finite union
of sets of diameter less than ε.)
(b) Prove that 3 implies 4.
(c) Prove that 4 implies 2.

EXERCISE 11.9. (Properties of the Set of Compact Operators)
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(a) Prove that the set K of all compact operators forms a proper closed
two-sided selfadjoint ideal in the C∗-algebra B(H).
(b) Prove that an element T ∈ B(H) is a compact operator if and only
if |T | is a compact operator.
(c) Show that no compact operator can be invertible.
(d) Show that the essential spectrum of a normal compact operator is
singleton 0.

THEOREM 11.6. (Characterization of Hilbert-Schmidt Operators) Let
H be a separable infinite-dimensional Hilbert space.

(1) If T is any element of B(H), then the extended real number∑
i

‖T (φi)‖2

is independent of which orthonormal basis {φi} is used. Further,∑
i

‖T (φi)‖2 =
∑
i

‖T ∗(φi)‖2.

(2) An operator T is a Hilbert-Schmidt operator if and only if∑
i

‖T (φi)‖2 <∞

for some (hence every) orthonormal basis {φi} of H.
(3) The set of all Hilbert-Schmidt operators is a two-sided selfadjoint

ideal in the algebra B(H).

PROOF. Suppose T ∈ B(H) and that there exists an orthonormal
basis {φi} such that ∑

i

‖T (φi)‖2 = M <∞.

Let {ψi} be another orthonormal basis.
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Then ∑
i

‖T (ψi)‖2 =
∑
i

∑
j

|(T (ψi), φj)|2

=
∑
i

∑
j

|(ψi, T ∗(φj))|2

=
∑
j

‖T ∗(φj)‖2

=
∑
j

∑
i

|(T ∗(φj), φi)|2

=
∑
j

∑
i

|(φj , T (φi))|2

=
∑
i

‖T (φi)‖2,

which completes the proof of part 1.
Next, suppose T is a Hilbert-Schmidt operator. We wish to show that∑

i

‖T (φi)‖2 <∞

for some orthonormal basis {φi} of H. Since T is a linear combination
of 4 positive Hilbert-Schmidt operators, and since

‖
4∑
i=1

Ti(φ)‖2 ≤ 16

4∑
i=1

‖Ti(φ)‖2,

it will suffice to show the desired inequality under the assumption that
T itself is a positive operator. Thus, let {λn} be the spectrum of T,
and recall that the nonzero λn’s are the eigenvalues for T. Since T has
a purely atomic spectrum, there exists an orthonormal basis {φi} for H
consisting of eigenvectors for T. Then,∑

i

‖T (φi)‖2 =
∑
n

λ2
nm(λn) <∞.

Conversely, let T be in B(H) and suppose there exists an orthonormal
basis {φi} such that the inequality in part 2 holds for T = T1 + iT2. It
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follows from part 1 that the same inequality holds as well for T ∗ = T1−
iT2. It then follows that the inequality holds for the real and imaginary
parts T1 = (T + T ∗)/2 and T2 = (T − T ∗)/2i of T. It will suffice then
to assume that T is selfadjoint, and we write T = T+ − T− in terms of
its positive and negative parts. Now, from part b of Exercise 11.1, it
follows that the inequality in part 2 must hold for T+ and T−, so that it
will suffice in fact to assume that T is positive. We show first that T is
a compact operator. Thus, let {vk} be a sequence of vectors in H that
converges weakly to 0, and write

vk =
∑
i

akiφi.

Note that for each i, we have 0 = limk(vk, φi) = limk aki. Let M be an
upper bound for the sequence {‖vk‖}. Then, given ε > 0, there exists an
N such that

∑∞
i=N ‖T (φi)‖2 < (ε/2M)2. Then, there exists a K such

that |aki| ≤ ε/2N‖T‖ for all 1 ≤ i ≤ N − 1 and all k ≥ K. Then,

‖T (vk)‖ = ‖T (
∑
i

akiφi)‖

= ‖
∑
i

akiT (φi)‖

≤
N−1∑
i=1

|aki|‖T (φi)‖+

∞∑
i=N

|aki|‖T (φi)‖

< ε/2 +

√√√√ ∞∑
i=N

|aki|2 ×

√√√√ ∞∑
i=N

‖T (φi)‖2

< ε/2 + ‖vk‖ × ε/2M
≤ ε,

showing that the sequence {T (vk)} converges to 0 in norm. Hence, T is
a (positive) compact operator. Now, using part 1 and an orthonormal
basis of eigenvectors for T, we have that∑

i

λ2
im(λi) <∞,

whence T is a Hilbert-Schmidt operator. This completes the proof of
part 2.
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We leave the verification of part 3 to an exercise.

EXERCISE 11.10. (The Space of All Hilbert-Schmidt Operators)
(a) If T is a Hilbert-Schmidt operator and S is an arbitrary element of
B(H), show that TS and ST are Hilbert-Schmidt operators.
(b) Show that T is a Hilbert-Schmidt operator if and only if |T | is a
Hilbert-Schmidt operator.
(c) Prove part 3 of the preceding theorem.
(d) For T and S Hilbert-Schmidt operators, show that∑

i

(T (φi), S(φi)) =
∑
i

(S∗T (φi), φi)

exists and is independent of which orthonormal basis {φi} is used.
(e) Let Bhs(H) denote the complex vector space of all Hilbert-Schmidt
operators on H, and on Bhs(H)×Bhs(H) define

(T, S) =
∑
i

(S∗T (φi), φi),

where {φi} is an orthonormal basis. Verify that (T, S) is a well-defined
inner product on Bhs(H), and that Bhs(H) is a Hilbert space with re-
spect to this inner product. This inner product is called the Hilbert-
Schmidt inner product.
(f) If T is a Hilbert-Schmidt operator, define the Hilbert-Schmidt norm
‖T‖hs of T by

‖T‖hs =
√

(T, T ) =
√∑

‖T (φi)‖2.

Prove that ‖T‖ ≤ ‖T‖hs. Show further that, if T is a Hilbert-Schmidt
operator and S is an arbitrary element of B(H), then

‖ST‖hs ≤ ‖S‖‖T‖hs.

(g) Show that Bhs(H) is a Banach ∗-algebra with respect to the Hilbert-
Schmidt norm.

THEOREM 11.7. (The Space of Trace Class Operators)

(1) An operator T ∈ B(H) is a trace class operator if and only if∑
i

|(T (ψi), φi)| <∞
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for every pair of orthonormal sets {ψi} and {φi}.
(2) The set of all trace class operators is a two-sided selfadjoint ideal

in the algebra B(H).
(3) An operator T is a trace class operator if and only if there exist

two Hilbert-Schmidt operators S1 and S2 such that T = S1 ◦S2.

PROOF. Since every trace class operator is a linear combination of
four positive trace class operators, it will suffice, for the “only if” part
of 1, to assume that T is positive. Thus, let {ηn} be an orthonormal
basis of eigenvectors for T, and write

M =
∑
n

(T (ηn), ηn) =
∑
i

λim(λi),

where the λi’s are the eigenvalues for T. If {ψi} and {φi} are any or-
thonormal sets, write

ψi =
∑
n

aniηn,

where ani = (ψi, ηn), and

φi =
∑
n

bniηn,

where bni = (φi, ηn). Then∑
i

|(T (ψi), φi)| =
∑
i

|
∑
n

∑
m

anibmi(T (ηn), ηm)|

=
∑
i

|
∑
n

anibni(T (ηn), ηn)|

≤
∑
n

(T (ηn), ηn)×
√∑

i

|ani|2 ×
√∑

i

|bni|2

=
∑
n

(T (ηn), ηn)×
√∑

i

|(ηn, ψi)|2 ×
√∑

i

|(ηn, φi)|2

≤
∑
n

(T (ηn), ηn)‖ηn‖‖ηn‖

= M,

showing that the condition in 1 holds. We leave the converse to the
exercises.
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It clearly follows from part 1 that the set of trace class operators forms
a vector space, and it is equally clear that if T is a trace class operator,
i.e., satisfies the inequality in 1, then T ∗ is also a trace class operator.
To see that the trace class operators form a two-sided selfadjoint ideal,
it will suffice then to show that ST is a trace class operator whenever
S ∈ B(H) and T is a positive trace class operator. Thus, let {ηn} be
an orthonormal basis of eigenvectors for T, and let {ψi} and {φi} be
arbitrary orthonormal sets. Write

ψi =
∑
n

aniηn

and
S∗(φi) =

∑
n

bmiηm.

