Distributed Real-time Anomaly Detection in
Networked Industrial Sensing Systems

Abstract—Reliable real-time sensing plays a vital role in
ensuring the reliability and safety of industrial Cyber-Physical
Systems (CPSs) such as wireless sensor and actuator networks.
For many reasons, such as harsh industrial environments, fault-
prone sensors, or malicious attacks, sensor readings may be
abnormal or faulty. This could lead to serious system perfor-
mance degradation or even catastrophic failure. Current anomaly
detection approaches are either centralized and complicated,
or restricted due to strict assumptions, which are not suitable
for practical large-scale Networked Industrial Sensing Systems
(NISSs) where sensing devices are connected via digital commu-
nications, such as wireless sensor networks or smart grid systems.
In this paper, we introduce a fully distributed general-anomaly-
detection (GAD) scheme, which uses graph theory and exploits
spatiotemporal correlations of physical processes to carry out
real-time anomaly detection for general large-scale NISSs. We
formally prove the scalability of our GAD approach and evaluate
the performance of GAD for two industrial applications: building
structure monitoring and smart grids. Extensive trace-driven
simulations validate our theoretical analysis, and demonstrate
that our approach can significantly outperform state-of-the-art
approaches in terms of detection accuracy and efficiency.

I. INTRODUCTION

Industrial Cyber-physical systems (CPSs) have been pro-
viding promising opportunities in many critical industrial seg-
ments such as energy, automotive, chemical, instrumentation,
and industrial automation [1], [2]. Sensing is a key subsystem
of industrial CPSs, which provides real-time measurements of
physical process information, including temperature, humid-
ity, illumination, vibration, chemical gas, smart power meter
readings. In many industrial CPSs such as smart grids [3],
the sensing devices can communicate with each other or with
the central controller through information and communication
technology (ICT) infrastructures such as wireless communi-
cations. We call such sensing systems Networked Industrial
Sensing Systems (NISSs) in this paper.

In practice, sensor readings may be abnormal or faulty due
to various unpredictable reasons such as harsh environments,
inherently fault-prone sensors, or malicious attacks (e.g. false
data injection attack in smart grid systems [4]). These anoma-
lies could lead to significant system performance degradation
or even catastrophic failure. Therefore, effective detection of
sensing anomalies is highly important for the reliability and
safety of the overall industrial CPS.

A. Motivation
In this paper, we focus on anomaly detection for NISSs.
Our objective is to develop an anomaly detection algorithm
that has the following three properties:
« Real-time Detection. Since sensor information is critical
and even a single abnormal critical sensor reading may

lead to a catastrophic cascade of failures throughout
the whole system. Therefore abnormalities should be
detected as early as possible to minimize the possibility
of potential damage. To achieve this, an on-line scheme
that provides real-time anomaly detections is needed. This
scheme should be able identify the anomaly condition of
each sensor observation, as soon as sensor observations
are collected.

o Distributed Solution. Anomaly detection can be per-
formed either at the central controller (i.e. centralized
solution) or at local sensing devices (i.e. distributed so-
lution). Centralized solutions require transmitting sensor
readings to the central controller, which may result in data
loss and delay to the detection decisions, especially in
large-scale wireless NISSs. In contrast, distributed solu-
tions are much more agile and robust to data transmission
failures, and more importantly, scale to larger sizes.

o General Solution. For different NISSs, the system behav-
iors and dynamics could be very different. For instance,
the stochastic behaviors of energy usage in smart grids
could be quite different from that of chemical control
processes. Therefore a general solution covering various
NISSs is highly desirable. This self-tuning solution means
that unrealistic assumptions or models related to specific
industrial scenarios are not required.

B. Our Approaches

We propose General Anomaly Detection (GAD), a
correlation-based anomaly detection algorithm for general
NISSs that achieves all aforementioned properties. The con-
tributions of this paper are summarized as follows:

1. We develop a Distributed Matching-based Grouping
Algorithm (DMGA), the first correlation-aware algorithm that
divides all sensing components into small strongly correlated
groups in a fully distributed way. We then propose a novel
approach to detect anomalies in real time, based on the spa-
tiotemporal correlations among sensors within each correlation
group.

2. We prove that the computation and storage complexity
of GAD are of O(1)' with respect to the number of sensing
devices, which means that it can be applied in large-scale
industrial sensing systems such as smart grid and smart water
systems.

3. The performance of GAD is evaluated in two NISSs: the
sensing systems of buildings and smart grids. Extensive sim-
ulations using real building and smart grid data demonstrate
that GAD achieves all its design objectives and outperforms

IThis notation shows that GAD requires constant computational time and
memory.



current approaches, in terms of detection accuracy, efficiency,
and scalability.