Then∑
i

|(ST (ψi), φi)| =
∑
i

|
∑
n

∑
m

anibmi(T (ηn), ηm)|

=
∑
i

|
∑
n

anibni(T (ηn), ηn)|

≤
∑
i

∑
n

|anibni|(T (ηn), ηn)

≤
∑
n

(T (ηn), ηn)

×
√∑

i

|ani|2
√∑

k

|bnk|2

=
∑
n

(T (ηn), ηn)

×
√∑

i

|(ηn, ψi)|2
√∑

k

|(ηn, S∗(φk))|2

=
∑
n

(T (ηn), ηn)‖ηn‖‖S(ηn)‖

≤ ‖S‖
∑
n

(T (ηn), ηn)

<∞,

showing, by part 1, that ST is trace class. This completes the proof of
part 2.
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We leave the proof of part 3 to the following exercise.

EXERCISE 11.11. (Completing the Preceding Proof)
(a) Suppose T is a positive operator. Show that∑

j

(T (ψj), ψj) =
∑
n

(T (φn), φn)

for any pair of orthonormal bases {ψj} and {φn}. Suppose next that∑
n

(T (φn), φn) <∞.

Prove that
√
T is a Hilbert-Schmidt operator, and deduce from this that

T is a trace class operator.
(b) Suppose T is a selfadjoint operator, and write T = T+−T− in terms
of its positive and negative parts. Assume that

∑
n |(T (φn), φn)| < ∞

for every orthonormal set {φn}. Prove that T is a trace class operator.
HINT: Choose the orthonormal set to be a basis for the closure of the
range of T+.
(c) Prove the rest of part 1 of the preceding theorem.
(d) Prove that T is a trace class operator if and only if |T | is a trace
class operator.
(e) Prove part 3 of the preceding theorem.

EXERCISE 11.12. (The Space of Trace Class Operators)
(a) If T is a trace class operator, define

‖T‖tr = sup
{ψn},{φn}

∑
n

|(T (ψn), φn)|,

where the supremum is taken over all pairs of orthonormal sets {ψn}
and {φn}. Prove that the assignment T → ‖T‖tr is a norm on the set
Btr(H) of all trace class operators. This norm is called the trace class
norm.
(b) If T is a trace class operator and {φn} is an orthonormal basis, show
that the infinite series

∑
(T (φn), φn) is absolutely summable. Show

further that ∑
n

(T (φn), φn) =
∑
n

(T (ψn), ψn),

where {φn} and {ψn} are any two orthonormal bases. We define the
trace tr(T ) of a trace class operator T by

tr(T ) =
∑
n

(T (φn), φn),
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where {φn} is an orthonormal basis.

(c) Let T be a positive trace class operator. Show that ‖T‖tr = tr(T ).
For an arbitrary trace class operator T, show that ‖T‖tr = tr(|T |).HINT:
Expand everything in terms of an orthonormal basis consisting of eigen-
vectors for |T |.
(d) Let T be a trace class operator and S be an element of B(H). Prove
that

‖ST‖tr ≤ ‖S‖‖T‖tr.

(e) Show that Btr(H) is a Banach *-algebra with respect to the norm
defined in part a.

EXERCISE 11.13. (a) Let (S, µ) be a σ-finite measure space. Show
that if a nonzero multiplication operator mf on L2(µ) is a compact
operator, then µ must have some nontrivial atomic part. That is, there
must exist at least one point x ∈ S such that µ({x}) > 0.

(b) Suppose µ is a purely atomic σ-finite measure on a set S. Describe
the set of all functions f for which mf is a compact operator, a Hilbert-
Schmidt operator, a trace class operator, or a finite rank operator.

(c) Show that no nonzero convolution operatorKf on L2(R) is a compact
operator. HINT: Examine the operator U◦Kf◦U−1, for U the L2 Fourier
transform.

(d) Let (S, µ) be a σ-finite measure space. Suppose k(x, y) is a kernel on
S × S, and assume that k ∈ L2(µ× µ). Prove that the integral operator
K, determined by the kernel k, is a Hilbert-Schmidt operator, whence is
a compact operator.

(e) Let (S, µ) be a σ-finite measure space, and let T be a positive Hilbert-
Schmidt operator on L2(µ). Suppose {φ1, φ2, . . . } is an orthonormal ba-
sis of L2(µ) consisting of eigenfunctions for T, and let λi denote the
eigenvalue corresponding to φi. Define a kernel k(x, y) on S × S by

k(x, y) =

∞∑
i=1

λiφi(x)φi(y).

Show that k ∈ L2(µ×µ) and that T is the integral operator determined
by the kernel k. Show in general that, if T is a Hilbert-Schmidt operator
on L2(µ), then there exists an element k ∈ L2(µ× µ) such that

Tf(x) =

∫
k(x, y)f(y) dµ(y)
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for all f ∈ L2(µ). Conclude that there is a linear isometry between the
Hilbert space L2(µ×µ) and the Hilbert space Bhs(L

2(µ)) of all Hilbert-
Schmidt operators on L2(µ).
(f) Let S be a compact topological space, let µ be a finite Borel measure
on S, and let k be a continuous function on S×S. Suppose φ ∈ L2(µ) is
an eigenfunction, corresponding to a nonzero eigenvalue, for the integral
operator T determined by the kernel k. Prove that φ may be assumed
to be continuous, i.e., agrees with a continuous function µ almost ev-
erywhere. Give an example to show that this is not true if µ is only
assumed to be σ-finite.
(g) (Mercer’s Theorem) Let S, µ, k, and T be as in part f. Suppose T is
a positive trace class operator. Prove that

tr(T ) =

∫
S

k(x, x) dµ(x).

We turn next to an examination of “unbounded selfadjoint” opera-
tors. Our definition is derived from a generalization of the properties of
bounded selfadjoint operators as described in Theorem 8.7.

DEFINITION. A linear transformation T from a subspace D of a
Hilbert space H into H is called an unbounded selfadjoint operator on
H if

(1) D is a proper dense subspace of H.
(2) T is not continuous on D.
(3) T is symmetric on D; i.e., (T (x), y) = (x, T (y)) for all x, y ∈ D.
(4) Both I + iT and I − iT map D onto H.

If, in addition, (T (x), x) ≥ 0 for all x ∈ D, then T is called an unbounded
positive operator on H.
The subspace D is called the domain of T.

REMARK. Observe, from Theorem 9.8, that if p is an H-projection-
valued measure on a Borel space (S,B), then

∫
f dp is an unbounded

selfadjoint operator on H for every real-valued Borel function f on S
that is not in L∞(p).

THEOREM 11.8. (Spectral Theorem for Unbounded Selfadjoint Op-
erators) Let H be a (separable and complex) Hilbert space.

(1) If T is an unbounded selfadjoint operator on H, then there ex-
ists a unique H-projection-valued measure p on (R,B) such that
T is the integral with respect to p of the unbounded function
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f(λ) = λ; i.e., T =
∫
λ dp(λ). See Theorem 9.8. Further, p is not

supported on any compact interval in R.
(2) If p is an H-projection-valued measure on (R,B), that is not

supported on any compact interval in R, then T =
∫
λ dp(λ) is

an unbounded selfadjoint operator.
(3) The map p→

∫
λ dp(λ) of part 2 is a 1-1 correspondence between

the set of all H-projection-valued measures p on (R,B) that are
not supported on any compact interval in R and the set of all
unbounded selfadjoint operators T on H.

PROOF. Part 2 follows from Theorem 9.8. To see part 1, let T : D →
H be an unbounded selfadjoint operator, and note that I ± iT is norm-
increasing onD, whence is 1-1 and ontoH.Define U = (I−iT )(I+iT )−1.
Then U maps Honto itself and is an isometry. For if y = (I + iT )−1(x),
then x = (I + iT )(y), whence ‖x‖2 = ‖y‖2 + ‖T (y)‖2. But then

‖U(x)‖2 = ‖(I − iT )(y)‖2

= ‖y‖2 + ‖T (y)‖2

= ‖x‖2.

Moreover,

I + U = (I + iT )(I + iT )−1 + (I − iT )(I + iT )−1 = 2(I + iT )−1,

showing that I + U maps H 1-1 and onto D. Similarly, we see that

I − U = 2iT (I + iT )−1,

whence

T = −i(I − U)(I + U)−1.

This unitary operator U is called the Cayley transform of T.