C. Related Work

Industrial Sensing Systems. There exist a large body
of research on networked sensing systems in industrial en-
vironments [5]-[7], such as building monitoring and control
[8], smart water system monitoring [9], machine-condition
monitoring and diagnostic [10], [11], and smart power grid
systems [3]. None of the above examples consider distributed
real-time anomaly detections. To improve the reliability of the
overall system, [12], [13] study fault detection and for different
types of sensors. However, they focus on specific sensor types
and do not consider networked sensing systems.

Anomaly Detection Mechanisms. Anomaly detection
schemes [14] can be broadly classified into non-parametric
(including semi-parametric) and parametric approaches. On
one hand, non-parametric mechanisms [15]-[17] such as sta-
tistical models and machine learning techniques, are capable
of coping with changes and heterogeneities in the deployment
environments. However, these solutions usually suffer from
either low detection accuracy, or high computation com-
plexity and poor scalability. Some non-parametric solutions
[16], [18]-[20] tried to exploit other data-mining techniques
(e.g. clustering, support vector machine (SVM), and kernel
functions) to achieve a balanced solution. However, they
either depend on static routing trees, or require accurately
assigned thresholds to ensure their detection accuracy. Other
approaches, such as [21]-[23], although they provide efficient
anomaly-detection solutions, they do not focus on identifying
anomalies with respect to each sensor observation, but the
anomaly condition of samples (which is a sets of observations)
and sensor devices.

On the other hand, parametric approaches [19], [24]-[28],
that exploit spatiotemporal correlations between sensors, are
lightweight and provide accuracy guarantees. However, these
parametric approaches are normally based on quite specific
assumptions which may not hold true in practice and need
to be known in advance. This significantly restricts their
application for many sensing systems. In summary, current
approaches cannot achieve all the design objectives of anomaly
detection in NISSs.

D. Organization

The remainder of this paper is organized as follows: Sec-
tion II specifies our targeted sensing systems and, discusses the
spatiotemporal correlations of physical phenomena. Section IV
presents DMGA. The design of in-group anomaly detection are
discussed in Section V. Evaluation of GAD are represented in
Section VII, and we finally conclude the paper in Section VIIIL.

II. PRELIMINARIES

In this section, we introduce the problem statement of
our approach and the background information regarding the
spatiotemporal correlation in physical phenomena.

A. Networked Industrial Sensing Systems

Our work focuses on identifying the anomaly-condition
of each sensor observation in NISSs. These systems may
contain single or multiple physical sources (e.g. boilers) that
can simultaneously influence the observations of all of their
nearby sensors. Specifically, we consider a set of sensors S that
can communicate with other nearby sensors through wireless
or wired communications. Each sensor ¢ € S is synchronised
with others and monitors the same physical phenomenon
(e.g. temperature and pressure), and periodically reports its
measurement 7;(t) at every time slot ¢t = {0, 1,...}.

B. Spatiotemporal Correlation in Physical Phenomena

Spatiotemporal correlation is a natural property in various
physical phenomena [26], [29], including temperature, humid-
ity, illumination, mechanical vibration, sound, gas concentra-
tion, radiation, and even human behaviors.

1) Spatial Correlation: Physical states pertaining to a
given special area can simultaneously influence the sensor
measurements observed in that specific area. For instance, a
leakage of a water pipe can be detected by multiple nearby
sensors. Specifically, consider two sensors ¢ and j in a cor-
related sphere. At a given ¢, a correlation mapping f{ ; from
sensor ¢ to j can be defined as:

Lyt Rilt) = R (1) (1)

where R;(t) and R;(t) represent the set of all possible
readings of ¢ and j respectively at time ¢. In practice, f{ ; de-
pends on two key factors: the status of the physical phenomena
in which we are interested (e.g. geographical distributions such
as source values and sensor-source distances), and the sur-
rounding environment (e.g. background noise). For instance, a
correlation mapping between the readings of two temperature
sensors should be affected by the nearby temperature sources
(e.g. heaters), and the air temperature, which simultaneously
influence the measurements of both sensors.

2) Temporal Correlation: Since physical phenomena is
continuous, these spatial correlations should have a relation-
ship with those measured previously. To be more specific,
mapping ffy ; should be remporally correlated to previous
mappings f;, 7 € [t — At,t — 1], where sampling window
size /At represents the period during within which the physical
dynamic patterns are treated as stable.

III. THE OUTLINE OF GAD

To summarise, the design of GAD can be mainly divided
into two phases. In the first phase, we aim to group sensors
in a sensing system & into multiple correlation groups, while
maximize the total correlation in all correlation groups G C S.
This guarantees that the sensors are highly correlated to others
when they are in the same group. In the second phase,
each group performs an on-line in-group anomaly-detection
algorithm to tag each sensor observation with its anomaly
condition in a real-time fashion. Fig. 1 illustrates the above
operations of GAD algorithm.
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Fig. 1. The overview of GAD algorithm (a) The initial of GAD. (b) Sensors
are grouped by DMGA at time tgroup. (c) After applying DMGA, the
anomaly condition of each sensor reading is identified at each time ¢.

o When GAD initials its algorithm (Fig.1(a)), each sensor
node ¢ € & broadcasts its readings to its one-hop
communication neighbours A;'~"°?. These readings will
be stored and used by each sensor node j € NP
to calculate the Pearson correlation coefficient between
sensor ¢ and j.

o When acquire |tg,oup| Observations for the correlation
calculation (Fig.1(b)), DMGA, a correlation-aware group-
ing algorithm, is performed. This algorithm exploits a
matching technique [30] to group sensors into clusters,
where the total correlations between sensor nodes are
maximized. During this grouping, each sensor node ¢ ex-
changes grouping-request messages with their neighbour
nodes in ;' ~"°P. This process terminates when the size
of each group G C S meets the minimum requirement
N™i"_ The detailed design of DMGA can be found in
Section IV.

o After grouping (Fig.1(c)), each group chooses a sensor
node as its cluster head. This cluster head can be selected
as per application requirements, including sensor energy
budget, communication capability, or sensor ID. Once the
cluster heads are selected, at each time slot ¢, each sensor
sends its reading to its cluster head. After the cluster
heads received all sensor readings in their groups, they
perform an in-group anomaly detection algorithm to tag
each reading with its anomaly condition. The details of
this in-group algorithm will be given in Section V.

Note that, although GAD groups sensor nodes in to groups,
in which sensor measurements have to be first routed to cluster
heads, users can still apply any network topology, routing
protocol, or data aggregation scheme, after sensor readings

are tagged with their anomaly condition.

IV. CORRELATION-AWARE GROUPING

At the first stage of GAD, a grouping scheme is required
to divide sensors into small correlation groups in a fully dis-
tributed way. The objective of grouping is to ensure strong spa-
tiotemporal correlations among all sensors in each correlation
group, while minimizing the overhead of GAD. To this end
we develop distributed matching-based grouping algorithm
(DMGA), the first correlation aware grouping algorithm for
anomaly detection.

A. DMGA Design

For a given industrial sensing system S, let G C S
represent a correlation group, and G C 2° represent the set
of all correlation groups, i.e. a grouping solution. We define
II C 29 as the set of all possible grouping solutions. DMGA
aims to find a grouping solution G € II, which maximizes
the spatiotemporal correlations in all groups and guarantees
strong spatiotemporal correlations among all sensors in each
correlation group, while minimize the computational complex-
ity of GAD. Formally, DMGA aim at solving the following
problem:

> g
{i,j}CG,GeG

subject to
|G| > N™in VG € G (3)
cij > Vi jeGeG (4)
DIGP <D IGP, VG #G  (5)

GeG GeG’

where 0 < ¢; ; < 1 is the standard Pearson correlation
coefficient, which represents the spatiotemporal correlation
between sensor ¢ and j; c™in ig g predefined minimal cor-
relation threshold; and N™i» presents the minimal correlation
group size to guarantee anomaly-detection accuracy [15], [25].
The objective (2) is to maximize total correlations between
sensors in all groups. Constraint (3) states that each group
should consist of at least N™™ sensors. Constraint (4) ensures
the strong correlations between each pair of sensors in each
group. Constraint (5) ensures the grouping solution should
also minimize the computational overhead of GAD algorithm,
which is O(Y ¢ |GI?/|S|) per sensor (This will be discussed
in detail in next section).

DMGA solves problem (2)-(5) by utilizing distributed
Maximum Weighted Matching (MWM) [30]. In graph theory,
a matching is a set of links that do not share common node.
A MWM is a matching with maximal aggregate weights (i.e.
the maximal aggregated correlations in our context) over all
other matchings for a given weight graph. The pseudocode of
the DMGA is summarized in Fig. 2.

The idea of DMGA is based on the concept of hyper
correlation graphs G2 (G", L™, W™) at the nth iteration of the
while loop (lines 6-10), where G™ represents the set of hyper-
nodes (i.e. non-overlapping correlation groups of the same



Input Parameters

S: the set of all sensors in a industrial sensing system.

¢;,j: Correlation between every pair of sensors i, j € S.
c™in: Predefined minimal correlation threshold.

N™in: the minimal number of nodes in a correlation group.
Ml'h °P: the set of one-hop communication neighbors of i.
Variables:

n: iteration round.

G?: the nth Hyper Correlation Graph.

G™: the set of hyper-nodes in the nth iteration.

IL™: the set of hyper-links in the nth iteration.

W: the set of weights over hyper-links in the nth iteration.
Functions:

CON(G, L, W): construct a hyper-graph based on G, L, W.
MWM(G): compute the MWM of a graph G.