By the Spectral Theorem for normal operators, we have that U =∫
µdq(µ), where q is the spectral measure for U. Because U is unitary,

we know that q is supported on the unit circle T in C, and because
I + U = 2(I + iT )−1 is 1-1, we know that -1 is not an eigenvalue for U.
Therefore, q{−1} = 0, and the function h defined on T− {−1} by

h(µ) = −i(1− µ)/(1 + µ)
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maps onto the real numbers R. Defining S =
∫
h(µ) dq(µ), we see from

Theorem 9.8 that S is an unbounded selfadjoint operator on H. By part
c of Exercise 9.15, we have that∫

(1/(1 + µ)) dq(µ) = (I + U)−1,

and hence that
S = −i(I − U)(I + U)−1 = T.

Finally, let p = h∗(q) be the projection-valued measure defined on (R,B)
by

pE = h∗(q)E = qh−1(E).

From part e of Exercise 9.15, we then have that∫
λ dp(λ) =

∫
h(µ) dq(µ) = S = T,

as desired.
We leave the uniqueness of p to the exercise that follows. Part 3 is then
immediate from parts 1 and 2.

DEFINITION. Let T : D → H be an unbounded selfadjoint operator
and let p be the unique projection-valued measure on (R,B) for which
T =

∫
λ dp(λ). The projection-valued measure p is called the spectral

measure for T.

EXERCISE 11.14. (a) Prove the uniqueness assertion in part 1 of the
preceding theorem.
(b) Let T : D → H be an unbounded selfadjoint operator, let p be its
spectral measure, and let U = (I−iT )(I+iT )−1 be its Cayley transform.
Prove that

U =

∫
[(1− iλ)/(1 + iλ)] dp(λ).

(c) Show that there is a 1-1 correspondence between the set of all
projection-valued measures on (R,B) and the set of all (bounded or
unbounded) selfadjoint operators on a Hilbert space H.

DEFINITION. Let T be an unbounded selfadjoint operator with do-
main D. A complex number λ is said to belong to the resolvent of T if
the linear transformation λI−T maps D 1-1 and onto H and (λI−T )−1

is a bounded operator on H. The spectrum sp(T ) of T is the complement
of the resolvent of T.



236 CHAPTER XI

If f is a real-valued (bounded or unbounded) Borel function on R, we
write f(T ) for the operator

∫
f(λ)dp(λ).

As in the case of a bounded normal operator, we make analogous defi-
nitions of point spectrum, continuous spectrum, discrete spectrum, and
essential spectrum.

The following exercise is the natural generalization of Exercise 11.4 and
Theorem 11.4 to unbounded selfadjoint operators.

EXERCISE 11.15. Let T be an unbounded selfadjoint operator. Verify
the following:
(a) The spectral measure p for T is supported on the spectrum of T ; the
spectrum of T is contained in the set of real numbers; if E is a closed
subset of C for which pE = I, then E contains the spectrum of T.
(b) λ ∈ sp(T ) if and only if there exists a sequence {vn} of unit vectors
in H such that

lim ‖T (vn)− λvn‖ = 0.

(c) λ ∈ spp(T ) if and only if λ is an eigenvalue for T, i.e., if and only if
there exists a nonzero vector v ∈ D such that T (v) = λv.
(d) λ ∈ spe(T ) if and only if there exists a sequence {vn} of orthonormal
vectors for which

lim ‖T (vn)− λvn‖ = 0.

(e) T is an unbounded positive operator if and only if sp(T ) is a subset
of the set of nonnegative real numbers.

THEOREM 11.9. (Invariance of the Essential Spectrum under a Com-
pact Perturbation) Let T : D → H be an unbounded selfadjoint operator
on a Hilbert space H, and let K be a compact selfadjoint operator on H.
Define T ′ : D → H by T ′ = T +K. Then T ′ is an unbounded selfadjoint
operator, and

spe(T
′) = spe(T ).

That is, the essential spectrum is invariant under “compact perturba-
tions.”

EXERCISE 11.16. Prove Theorem 11.9.

EXERCISE 11.17. (a) Let T be an unbounded selfadjoint operator
with domain D on a Hilbert space H. Prove that the graph of T is a
closed subset of H ×H.
(b) Let H = L2([0, 1]), let D be the subspace of H consisting of the
absolutely continuous functions f, whose derivative f ′ belongs to H and
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for which f(0) = f(1). Define T : D → H by T (f) = if ′. Prove that T
is an unbounded selfadjoint operator on H. HINT: To show that I ± iT
is onto, you must find a solution to the first order linear differential
equation:

y′ ± y = f.

(c) Let H = L2([0, 1]), let D be the subspace of H consisting of the
absolutely continuous functions f, whose derivative f ′ belongs to H and
for which f(0) = f(1) = 0. Define T : D → H by T (f) = if ′. Prove that
T is not an unbounded selfadjoint operator.
(d) Let H = L2([0, 1]), let D be the subspace of H consisting of the
absolutely continuous functions f, whose derivative f ′ belongs to H and
for which f(0) = 0. Define T : D → H by T (f) = if ′. Prove that T is
not an unbounded selfadjoint operator.

We give next a different characterization of unbounded selfadjoint oper-
ators. This characterization essentially deals with the size of the domain
D of the operator and is frequently given as the basic definition of an
unbounded selfadjoint operator. This characterization is also a useful
means of determining whether or not a given T : D → H is an un-
bounded selfadjoint operator.

THEOREM 11.10. Let D be a proper dense subspace of a separable
Hilbert space H, and let T : D → H be a symmetric linear transforma-
tion of D into H. Then T is an unbounded selfadjoint operator if and
only if the following condition on the domain D holds: If x ∈ H is such
that the function y → (T (y), x) is continuous on D, then x belongs to
D.

PROOF. Suppose T : D → H is an unbounded selfadjoint operator
and that an x ∈ H satisfies the given condition. Then the map sending
y ∈ D to ((I + iT )(y), x) is continuous on D, and so has a unique
continuous extension to all of H. By the Riesz Representation Theorem
for Hilbert spaces, there exists a w ∈ H such that

((I + iT )(y), x) = (y, w)

for all y ∈ D. Since I − iT maps D onto H, there exists a v ∈ D such
that w = (I − iT )(v). Therefore,

((I + iT )(y), x) = (y, w)

= (y, (I − iT )(v))

= ((I + iT )(y), v)
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for all y ∈ D, showing that (z, x) = (z, v) for all z ∈ H, whence x = v,
and x ∈ D.
Conversely, assume that the condition holds. We must show that T is an
unbounded selfadjoint operator. We must verify that I±iT maps D onto
H. We show first that the range of I+iT is dense. Thus, let x be a vector
orthogonal to the range of I + iT. Then the map y → ((I + iT )(y), x)
is identically 0 on D, showing that (T (y), x) = i(y, x), and therefore the
map y → (T (y), x) is continuous on D. By the condition, x ∈ D, and we
have

0 = ((I + iT )(x), x) = (x, x) + i(T (x), x),

implying that ‖x‖2 = −i(T (x), x), which implies that x = 0 since
(T (x), x) is real. Hence, the range of I + iT is dense in H. Of course, a
similar argument shows that the range of I − iT is dense in H.
To see that the range of I + iT is closed, let y ∈ H, and suppose y =
lim yn, where each yn = (I+iT )(xn) for some xn ∈ D. Now the sequence
{yn} is a Cauchy sequence, and, since I+iT is norm-increasing, it follows
that the sequence {xn} also is a Cauchy sequence. Let x = limxn. Then,
for any z ∈ D, we have

(T (z), x) = lim(T (z), xn)

= lim(z, T (xn))

= lim(z, (1/i)(yn − xn))

= (z, (1/i)(y − x)),

which shows that the map z → (T (z), x) is a continuous function of z.
Therefore, x ∈ D, and

(z, T (x)) = (T (z), x) = (z, (1/i)(y − x)),

showing that T (x) = (1/i)(y − x), or (I + iT )(x) = y, and y belongs to
the range of I + iT. Again, a similar argument shows that the range of
I − iT is closed, and therefore T is an unbounded selfadjoint operator.

REMARK. We see from the preceding exercise and theorem that a
symmetric operator T : D → H can fail to be an unbounded selfadjoint
operator simply because its domain is not quite right. The following
exercise sheds some light on this observation and leads us to the notion
of “essentially selfadjoint” operators.