/* Initialization */

01: n < 05

02: GO « {{i}:i € S}

03: L0 « {({i}, {5}) 11 €S, j €N}, ;5 > c™ink;
04: WO « {c; ; : ({i}, {4}) € L°}; GY +~ CON(G?, L%, WO);

/*Establish nonoverlapping groups with same sizes*/

05: while 2" < N™i» do

06: | n<n+1;

07: | G™ « MWM(G21);

08: | L" «+ {(G1,G2): Vi€ G1 € G",j € G2 € G"

08: st ({3}, {5}) € L},

09: | W™ <= {Wg, .6, = 3_; jeg,ug, Cii * (91,92) €L}
10: | G2 = CON(G™, L™, W™);

/* Insert individual sensors in established groups */

11: for each sensor (i € S) A (i ¢ G,VG € G™) do

12: |for each group G € G™, |G| = 2™ do

13: if vg’' € G”s.t.|g’| =2" A Ejeg Cij > Zjeg’ Ci,j then
14: | g« gu{ik

15: return (G™);

Fig. 2. The pseudo code of DMGA.

size 2™), L™ is the set of hyper-links between each pair of
hyper nodes; and the weight of each hyper-link (G1,Gs) € L™
is computed as the sum of Pearson correlation coefficients
between each pair of sensors in G; U Go. At the nth iteration,
the while loop first computes the MWM (discuss later) for
the hyper-correlation graph G71(G™1, L™t Wnl) generated
in the last iteration. Based on the computed MWM the nth
hyper correlation graph G%7(G™,L", W") is then constructed.
According to Theorem 1, the while loop operates at most
[logy N™in] times, where [log, N™™] represents the minimal
integer that is larger than log, N™ Eventually, if each
sensor in S has been put into a correlation group in G”,
the algorithm terminates after the while loop; otherwise, the
algorithm inserts each sensor individually to an established
group in G™ (lines 11-15), according to Theorem 1.

Fig. 3 illustrates an example to show the operation of
DMGA. Assume N™" = 4 in this example. Initially, we
have the initial hyper-correlation graph G consisting of 10
sensors (Step 0). In the first iteration of the while loop
(Steps 1 and 2 in Fig. 3), the MWM is computed (Step 1)
and the fisrt hyper-correlation graph G is constructed (Step

2), where G' = {{a7c}7 {g7h}v {evd}7 {i7j}7 {f,b}}

Step 3 Step 4 Step 5

Fig. 3. An example to illustrate DMGA.

Similarly, the second while loop (steps 3 and 4 in Fig. 3)
computes the MWM for G (Step 3) and constructs G2 (Step
4), where G? = {{g, h,i,5}, {e,d, f,b}}. Finally, in Step 5,
the individual sensors a and c are inserted into the established
two groups respectively, and then the algorithm terminates.

B. Distributed Operations of DMGA

DMGA is based on locally greedy optimal-link selections.
Three one-hop control messages are used in this DMGA:
Matching Apply (MA), Matching Reply (MR) and drop.
To initialize the first hyper-correlation graph G(G°,1L°, W?)
(Lines 1-4 in Fig. 2), every sensor ¢ € S broadcast its readings
of a previous periods At to all its 1-hop neighbors j € NP,
Based on these sensor readings, the first hyper correlation
graph G%(G°, L%, W) can be established in a fully distributed
manner.

Now we discuss the distributed operations of matching.
For the nth hyper-correlation graph G%(G", L™, W"), DMGA
compute MWM as follows. Every hyper node G} selects its
locally heaviest-weighted and free (LHWF) link (G, Gl),

where
>

1,J€GUG

(Gr» i) = arg

max
(Gp,Gr)eLn

Cij (6)

Then G} sends a MA message to Gj. to request the
matching of link (G, Gj%). If this link is also the LHWF
link for GJ., then G sends a MR message back to G;' to
confirm this link is matched, and multicasts a drop message to
its other neighbor groups, otherwise, G; ignores the message.
Alternatively, (G, GJ*) is eventually dropped. If link (G}, G]*)
is dropped, then G;' selects a new LHWF link and sends
another MA message. The above process repeats until every
hyper node has either a matched link, or all its links are
dropped and marked as free.

C. Performance Analysis

Theorems 1 below demonstrates three theoretical perfor-
mance guarantees achieved by DMGA. For readability, the
proofs of this theorem is presented in Appendix.

Theorem 1. DMGA achieves the following performance guar-
antees:



1) DMGA minimizes the computational overhead of GAD
algorithm, i.e. Constraint (5) is guaranteed.

2) The worst-case communication overhead of DMGA is
O(1) per sensor, with respect to the industrial sensing
system size |S|.

3) DMGA achieves at least 1/N™" performance of the
optimal solution of problem (2)-(5).

Theoretically, problem (2)-(5) may not have a feasible
solution for some large N™" and ¢™". From graph theoretical
point of view, the setting of ¢™" defines the topology of the
initial hyper-correlation graph GY(G°, L°, WY). To ensure (2)-
(5) has a feasible solution, G2(G°, L%, W) must have at least
|S|/N™in non-overlapping cliques (i.e. complete subgraph) of
size N™in [31].

In practice, when the certain setting of N™® and c
derives no feasible solution, the most straightforward solu-
tion is to reduce these two thresholds. However, to fulfill
the redundancy and reliability requirements of GAD, it is
necessary to have a reasonably high ¢™™ . This is because that
GAD exploits the spatiotemporal correlations between sensors,
which are guaranteed by c™®, the lowest bond of sensor-
correlation requirement during DMGA grouping. Therefore, if
there is no feasible solution, users should try to reduce N min
rather ¢™®. It is worth noting that GAD only require each
correlation group consists of more than 3 sensors to achieve
its high detection accuracy.

min

V. IN-GROUP ANOMALY DETECTION

After DMGA, the following stages of anomaly detection
will be performed within each correlation group G: correlation
consistency assessment, measurement anomaly assessment,
and classification of novelty and anomaly. We assume that
sensor reading errors follow Gaussian distribution, which is a
well-accepted assumption and normally holds true in practice.

A. Correlation Consistency Assessment

Consider each pair of sensors 7 and j in a group G. Let r;(t)
and r;(t) be the readings of sensor ¢ € G at slot ¢, respectively.
As we discussed in Subsection II-B, ;(t) and () should be
temporally correlated to their the previous readings of sensor
t and j. Therefore, based on previous sensor readings before
time ¢, their consistency region R; ;(t) can be computed.
Here, R, ;(t) represents the set of all possible potentially
consistent reading pairs of r;(t) and r;(¢) at current time ¢.
If current sensor reading pair (r;(t),7;(t)) € R;,;(t), we say
the reading pair r;(¢) and r;(¢) are consistent; otherwise, they
are inconsistent. Denote C; ;(t) as the correlation consistency
of sensor readings r;(t) and r;(t) at slot ¢, i.e.

(7

1, if (ri(t),7(t)) € Ri (1)

Cij(t) = o !
0, otherwise

Geometrically, 7%” (t) is a rotated ellipse area on the

Cartesian coordinate formed with r; and r;, as shown in Fig.

4 (a). Here, the center of the ellipse (7;(t),7;(t)) is computed

(a) (b)

Fig. 4. Illustration of correlation consistency assessment.

by using Exponential Weighted Moving Average (EWMA) of
previous sensor readings as follows:

?i(t) = O.57“i(t — 1) + 05771(1*, — 1) (8)

The major and minor radius of the ellipse 7@1 ;(t) are com-
puted by using the Principle Component Analysis (PCA) [22],
which is a mathematical procedure to convert observations of
multiple observers into orthogonal variables called principle
components (PCs). These PCs indicate the most representative
variances in these observations. Consider the first step of PCA,
Eigen decomposition on a data covariance matrix:

cov; ;(t)
cov; ;(t)

cov; ;(t)

covi; = cov; ;(t)

)

where each entry cov; ;(t) is defined as
covij = BPGP[(ri(t) —EERP [ra(D]) (15 (1) —EEX [ (1)])]

where the operator ESQOP[] returns the arithmetic average of

previous reliable sensor readings during the sampling window
[t — At,t—1]. The identification of reliable (i.e. GOOD) sensor
readings will be discussed in detail in next subsection. With
COV, ;(t), we have

where the eigenvectors PC; ;(t) contains two orthogonal prin-
ciple components (vectors) pey () and pci{ ;(t); and the ma-
trix of eigenvalues A; ;(t) consists of two variances (o7 ; (t)?)
and (o7 ;(t))%, where pof;(t) and @o? ;(t) are standard devi-
ations related to the two principle components above.

With PC; ;(t) and A; ;(t), the consistency region ellipse
7~€i’j (t) can be computed, as shown in Fig. 4 (b). Here, ¢ is a
parameter that controls the probability margin of 7~21 ;(t). For
instance, (o = 3 can assure that 99.46% of normal observations
lie in R ;(1).

B. Measurement Anomaly Assessment

In this stage, GAD exploits a trust-based voting algorithm
to identify anomaly condition of the reading r;(¢) of each
sensor ¢ in every correlation group G at time t. Here, the
correlation consistencies C; ;(t) defined in (7), are considered
as a measure of trust between each pair of sensors 4,7 € G.



Before introducing the voting, we first define the consistent
neighbor set NF°™5(¢t) for each sensor i € G at time ¢ as:

_/\[Z_cons(t) — {] : Ci,j(t) = ]_, ] S M}

where N; = G —{i} is the set of sensor 4’s all neighbors. This
stage consists of two rounds of voting:

1) First Round Voting: In this voting, certain sensors
are voted as trustworthy references. Sensor ¢ is regarded as
trustworthy, if the majority of ¢’s neighbors are consistent
neighbors (i.e. |NF5(¢)|/|N:| > 50% ); otherwise, it is
regarded as untrustworthy.