EXERCISE 11.18. Let H be a separable Hilbert space, and let T :
D → H be a symmetric linear transformation from a dense subspace D
of H into H.
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(a) Suppose D′ is a proper subspace of D. Show that T : D′ → H can
never be an unbounded selfadjoint operator. (No smaller domain will
do.)
(b) Let G denote the graph of T, thought of as a subset of H × H.
Prove that the closure Ḡ of G is the graph of a linear transformation
S : D′

′ → H. Show further that D ⊆ D′
′
, that S is an extension of T,

and that S is symmetric on D′
′
. This linear transformation S is called

the closure of T and is denoted by T̄ . T is called essentially selfadjoint
if T̄ is selfadjoint.
(c) Suppose D ⊆ E and that V : E → H is an unbounded selfadjoint
operator. We say that V is a selfadjoint extension of T if V is an
extension of T. Prove that any selfadjoint extension of T is an extension
of T̄ . That is, T̄ is the minimal possible selfadjoint extension of T.
(d) Determine whether or not the operators in parts c and d of Exercise
11.17 have selfadjoint extensions and/or are essentially selfadjoint.

EXERCISE 11.19. Let H be a separable Hilbert space.
(a) (Stone’s Theorem) Let t → Ut be a homomorphism of the additive
group R into the group of unitary operators on H. Assume that for
each pair of vectors x, y ∈ H the function t → (Ut(x), y) is continuous.
Prove that there exists a unique unbounded selfadjoint operator A on
H, having spectral measure p, such that

Ut = eitA =

∫
eitλ dp(λ)

for all t ∈ R. The operator A is called the generator of the one-parameter
group Ut.
(b) Let A be an unbounded positive operator on H, having spectral
measure p, with domain D. For each nonnegative t define

Pt = e−tA =

∫
e−tλ dp(λ).

Prove that the Pt’s form a continuous semigroup of contraction opera-
tors. That is, show that each Pt is a bounded operator of norm ≤ 1 and
that Pt+s = Pt ◦ Ps for all t, s ≥ 0. Further, show that

A(x) = lim
t→0+

Pt(x)− x
−t

for every x ∈ D.
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We conclude this chapter by summarizing our progress toward finding a
mathematical model for experimental science. No proofs will be supplied
for the theorems we quote here, and we emphasize that this is only a
brief outline.
We have seen in Chapter VIII that the set P of all projections on an
infinite-dimensional complex Hilbert space H could serve as a model for
the set Q of all questions. Of course, many other sets also could serve
as a model for Q, but we use this set P.
Each observable A is identified with a question-valued measure, so in our
model the observables are represented by projection-valued measures on
R, and we have just seen that these projection-valued measures are in
1-1 correspondence with all (bounded and unbounded) selfadjoint oper-
ators. So, in our model, the observables are represented by selfadjoint
operators.
What about the states? How are they represented in this model? In
Chapter VII we have seen that each state α determines a character µα
of the set Q of questions. To see how states are represented in our model,
we must then determine what the characters of the set P are.

THEOREM 11.11. (Gleason’s Theorem) Let H be a separable infi-
nite dimensional complex Hilbert space, and let P denote the set of all
projections on H. Suppose µ is a mapping of P into [0,1] that satisfies:

(1) If p ≤ q, then µ(p) ≤ µ(q).
(2) µ(I − p) = 1− µ(p) for every p ∈ P.
(3) If {pi} is a pairwise orthogonal (summable) sequence of projec-

tions, then µ(
∑
pi) =

∑
µ(pi).

Then there exists a positive trace class operator S on H, for which
‖S‖tr = tr(S) = 1, such that µ(p) = tr(Sp) for every p ∈ P.

Hence, the states are represented by certain positive trace class oper-
ators. Another assumption we could make is that every positive trace
class operator of trace 1 corresponds, in the manner above, to a state.
Since each such positive trace class operator S with tr(S) = 1 is repre-
sentable in the form

S =
∑

λipi,

where
∑
λim(λi) = 1, we see that the pure states correspond to opera-

tors that are in fact projections onto 1-dimensional subspaces. Let α be
a pure state, and suppose it corresponds to the projection qv onto the
1-dimensional subspace spanned by the unit vector v. Let A be an ob-
servable (unbounded selfadjoint operator), and suppose A corresponds
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to the projection-valued measure E → pE . That is, A =
∫
λ dp(λ). Then

we have
µα,A(E) = µα,χE(A)({1})

= µα(χE(A))

= µα(qAE)

= µα(pE)

= tr(qvpE)

= (qvpE(v), v)

= (pE(v), v)

= µv(E).

If we regard the probability measure µv as being the probability distri-
bution corresponding to a random variable X, then

(A(v), v) = ([

∫
λ dp(λ)](v), v) =

∫
λ dµv(λ) = E[X],

where E[X] denotes the expected value of the random variable X. We
may say then that in our model (A(v), v) represents the expected value
of the observable A when the system is in the pure state corresponding
to the projection onto the 1-dimensional subspace spanned by v.
How are time evolution and symmetries represented in our model? We
have seen that these correspond to automorphisms φ′t and π′g of the set
Q. So, we must determine the automorphisms of the set P of projections.

THEOREM 11.12. (Wigner’s Theorem) Let H be a separable infi-
nite dimensional complex Hilbert space, and let P denote the set of all
projections on H. Suppose η is a 1 − 1 mapping of P onto itself that
satisfies:

(1) If p ≤ q, then η(p) ≤ η(q).
(2) η(I − p) = I − η(p) for every p ∈ P.
(3) If {pi} is a pairwise orthogonal (summable) sequence of projec-

tions, then {η(pi)} is a pairwise orthogonal sequence of projec-
tions, and

η(
∑

pi) =
∑

η(pi).

Then there exists a real-linear isometry U of H onto itself such that
η(p) = UpU−1 for all p ∈ P. Further, U either is complex linear or it is
conjugate linear.
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Applying Wigner’s Theorem to the automorphisms φ′t, it follows that
there exists a map t → Ut from the set of nonnegative reals into the
set of real-linear isometries on H such that φ′t(p) = UtpU

−1
t for every

p ∈ P. Also, if G denotes a group of symmetries, then there exists a
map g → Vg of G into the set of real-linear isometries of H such that
π′g(p) = VgpV

−1
g for every p ∈ P.

THEOREM 11.13.

(1) The transformations Ut can be chosen to be (complex linear)
unitary operators that satisfy

Ut+s = Ut ◦ Us

for all t, s ≥ 0.
(2) The transformations Vg can be chosen to satisfy

Vg1g2 = σ(g1, g2)Vg1 ◦ Vg2

for all g1, g2 ∈ G, where σ(g1, g2) is a complex number of absolute
value 1. Such a map g → Vg is called a representation of G.

(3) The operators Ut commute with the operators Vg; i.e.,

Ut ◦ Vg = Vg ◦ Ut

for all g ∈ G and all t ≥ 0.

We have thus identified what mathematical objects will represent the
elements of our experimental science, but much remains to specify. De-
pending on the system and its symmetries, more precise descriptions of
these objects are possible. One approach is the following:

(1) Determine what the group G of all symmetries is.
(2) Study what kinds of mappings g → Vg, satisfying the conditions

in the preceding theorem, there are. Perhaps there are only a
few possibilities.

(3) Fix a particular representation g → Vg of G and examine what
operators commute with all the Vg’s. Perhaps this is a small set.

(4) Try to determine, from part 3, what the transformations Ut
should be.

Once the evolution transformations φ′t are specifically represented by
unitary operators Ut, we will be in a good position to make predictions,
which is the desired use of our model. Indeed, if α is a state of the
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system, and if α is represented in our model by a trace class operator S,
then the state of the system t units of time later will be the one that is
represented by the operator U−1

t SUt.

CHAPTER XII

NONLINEAR FUNCTIONAL ANALYSIS,
INFINITE-DIMENSIONAL CALCULUS

DEFINITION Let E and F be (possibly infinite dimensional) real or
complex Banach spaces, and let f be a map from a subset D of E into
F. We say that f is differentiable at a point x ∈ D if:

(1) x belongs to the interior of D; i.e., there exists an ε > 0 such
that Bε(x) ⊆ D.

(2) There exists a continuous linear transformation L : E → F and
a function θ : Bε(0)→ F such that

f(x+ h)− f(x) = L(h) + θ(h), (12.1)

for all h ∈ Bε(0), and

lim
h→0
‖θ(h)‖/‖h‖ = 0. (12.2)

The function f is said to be differentiable on D if it is differentiable at
every point of D.
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If E = R, i.e., if f is a map from a subset D of R into a Banach space
F, then f is said to have a derivative at a point x ∈ D if limt→0[f(x +
t)− f(x)]/t exists, in which case we write

f ′(x) = lim
t→0

f(x+ t)− f(x)

t
. (12.3)

If D ⊆ E, D′ ⊆ F, and f : D → D′, then f is called a diffeomorphism
of D onto D′ if f is a homeomorphism of D onto D′ and f and f−1 are
differentiable on D and D′ respectively.