2) Second Round Voting: After the first round voting, only
trustworthy sensors are qualified to involve in the second round
voting. For each sensor i, denote N/™“s'(t) C N; as the
set of its all trustworthy neighbors. The second round voting
identifies one of the following three conditions of reading r;(¢)
of each sensor in G:

e GOOD, if the majority of ¢’s neighbors are trustwor-
thy (JN/™“st(t)|/|N;| > 50%), and the majority of
its consistent neighbors are trustworthy (JAF°"%(¢) N
./\/itruSt(t)‘/|j\/itTUSt(t)‘ > 50%)

o« ABNORMAL. if the majority of ¢’s neighbors are trust-
worthy, and the minority of its consistent neighbors are
trustworthy (JNVoS (£) NNt ()| /INFT4st(t) ]| < 50%).

o UNKNOWN, if the minority of ¢’s neighbors are trust-
worthy (JAV/™st(t)|/|N;] < 50%). In this case, anomaly
condition of reading r;(t) cannot be determined, due to
the lack of trustworthy references.

C. Novelty and Anomaly Classification

In this stage, GAD aims to distinguish novelties from
anomalies. Unlike anomalies that are faults or errors, novelties
are the emerging patterns in the physical process that were
previously unobserved. Novelties represent the real dynamics
of physical phenomena, which may be critical for industrial
CPS applications. For example, the occurrence of sudden
heightened temperature (e.g. a fire) is a novelty to temperature
monitoring systems rather than an anomaly.

In a correlated group G, the probability that the measure-
ments of all sensors are unreliable simultaneously is close to
zero. Therefore, we assume that the novelty can be identified
when the majority of spatial correlations between sensor
measurements changes, i.e. the readings of more than 50%
sensors in a correlation group are declared UNKNOWN. This
assumption is reasonable, because the fact that spatial varying
physical phenomena should influence nearby sensor readings
at the same time. Therefore, when genuine environmental
changes occur, the correlation mappings between each pair
of sensors in a correlation group should begin to vary.

D. Performance Analysis

Theorem 2 and 3 below demonstrate the scalability of
GAD.
Theorem 2. The per sensor computational complexity of GAD
is O(1) with respect to the industrial sensing system size |S|.

Proof. It can be seen only the consistency assessment stage

of GAD require heavy computations, i.e. Eigen decomposition
requires O(|G|?) matrix-multiplication operations for each
correlation group G € G, where G is the grouping solution
computed by DMGA. Therefore the per sensor computational
complexity is O(Y_ g |G|*)/|S|). Consider DMGA, we have

S ; 1
SIGRAS) € Aol (vmin 4 1) -
GeG N |S|
— (Nmin + 1)2/Nmin
This proves Theorem 2. (|

Theorem 3. The per sensor storage complexity of GAD is O(1)
with respect to the industrial sensing system size |S]|.

Proof. According to Section IV and Subsection V-A, each
sensor requires O(JN'"°P| X tg.0,,) and O(|G] x | A t])
memory storage to perform DMGA and to compute R; ;(t),
respectively. Since |tg,oup| and | A t| are constant parameters,
the storage complexities of these two operations become
O(IN=7]) and O(|G]). Typically, |G| < [N™"| + 1 <
|IN1=hop| = D ,where D is the degree of G.(G° L% WO);
therefore, the per sensor storage complexity of GAD is O(D),
which is independent of |S]. O

VI. DEPLOY GAD IN REAL-WORLD NISSs

Theorem 2, 3 in Subsection V-D and Part 2 of Theorem
1 in Subsection IV-C have demonstrated that GAD is a
lightweight distributed anomaly-detection algorithm that has
a great potential in large-scale industrial sensing systems. In
this section, we further discuss the feasibility of deploying
GAD on real-world NISSs.

« Storage. According to the analysis in Theorem 3, DMGA
is typically the most storage-intense operation in GAD.
For example, when a sensor node has 20 1-hop neigh-
bours (i.e. [N1~h°P| = 20), and needs 50 2-bytes read-
ings of each neighbour (Z4,0,p = 50) to calculate their
Person correlation coefficients, it requires at most 2kB
memory to perform GAD. This storage requirement can
be easily fulfilled by current resource-constrained wire-
less sensors platforms, such as TelosB (10kB memory)
or iMote2 (256kB memory).

o Computation. In GAD, the PCA operation in Section V-
A is the most computational-intense operation. This PCA
operates on 2 X 2 covariance matrixes. For example, in
correlation group having 4 sensor nodes, the cluster head
only has to compute 10 covariance values, to form the
covariance matrixes needed by GAD. This make GAD
be suitable for resource-restrained micro control units
(MCUs), such as MSP430 on TelosB, to perform.

o Communication When apply GAD on sensing systems,
the main communication overhead comes from the in-
group data exchanging between sensors. This commu-
nication overhead can be minimized by assigning the
most communication effective sensor nodes as the cluster
heads defined in Section III. For example, when a NISS
is constructed under a tree topology, users can select the
sensor nodes that are closer to the root as cluster heads.



Fig. 5. Floor plan and sensor deployment in the ground floor of the building.

VII. EVALUATION

This section presents simulation studies to evaluated the
performance of GAD, and to demonstrate how to apply GAD
in various industrial scenarios. All simulations used data sets
from real-world industrial environments, and ran on a PC with
Intel 4-core CPU, and 8 GB memory.

A. Case Study 1: Environmental Monitoring in a Building

As one of the most important industrial sensing appli-
cations, structural monitoring aims to guarantee the healthy
conditions of buildings, by deploying ambient sensors at the
specific assigned positions [8], [32]. Due to massive deploy-
ments, these sensors are usually low-cost low-end components
and typically do not provide reliability guarantee. Therefore,
anomaly detection is required to ensure the reliability of
overall sensing systems.

We constructed simulations based on a real data set ob-
tained from a building (the floor plan of which is illustrated in
Fig. 5) was performed. This data set contains of temperature
and humidity data from 72 sensors (with same sensing rate
of one reading per every 15 seconds) during one year (from
20/0ct/2008 to 19/0ct/2009). Due to the lack of ground-
truth-anomalous measurements, anomalies were simulated by
the two abnormal sensor behaviours: CONSTANT fault and
NOISE fault [33], [34]. To create discernable impacts on
sensor measurements, we simulated CONSTANT and NOISE
faults by increasing sensor readings by 20% and the back-
ground noises by 600%, respectively. Note that since SHORT
faults [33], [34] show similar short-term behaviours (i.e. a
sudden transients in sensor readings) to the other two types of
faults, and they are relatively easier to detect [34], we did not
include this type of faults in our simulation.

To measure the detection accuracy of GAD, we use two
different metrics, successful detection rate (SDR) and false-
positive detection rate (FPDR), which are defined as follows:

SDR — number of successful detections

number of anomalous measurements

FPDR — number of false detections

number of normal measurements
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Fig. 6. The performance of GAD with different grouping criteria in the build
structure monitoring application.

Also, to demonstrate the effectiveness of DMGA, two non-
standard GAD was performed on the same data set, including
the GAD that adopted a naive grouping algorithm (with which
sensors are randomly grouped) and the GAD without grouping
(where 72 sensors are regarded as a single group). Both
DMGA and naive grouping clustered the 72 sensors into 9
different groups consisting of 8 sensors.

As shown Fig 6(a) and (b), by using DMGA, GAD can
identify more than 95% anomalies with only around 0.4%
false-positives, which are much better than no-grouping (75%-—
85% SDR and 4%-— 4.6% FPDR) and naive grouping (61% —
81% SDR and 4% —4.6% FPDR). This is because naive group-
ing cannot provide spatiotemporal correlation guarantees, and
strongly spatial correlations do not exist between all the sen-
sors in the entire building. The lack of correlations resulted in
many unexpected false-positive events and erroneous devices.

B. Case Study 2: FDI Attack Detection in Smart Grids

Smart grids systems use information and communication
technology (ICT) to provide reliable and efficient electricity
transmission and distribution of power grids [3], [35]. Here,
sensors such as smart meters are connected via both power
lines and ICT infrastructure as shown in Fig. 7. However,
the heterogeneity, diversity, and complexity of the smart grid
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Fig. 7. The conceptual illustration of a smart grid system.
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Fig. 8. US smart grid topology.

components pose critical challenge in ensuring overall cyber
security [36]. Among various emerging security issues, false
data injection (FDI) attacks (i.e. maliciously modify sensor
readings) have a substantial cost in terms of the energy
distribution process [4]. To demonstrate how GAD can
minimize the impacts of FDI attacks, simulations based on a
simplified version of the US smart grid (as illustrated in Fig.
8 (http://www.oe.energy.gov/smartgrid.htm)) was conducted in
this subsection. In this set of simulations, each state contains
10 energy suppliers and 10 energy consumers to simulate
local energy generations and consumptions within the state.
Each of these suppliers/consumers contains generates 365
daily energy generation/consumption profiles to simulate the
annual behaviour of the smart-grid system. All these profiles
used in this simulation are based on 2009 US Energy Infor-
mation Administration State Electricity Profiles (available at
http://www.eia.gov/).