EXERCISE 12.1. (a) Suppose f : D → F is differentiable at a point
x ∈ D, and write

f(x+ h)− f(x) = L(h) + θ(h)

as in Equation (12.1). Prove that θ(0) = 0.

(b) Let D ⊆ R, and suppose f is a function from D into a Banach space
F. Show that f is differentiable at a point x ∈ D if and only if f has a
derivative at x. If f has a derivative at x, what is the continuous linear
transformation L : R→ F and what is the map θ that satisfy Equation
(12.1)?

THEOREM 12.1. Suppose f : D → F is differentiable at a point x.
Then both the continuous linear transformation L and the map θ of
Equation (12.1) are unique.

PROOF. Suppose, as in Equations (12.1) and (12.2), that

f(x+ h)− f(x) = L1(h) + θ1(h),

f(x+ h)− f(x) = L2(h) + θ2(h),

lim
h→0
‖θ1(h)‖/‖h‖ = 0,

and

lim
h→0
‖θ2(h)‖/‖h‖ = 0.

Then

L1(h)− L2(h) = θ2(h)− θ1(h).
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If L1 6= L2, choose a unit vector u ∈ E such that ‖L1(u)−L2(u)‖ = c >
0. But then,

0 = lim
t→0

(‖θ2(tu)‖/‖tu‖+ ‖θ1(tu)‖/‖tu‖)

≥ lim
t→0
‖θ2(tu)− θ1(tu)‖/‖tu‖

= lim
t→0
‖L1(tu)− L2(tu)‖/‖tu‖

= lim
t→0
|t|c/(|t|‖u‖)

= c

> 0,

which is a contradiction. Therefore, L1 = L2, whence θ1 = θ2 as well.

DEFINITION. Suppose f : D → F is differentiable at a point x. The
(unique) continuous linear transformation L is called the differential of
f at x, and is denoted by dfx. The differential is also called the Fréchet
derivative of f at x.

THEOREM 12.2. Let E and F be real or complex Banach spaces.

(1) Let f : E → F be a constant function; i.e., f(x) ≡ y0. Then
f is differentiable at every x ∈ E, and dfx is the zero linear
transformation for all x.

(2) Let f be a continuous linear transformation from E into F. Then
f is differentiable at every x ∈ E, and dfx = f for all x ∈ E.

(3) Suppose f : D → F and g : D′ → F are both differentiable at
a point x. Then f + g : D ∩D′ → F is differentiable at x, and
d(f + g)x = dfx + dgx.

(4) If f : D → F is differentiable at a point x, and if c is a scalar,
then the function g = cf is differentiable at x and dgx = cdfx.

(5) If f : D → F is differentiable at a point x, and if v is a vector
in E, then

dfx(v) = lim
t→0

f(x+ tv)− f(x)

t
.

(6) Suppose f is a function from a subset D ⊆ R into F. If f is
differentiable at a point x (equivalently, f has a derivative at x),
then

f ′(x) = dfx(1).
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PROOF. If f(x) ≡ y0, then we have

f(x+ h)− f(x) = 0 + 0;

i.e., we may take both L and θ to be 0. Both Equations (12.1) and (12.2)
are satisfied, and dfx = 0 for every x.
If f is itself a continuous linear transformation of E into F, then

f(x+ h)− f(x) = f(h) + 0;

i.e., we may take L = f and θ = 0. Then both Equations (12.1) and
(12.2) are satisfied, whence dfx = f for every x.
To prove part 3, write

f(x+ h)− f(x) = dfx(h) + θf (h)

and
g(x+ h)− g(x) = dgx(h) + θg(h).

Then we have

(f + g)(x+ h)− (f + g)(x) = [dfx + dgx](h) + [θf (h) + θg(h)],

and we may set L = dfx + dgx and θ = θf + θg. Again, Equations (12.1)
and (12.2) are satisfied, and d(f + g)x = dfx + dgx.
Part 4 is immediate.
To see part 5, suppose f is differentiable at x and that v is a vector in
E. Then we have

dfx(v) = lim
t→0

dfx(tv)/t

= lim
t→0

f(x+ tv)− f(x)− θ(tv)

t

= lim
t→0

f(x+ tv)− f(x)

t
+ lim
t→0

θ(tv)

t

= lim
t→0

f(x+ tv)− f(x)

t
,

showing part 5.
Finally, if f is a map from a subset D of R into a Banach space F, and
if f is differentiable at a point x, then we have from part 5 that

dfx(1) = lim
t→0

f(x+ t)− f(x)

t
,
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which proves that f ′(x) = dfx(1).

EXERCISE 12.2. Show that the following functions are differentiable
at the indicated points, and verify that their differentials are as given
below in parentheses.
(a) f : B(H)→ B(H) is given by f(T ) = T 2.
( dfT (S) = TS + ST. )
(b) f : B(H)→ B(H) is given by f(T ) = Tn.

( dfT (S) =
∑n−1
j=0 T

jSTn−1−j .)

(c) f maps the invertible elements of B(H) into themselves and is given
by f(T ) = T−1.
( dfT (S) = −T−1ST−1. )
(d) Let µ be a σ-finite measure, let p be an integer > 1, and let f :
Lp(µ)→ L1(µ) be given by f(g) = gp.
(dfg(h) = pgp−1h.)
(e) Suppose E,F, and G are Banach spaces, and let f : E × F → G be
continuous and bilinear.
( dfx,y(z, w) = f(x,w) + f(z, y). )
(f) Let E,F and G be Banach spaces, let D be a subset of E, let f :
D → F, let g : D → G, and assume that f and g are differentiable at a
point x ∈ D. Define h : D → F ⊕G by h(y) = (f(y), g(y)). Show that h
is differentiable at x.
( dhx(v) = (dfx(v), dgx(v)). )

EXERCISE 12.3. Suppose D is a subset of Rn and that f : D → Rk
is differentiable at a point x ∈ D. If we express each element of Rk in
terms of the standard basis for Rk, then we may write f in component
form as {f1, . . . , fk}.
(a) Prove that each component function fi of f is differentiable at x.
(b) If we express the linear transformation dfx as a matrix J(x) with
respect to the standard bases in Rn and Rk, show that the ijth entry
of J(x) is the partial derivative of fi with respect to the jth variable xj
evaluated at x. That is, show that

J(x)ij =
∂fi
∂xj

(x).

The matrix J(x) is called the Jacobian of f at x.

EXERCISE 12.4. Let A be a Banach algebra with identity I, and
define f : A→ A by f(x) = ex.
(a) Prove that f is differentiable at 0, and compute df0.
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(b) Prove that f is differentiable at every x ∈ A, and compute dfx(y)
for arbitrary x and y.

THEOREM 12.3. If f : D → F is differentiable at a point x, then f
is continuous at x.

PROOF. Suppose ε > 0 is such that Bε(x) ⊆ D, and let y satisfy
0 < ‖y − x‖ < ε. Then

‖f(y)− f(x)‖ = ‖f(x+ (y − x))− f(x)‖
= ‖dfx(y − x) + θ(y − x)‖
≤ ‖dfx‖‖y − x‖+ ‖y − x‖‖θ(y − x)‖/‖y − x‖,

which tends to 0 as y tends to x. This shows the continuity of f at x.

THEOREM 12.4. (Chain Rule) Let E,F, and G be Banach spaces and
let D ⊆ E and D′ ⊆ F. Suppose f : D → F, that g : D′ → G, that f is
differentiable at a point x ∈ D, and that g is differentiable at the point
f(x) ∈ D′. Then the composition g ◦ f is differentiable at x, and

d(g ◦ f)x = dgf(x) ◦ dfx.

PROOF. Write y for the point f(x) ∈ D′, and define the functions θf
and θg by

f(x+ h)− f(x) = dfx(h) + θf (h), (12.4)

and

g(y + k)− g(y) = dgy(k) + θg(k). (12.5)

Let ε > 0 be such thatBε(y) ⊆ D′, and let δ > 0 be such thatBδ(x) ⊆ D,
that f(Bδ(x)) ⊆ Bε(y), and that

‖θf (h)‖/‖h‖ ≤ 1 (12.6)

if ‖h‖ < δ. For ‖h‖ < δ, define k(h) = f(x+h)− f(x), and observe from
Equations (12.4) and (12.6) that ‖k(h)‖ ≤M‖h‖, where M = ‖dfx‖+1.