Two different types FDI attacks were considered in this
set of simulations: The first one aims to increase the metric
Costyorq; defined in [4] (i.e. the total energy transmission cost
over all power lines in the smart grid system). The demands
of the energy consumers were maliciously increased by 100%
and 200% while the supplies of the energy suppliers were
falsely decreases by 10% and 20%. The second one aim to
incur significant power-supply outage rate (i.e. the percentage
of outage states over all energy demanding states), by falsely
increasing the energy supply-demand value by 15% and 30%

in our simulations.

Fig. 9 shows the simulation results when applying our FDI-
detection approach and the state-of-the-art distanced-based
(DB) solution [16], [37] proposed in 2013. Both approaches
referenced the past 30 days data during evaluation (i.e. At =
30). Also, the user-defined parameters of DB solution was set
as r=0.5 and D=0.5 [37].

As shown in Fig. 9 (a) and (c), GAD can significantly
reduce the adverse impact caused by FDI attacks with nearly
zero false-positive detections. The total energy transmission
cost reduces from 6.35 to 5.21 million US dollars when
FDI-attack probability is 1%. In contrast, although the DB-
detection scheme achieves comparable cost reduction, it suf-
fers from extremely high false-positive detection rate. For
instance, when the FDI-attack probability is equal to 1%,
the DB-detection scheme treats about 40% correct advertised
energy supplying and demanding as FDI attacks. Such false-
positive detections would result in significant confusion in
decision making and would incur additional costs, such as
extra labour to understand the problem where the integrity of
the information is required to be checked manually.

Fig. 9 (b) and (c) show similar results to our observation in
the aforementioned simulation. GAD manages to reduce the
user outage rate from 40.5% to 18% with almost no false-
positive detections, while the distance-based solution suffered
from false alarms, especially when the attack probability is
1%. Furthermore, as shown in Fig. 9(d), GAD only introduces
about 15% additional computational overhead to the system,
while the DB-approach leads to more than 4000% additional
computational complexity, which demonstrate the high effi-
ciency of GAD.

VIII. CONCLUSION

In this paper, we propose GAD, a novel distributed real-
time approach for anomaly detection in general large-scale
networked industrial sensing systems. Unlike current anomaly-
detection approaches that make stringent assumptions about
physical phenomenon being sensed and anomaly models, GAD
assumes that spatiotemporal correlations exist in the physical
system and that measurement errors follow Gaussian distribu-
tions. Both are well-accepted assumptions and normally hold
true in practice. We prove the scalability and efficiency of
GAD, by computing its worst-case complexity bounds. The
performance of GAD is then evaluated using real data from
two industrial sensing systems: building structural monitoring
and smart grids. Simulation results demonstrate that GAD can
be used in different industrial sensing systems and outperforms
state-of-the-art approaches in terms of scalability, detection
accuracy, and efficiency.

APPENDIX

A. Proof of Part 1

We can write the overhead of the GAD algorithm for a
correlation group G as a|G|?, a > 0. To minimize computation
overhead of GAD, we have following problem
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Fig. 9. The performance of GAD in the smart grid FDI attack detection application.

min
Gell

ad (G (11)

GeG
subject to

Y IGI=18], |G| =N"" VGG (12)

GeG

Due to its convexity of the objective (11), it is clear to see
that the objective (11) is minimized when every group size
is identical and minimized (i.e. N™). DMGA achieves this
according to lines 1-10 of shown Fig. 2. Let Nt = |S]
mod N™" and N9 = [|S|/N™"|. Now the N"**! sensors
can be divided into K < N"¢%! subgroups. Denote I, as the
size of the kth subgroup, i.e. Y | pcp [ = N, where
each subgroup are inserted into a established group with size
N™in_We have the overall overhead of the GAD algorithm:

K
a((N‘] _ K)(Nmin)2 + Z(Nmin + Ik)2)

k=1
Obviously, (13) is minimized when I, = 1, Vk < K, which
is achieved by DMGA (Lines 11-14 shown in Fig. 2) (Il

(13)

B. Proof of Part 2

According to the distributed operations of DMGA, at
most two messages are transmitted over a hyper-link in each
hyper-correlation graph (i.e. a MA and a MR messages,

or a MA and a drop messages). For any correlation graph
G.(G™, L™, W"),0 < n < [logy N™in], we have the number
of groups |G"| < |S|/2" and the number of hyper links
IL"| = D|G"|/2 < D|S|/2"*!, where D is the degree of
G.(G*, LY, W), Therefore, the per sensor messages produced
by DMGA algorithm for all hyper correlation graphs is at most

logQNlnin

. = D|S
2 Y Lsi< Y 28 s = 2p

n=0 n=0

which is independent of |S]|. O

C. Proof of Part 3

Distributed matching at each hyper correlation graph can
achieve at least 1/2 of the total weights of the optimal
[30]. Since DMGA compute the distributed matching for
(log, [ N™*] hyper correlation graphs, at can achieve at least
1/N™n of the optimal. O
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