To prove the chain rule, we must show that

lim
h→0

‖g(f(x+ h))− g(f(x))− dgf(x)(dfx(h))‖
‖h‖

= 0.
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But,
g(f(x+ h))− g(f(x))− dgf(x)(dfx(h))

= g(y + k(h))− g(y)− dgy(dfx(h))

= dgy(k(h)) + θg(k(h))− dgy(dfx(h))

= dgy(f(x+ h)− f(x))− dgy(dfx(h))

+ θg(k(h))

= dgy(θf (h)) + θg(k(h)),
so,

‖g(f(x+ h))− g(f(x))− dgf(x)(dfx(h))‖ ≤ ‖dgy‖‖θf (h)‖+ ‖θg(k(h))‖,
so that it will suffice to show that

lim
h→0
‖θg(k(h))‖/‖h‖ = 0.

If k(h) = 0, then ‖θg(k(h))‖/‖h‖ = 0. Otherwise,

‖θg(k(h))‖
‖h‖

=
‖k(h)‖
‖h‖

‖θg(k(h))‖
‖k(h)‖

≤M ‖θg(k(h))‖
‖k(h)‖

,

so we need only show that

lim
h→0

‖θg(k(h))‖
‖k(h)‖

= 0.

But, since f is continuous at x, we have that k(h) approaches 0 as h
approaches 0, so that the desired result follows from Equation (12.5).

EXERCISE 12.5. Let E,F, and G be Banach spaces, and let D be a
subset of E.
(a) Let f : D → F and g : D → G, and suppose B is a continuous
bilinear map of F × G into a Banach space H. Define p : D → H by
p(y) = B(f(y), g(y)). Assume that f and g are both differentiable at a
point x ∈ D. Show that p is differentiable at x and compute dpx(y).
(b) Derive the “Product Formula” for differentials. That is, let A be a
Banach algebra, let f : D → A and g : D → A, and suppose both f and
g are differentiable at a point x ∈ D. Show that the product function
f(y)g(y) is differentiable at x, and derive the formula for its differential.
(c) Suppose E is a Hilbert space and that f : E → R is defined by
f(x) = ‖x‖. Prove that f is differentiable at every nonzero x.
(d) Let E = L1(R), and define f : E → R by f(x) = ‖x‖1. Show that f
is not differentiable at any point.
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THEOREM 12.5. (First Derivative Test) Let E be a Banach space,
let D be a subset of E, and suppose f : D → R is differentiable at a
point x ∈ D. Assume that the point f(x) is an extreme point of the
set f(D). Then dfx is the 0 linear transformation. That is, if a function
achieves an extreme value at a point where it is differentiable, then the
differential at that point must be 0.

PROOF. Let v be a vector in E. Since x belongs to the interior of D,
we let ε > 0 be such that x + tv ∈ D if |t| < ε, and define a function
h : (−ε, ε) → R by h(t) = f(x + tv). Then, by the chain rule, h is
differentiable at 0. Furthermore, since f(x) is an extreme point of the
set f(D), it follows that h attains either a local maximum or a local
minimum at 0. From the first derivative test in elementary calculus, we
then have that h′(0) = dh0(1) = 0, implying that dfx(v) = 0. Since this
is true for arbitrary elements v ∈ E, we see that dfx = 0.

THEOREM 12.6. (Mean Value Theorem) Suppose E and F are Ba-
nach spaces, D is a subset of E, and f : D → F. Suppose x and y
are elements of D and that the closed line segment joining x and y is
contained in D. Assume that f is continuous at each point of the closed
line segment joining x to y, i.e., at each point (1− t)x+ ty for 0 ≤ t ≤ 1,
and assume that f is differentiable at each point on the open segment
joining x and y, i.e., at each point (1− t)x+ ty for 0 < t < 1. Then:

(1) There exists a t∗ ∈ (0, 1) such that

‖f(y)− f(x)‖ ≤ ‖dfz(y − x)‖ ≤ ‖dfz‖‖y − x‖,

for z = (1− t∗)x+ t∗y.
(2) If F = R, then there exists a t∗ in (0,1) such that

f(y)− f(x) = dfz(y − x)

for z = (1− t∗)x+ t∗y.

PROOF. Using the Hahn-Banach Theorem, choose φ in the conjugate
space F ∗ of F so that ‖φ‖ = 1 and

‖f(y)− f(x)‖ = φ(f(y)− f(x)).

Let h be the map of [0,1] into E defined by h(t) = (1 − t)x + ty, and
observe that

‖f(y)− f(x)‖ = φ(f(h(1)))− φ(f(h(0))).
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Defining j = φ◦f ◦h, we have from the chain rule that j is continuous on
[0,1] and differentiable on (0,1). Then, using the Mean Value Theorem
from elementary calculus, we have:

‖f(y)− f(x)‖ = j(1)− j(0)

= j′(t∗)

= djt∗(1)

= d(φ ◦ f ◦ h)t∗(1)

= dφf(h(t∗))(dfh(t∗)(dht∗(1)))

= φ(dfh(t∗)(dht∗(1)))

= φ(dfh(t∗)(y − x)),

whence
‖f(y)− f(x)‖ ≤ ‖φ‖‖dfh(t∗)(y − x)‖

= ‖dfz(y − x)‖,

as desired.
We leave the proof of part 2 to the exercises.

EXERCISE 12.6. (a) Prove part 2 of the preceding theorem.
(b) Define f : [0, 1]→ R2 by

f(x) = (x3, x2).

Show that part 1 of the Mean Value Theorem cannot be strengthened to
an equality. That is, show that there is no t∗ between 0 and 1 satisfying
f(1)− f(0) = dft∗(1).
(c) Define D to be the subset of R2 given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
define f : D → R2 by

f(x, y) = (y cosx, y sinx).

Show that every point f(x, 1) is an extreme point of the set f(D) but
that df(x,1) 6= 0. Conclude that the first derivative test only works when
the range space is R.

DEFINITION. Let f be a map from a subset D of a Banach space E
into a Banach space F. We say that f is continuously differentiable at
a point x if f is differentiable at each point y in a neighborhood of x
and if the map y → dfy is continuous at x. ( y → dfy is a map from a
neighborhood of x ∈ E into the Banach space L(E,F ). )
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The map f is twice differentiable at x if it is continuously differentiable
at x and the map y → dfy is differentiable at x. The differential of
this map y → dfy at the point x is denoted by d2fx. The map f is 2
times continuously differentiable at x if the map y → dfy is continuously
differentiable at x.
The notions of n times continuously differentiable are defined by induc-
tion.

EXERCISE 12.7. (a) Let E and F be Banach spaces, let D be a subset
of E, and suppose f : D → F is twice differentiable at a point x ∈ D.
For each v ∈ E, show that d2fx(v) is an element of L(E,F ), whence for
each pair (v, w) of elements in E, [d2fx(v)](w) is an element of F.
(b) Let f be as in part a. Show that d2fx represents a continuous bilinear
map of E ⊕ E into F.
(c) Suppose f is a continuous linear transformation of E into F. Show
that f is twice differentiable everywhere, and compute d2fx for any x.
(d) Suppose H is a Hilbert space, that E = F = B(H) and that
f(T ) = T−1. Show that f is twice differentiable at each invertible T,
and compute d2fT .

THEOREM 12.7. (Theorem on Mixed Partials) Suppose E and F are
Banach spaces, D is a subset of E, and f : D → F is twice differen-
tiable at each point of D. Suppose further that f is 2 times continuously
differentiable at a point x ∈ D. Then

[d2fx(v)](w) = [d2fx(w)](v);

i.e., the bilinear map d2fx is symmetric.

PROOF. Let v and w be in E, and let φ ∈ F ∗. Write φ = U + iV in
its real and imaginary parts. Then

U([d2fx(v)](w))

= lim
t→0

U(
[dfx+tv − dfx](w)

t
)

= lim
t→0

lim
s→0

U(
f(x+ tv + sw)− f(x+ tv)− f(x+ sw) + f(x)

st
)

= lim
t→0

lim
s→0

Js(t)− Js(0)

st
,

where Js(t) = U(f(x+sw+tv)−f(x+tv)). Therefore, using the ordinary
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Mean Value Theorem on the real-valued function Js, we have that

U([d2fx(v)](w)) = lim
t→0

lim
s→0

J ′s(t
∗)/s

= lim
t→0

lim
s→0

U(dfx+sw+t∗v(v)− dfx+t∗v(v))/s

= lim
t→0

lim
s→0

U([dfx+t∗v+sw − dfx+t∗v](v))/s

= lim
t→0

U([d2fx+t∗v(w)](v))

= U([d2fx(w)](v)),

because of the continuity of d2fy at y = x. A similar computation shows
that

V ([d2fx(v)](w)) = V ([d2fx(w)](v)),

which implies that

φ([d2fx(v)](w)) = φ([d2fx(w)](v)).

This equality being valid for every φ ∈ F ∗ implies that

[d2fx(v)](w) = [d2fx(w)](v),

as desired.

EXERCISE 12.8. (Second Derivative Test) Let E and F be Banach
spaces, let D be a subset of E, and suppose f : D → F is 2 times
continuously differentiable at a point x ∈ D.
(a) Show that for each pair v, w of elements in E, the function

y → [d2fy(v)](w)

is continuous at x.
(b) Suppose F = R, that f is 2 times continuously differentiable at x,
that dfx = 0, and that the bilinear form d2fx is positive definite; i.e.,
there exists a δ > 0 such that [d2fx(v)](v) ≥ δ for every unit vector
v ∈ E. Prove that f attains a local minimum at x. That is, show that
there exists an ε > 0 such that if ‖y − x‖ < ε then f(x) < f(y). HINT:
Use the Mean Value Theorem twice to show that f(y)− f(x) > 0 for all
y in a sufficiently small ball around x.

EXERCISE 12.9. Let (X, d) be a metric space. A map φ : X → X is
called a contraction map on X if there exists an α with 0 ≤ α < 1 such
that

d(φ(x), φ(y)) ≤ αd(x, y)



NONLINEAR FUNCTIONAL ANALYSIS 257

for all x, y ∈ X.
(a) If φ is a contraction map on (X, d), x0 ∈ X, and k < n are positive
integers, show that

d(φn(x0), φk(x0)) ≤
n−1∑
j=k

d(φj+1(x0), φj(x0))

≤
n−1∑
j=k

αjd(φ(x0), x0)

= d(φ(x0), x0)αk
1− αn−k

1− α
,

where φi denotes the composition of φ with itself i times.
(b) If φ is a contraction map on a complete metric space (X, d), and
x0 ∈ X, show that the sequence {φn(x0)} has a limit in X.
(c) If φ is a contraction map on a complete metric space (X, d), and
x0 ∈ X, show that the limit y0 of the sequence {φn(x0)} is a fixed point
of φ; i.e., φ(y0) = y0.
(d) (Contraction mapping theorem) Show that a contraction map on a
complete metric space (X, d) has one and only one fixed point y0, and
that y0 = limn φ

n(x) for each x ∈ X.

THEOREM 12.8. (Implicit Function Theorem) Let E and F be Ba-
nach spaces, and equip E ⊕ F with the max norm. Let f be a map of
an open subset O in E ⊕ F into F, and suppose f is continuously dif-
ferentiable at a point x = (x1, x2) ∈ O. Assume further that the linear
transformation T : F → F, defined by T (w) = dfx(0, w), is 1-1 and onto
F. Then there exists a neighborhood U1 of x1 in E, a neighborhood U2

of x2 in F, and a unique continuous function g : U1 → U2 such that

(1) The level set f−1(f(x))∩U coincides with the graph of g, where
U = U1 × U2.

(2) g is differentiable at x1, and

dgx1(h) = −T−1(dfx(h, 0)).

PROOF. We will use the contraction mapping theorem. (See the previ-
ous exercise.) By the Isomorphism Theorem for continuous linear trans-
formations on Banach spaces, we know that the inverse T−1 of T is an
element of the Banach space L(F, F ). From the hypothesis of continuous
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differentiability at x, we may assume then that O is a sufficiently small
neighborhood of x so that

‖dfz − dfx‖ < 1/2‖T−1‖ (12.7)

if z ∈ O. Write

f(x+ h)− f(x) = dfx(h) + θ(h).

We may assume also that O is sufficiently small so that

‖θ(h)‖ ≤ ‖h‖/2‖T−1‖ (12.8)

if x+h ∈ O. Now there exist neighborhoods O1 of x1 and O2 of x2 such
that O1 ×O2 ⊆ O. Choose ε > 0 such that the closed ball B̄ε(x2) ⊆ O2,
and then choose δ > 0 such that Bδ(x1) ⊆ O1 and such that

δ < max(ε, ε/2‖T−1‖‖dfx‖). (12.9)

Set U1 = Bδ(x1), U2 = B̄ε(x2), and U = U1 × U2.
Let X be the set of all continuous functions from U1 into U2, and make
X into a metric space by defining

d(g1, g2) = sup
v∈U1

‖g1(v)− g2(v)‖.

Then, in fact, X is a complete metric space. (See the following exercise.)
Define a map φ, from X into the set of functions from U1 into F, by

[φ(g)](v) = g(v)− T−1(f(v, g(v))− f(x)).

Notice that each function φ(g) is continuous on U1. Further, if v ∈ U1,
i.e., if ‖v − x1‖ < δ, then using inequalities (12.8) and (12.9) we have
that

‖[φ(g)](v)− x2‖
= ‖g(v)− x2 − T−1(f(v, g(v))− f(x))‖
≤ ‖T−1‖‖T (g(v)− x2)− f(v, g(v)) + f(x)‖
= ‖T−1‖
× ‖dfx(0, g(v)− x2)− dfx(v − x1, g(v)− x2)− θ(v − x1, g(v)− x2)‖

= ‖T−1‖‖dfx(v − x1, 0) + θ(v − x1, g(v)− x2)‖
≤ ‖T−1‖‖dfx‖δ + ‖T−1‖‖θ(v − x1, g(v)− x2)‖
< ‖T−1‖‖dfx‖δ + ‖(v − x1, g(v)− x2)‖/2
< ‖T−1‖‖dfx‖δ + max(‖v − x1‖, ‖g(v)− x2‖)/2
< ‖T−1‖‖dfx‖δ + ε/2

< ε,
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showing that φ(g) ∈ X.
Next, for g1, g2 ∈ X, we have:

d(φ(g1), φ(g2))

= sup
v∈U1

‖g1(v)− g2(v)− T−1(f(v, g1(v))− f(v, g2(v)))‖

≤ sup
v∈U1

‖T−1‖

× ‖T (g1(v)− g2(v))− [f(v, g1(v))− f(v, g2(v))]‖
= sup
v∈U1

‖T−1‖

× ‖[T (g1(v))− f(v, g1(v))]− [T (g2(v))− f(v, g2(v))]‖
≤ sup
v∈U1

‖T−1‖

× ‖Jv(w1)− Jv(w2)‖,

where wi = gi(v), and where Jv is the function defined on O2 by

Jv(w) = T (w)− f(v, w).

So, by the Mean Value Theorem and inequality (12.7), we have

d(φ(g1), φ(g2)) ≤ sup
v∈U1

‖T−1‖‖d(Jv)z(w1 − w2)‖

= sup
v∈U1

‖T−1‖‖[T − df(v,z)](g1(v)− g2(v))‖

≤ sup
v∈U1

‖T−1‖‖dfx − df(v,z)‖‖g1(v)− g2(v)‖

≤ d(g1, g2)/2,

showing that φ is a contraction mapping on X.
Let g be the unique fixed point of φ. Then, φ(g) = g, whence f(v, g(v))
= f(x) for all v ∈ U1, which shows that the graph of g is contained
in the level set f−1(f(x)) ∩ U. On the other hand, if (v0, w0) ∈ U
satisfies f(v0, w0) = f(x), we may set g0(v) ≡ w0, and observe that
[φn(g0)](v0) = w0 for all n. Therefore, the unique fixed point g of φ
must satisfy g(v0) = w0, because g = limφn(g0). Hence, any element
(v0, w0) of the level set f−1(f(x)) ∩ U belongs to the graph of g.
Finally, to see that g is differentiable at x1 and has the prescribed dif-
ferential, it will suffice to show that

lim
h→0
‖g(x1 + h)− g(x1) + T−1(dfx(h, 0))‖/‖h‖ = 0.
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Now, because

f(x1 + h, x2 + (g(x1 + h)− x2))− f(x1, x2) = 0,

we have that

0 = dfx(h, 0) + dfx(0, g(x1 + h)− x2) + θ(h, g(x1 + h)− x2),

or

g(x1 + h)− g(x1) = −T−1(dfx(h, 0))− T−1(θ(h, g(x1 + h)− g(x1))).

Hence, there exists a constant M ≥ 1 such that

‖g(x1 + h)− g(x1)‖ ≤M‖h‖

whenever x1 + h ∈ U1. (How?) But then

‖g(x1 + h)− g(x1) + T−1(dfx(h, 0))‖
‖h‖

≤ ‖T
−1‖‖θ(h, g(x1 + h)− g(x1))‖

‖h‖

≤ ‖T
−1‖M‖θ(h, g(x1 + h)− g(x1))‖
‖(h, g(x1 + h)− g(x1))‖

,

and this tends to 0 as h tends to 0 since g is continuous at x1.
This completes the proof.

EXERCISE 12.10. Verify that the set X used in the preceding proof
is a complete metric space with respect to the function d defined there.

THEOREM 12.9. (Inverse Function Theorem) Let f be a mapping
from an open subset O of a Banach space E into E, and assume that
f is continuously differentiable at a point x ∈ O. Suppose further that
the differential dfx of f at x is 1-1 from E onto E. Then there exist
neighborhoods O1 of x and O2 of f(x) such that f is a homeomorphism
of O1 onto O2. Further, the inverse f−1 of the restriction of f to O1 is
differentiable at the point f(x), whence

d(f−1)f(x) = (dfx)−1.
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PROOF. Define a map J : E ×O → E by J(v, w) = v− f(w). Then J
is continuously differentiable at the point (f(x), x), and

dJ(f(x),x)(0, y) = −dfx(y),

which is 1-1 from E onto E. Applying the implicit function theorem to
J, there exist neighborhoods U1 of the point f(x), U2 of the point x,
and a continuous function g : U1 → U2 whose graph coincides with the
level set J−1(0) ∩ (U1 × U2). But this level set consists precisely of the
pairs (v, w) in U1×U2 for which v = f(w), while the graph of g consists
precisely of the pairs (v, w) in U1 × U2 for which w = g(v). Clearly,
then, g is the inverse of the restriction of f to U2. Setting O1 = U2 and
O2 = U1 gives the first part of the theorem. Also, from the implicit
function theorem, g = f−1 is differentiable at f(x), and then the fact
that d(f−1)f(x) = (dfx)−1 follows directly from the chain rule.

EXERCISE 12.11. Let H be a Hilbert space and let E = B(H).
(a) Show that the exponential map T → eT is 1-1 from a neighborhood
U = Bε(0) of 0 onto a neighborhood V of I.
(b) Let U and V be as in part a. Show that, for T ∈ U, we have eT is a
positive operator if and only if T is selfadjoint, and eT is unitary if and
only if T is skewadjoint, i.e., T ∗ = −T.

THEOREM 12.10. (Foliated Implicit Function Theorem) Let E and
F be Banach spaces, let O be an open subset of E×F, and let f : O → F
be continuously differentiable at every point y ∈ O. Suppose x = (x1, x2)
is a point in O for which the map w → dfx(0, w) is 1-1 from F onto F.
Then there exist neighborhoods U1 of x1, U2 of f(x), U of x, and a
diffeomorphism J : U1 × U2 → U such that J(U1 × {z}) coincides with
the level set f−1(z) ∩ U for all z ∈ U2.

PROOF. For each y ∈ O, define Ty : F → F by Ty(w) = dfy(0, w).
Because Tx is an invertible element in L(F, F ), and because f is con-
tinuously differentiable at x, we may assume that O is small enough so
that Ty is 1-1 and onto for every y ∈ O.
Define h : O → E × F by

h(y) = h(y1, y2) = (y1, f(y)).

Observe that h is continuously differentiable on O, and that

dhx(v, w) = (v, dfx(v, w)),
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whence, if dhx(v1, w1) = dhx(v2, w2), then v1 = v2. But then dfx(0, w1−
w2) = 0, implying that w1 = w2, and therefore dhx is 1-1 from E×F into
E × F. The exercise that follows this proof shows that dhx is also onto,
so we may apply the inverse function theorem to h. Thus, there exist
neighborhoods O1 of x and O2 of h(x) such that h is a homeomorphism
of O1 onto O2. Now, there exist neighborhoods U1 of x1 and U2 of
f(x) such that U1 × U2 ⊆ O2, and we define U to be the neighborhood
h−1(U1×U2) of x. Define J to be the restriction of h−1 to U1×U2. Just
as in the above argument for dhx, we see that dhy is 1-1 and onto if
y ∈ U, whence, again by the inverse function theorem, J is differentiable
at each point of its domain and is therefore a diffeomorphism of U1×U2

onto U.

We leave the last part of the proof to the following exercise.

EXERCISE 12.12. (a) Show that the linear transformation dhx of the
preceding proof is onto.

(b) Prove the last part of Theorem 12.10; i.e., show that J(U1 × {z})
coincides with the level set f−1(z) ∩ U.

We close this chapter with some exercises that examine the important
special case when the Banach space E is actually a (real) Hilbert space.

EXERCISE 12.13. (Implicit Function Theorem in Hilbert Space)

Suppose E is a Hilbert space, F is a Banach space, D is a subset of E, f :
D → F is continuously differentiable on D, and that the differential dfx
maps E onto F for each x ∈ D. Let c be an element of the range of f, let
S denote the level set f−1(c), let x be in S, and write M for the kernel of
dfx. Prove that there exists a neighborhood Ux of 0 ∈M, a neighborhood
Vx of x ∈ E, and a continuously differentiable 1-1 function gx : Ux → Vx
such that the range of gx coincides with the intersection Vx ∩ S of Vx
and S. HINT: Write E = M ⊕M⊥. Show also that d(gx)0(h) = h. We
say that the level set S = f−1(c) is locally parameterized by an open
subset of M.

DEFINITION. Suppose E is a Hilbert space, F is a Banach space, D
is a subset of E, f : D → F is continuously differentiable on D, and that
the differential dfx maps E onto F for each x ∈ D. Let c be an element
of the range of f, and let S denote the level set f−1(c). We say that S
is a differentiable manifold, and if x ∈ S, then a vector v ∈ E is called
a tangent vector to S at x if there exists an ε > 0 and a continuously
differentiable function φ : [−ε, ε] → S ⊆ E such that φ(0) = x and
φ′(0) = v.
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EXERCISE 12.14. Let x be a point in a differentiable manifold S, and
write M for the kernel of dfx. Prove that v is a tangent vector to S at
x if and only if v ∈ M. HINT: If v ∈ M, use Exercise 12.13 to define
φ(t) = gx(tv).

DEFINITION. Let D be a subset of a Banach space E, and suppose
f : D → R is differentiable at a point x ∈ D. We identify the conjugate
space R∗ with R. By the gradient of f at x we mean the element of
E∗ defined by grad f(x) = df∗x(1), where df∗x denotes the adjoint of the
continuous linear transformation dfx.
If E is a Hilbert space, then grad f(x) can by the Riesz representation
theorem for Hilbert spaces be identified with an element of E ≡ E∗.

EXERCISE 12.15. Let S be a manifold in a Hilbert space E, and
let g be a real-valued function that is differentiable at each point of an
open set D that contains S. Suppose x ∈ S is such that g(x) ≥ g(y) for
all y ∈ S, and write M = ker(dfx). Prove that the vector grad g(x) is
orthogonal to M.

EXERCISE 12.16. (Method of Lagrange Multipliers) Let E be a Hilbert
space, let D be an open subset of E, let f = {f1, . . . , fn} : D → Rn
be continuously differentiable at each point of D, and assume that each
differential dfx for x ∈ D maps onto Rn. Let S be the level set f−1(c)
for c ∈ Rn. Suppose g is a real-valued differentiable function on D and
that g attains a maximum on S at the point x. Prove that there exist
real constants {λ1, . . . , λn} such that

grad g(x) =

n∑
i=1

λigrad fi(x).

The constants {λi} are called the Lagrange multipliers.

EXERCISE 12.17. Let S be the unit sphere in L2([0, 1]); i.e., S is the
manifold consisting of the functions f ∈ L2([0, 1]) for which ‖f‖2 = 1.

(a) Define g on S by g(f) =
∫ 1

0
f(x) dx. Use the method of Lagrange

multipliers to find all points where g attains its maximum value on S.

(b) Define g on S by g(f) =
∫ 1

0
|f |3/2(x) dx. Find the maximum value

of g on S.
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