This Talk
» 1) Node embeddings v

= Map nodes to low-dimensional
embeddings.

= 2) Graph neural networks /

= Deep learning architectures for graph-
structured data

3) | | -t | @
Representation Learming on N snap.stanford.edu/proi/embeddinas-www.

etworks. snap WWW 2018




Part 3:

Applications
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Outline for This Section

= Recommender systems

= RW-GCNs: GraphSAGE-based model to make
recommendations to millions of users on
Pinterest.

= Computational biology

= Decagon: Predicting polypharmacy side-effects
with graph neural networks.

* Practical insights
= Code repos, useful frameworks, etc

= Future directions
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RW-GCNs:

Graph Convolutional

Networks for Web-Scale
Recommender Systems

Based on material from:
* Yingetal. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. Under Review.
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Bipartite Graph for
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Users “

= Graph is dynamic: need to apply to
new nodes without model retraining

= Rich node features: content, image



Graph Neural Nets for RecSys

= Two sources of information in
traditional recommender systems:

= Content features: User and item features,
In the form of images, categories etc.

= Network structure: User-item interactions,
in the form of graph/network structure.

= Graph neural networks naturally
iIncorporate both!!
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Application: Pinterest

Human curated collection of pins

Pins: Visual bookmarks someone
has saved fromthe intemet to a
lboard they’ve created.

Pin features: Image, text, link

eeeeeeeeee




Application: Pinterest

Task: Recommend related pins to users.

/ SUCCESSFUL

RECOMMENDATION

Source pin n

BAD RECOMMENDATION

Challenges:
= Massive size: 3 billion pins and boards, 16 billion interactions
= Heterogeneous data: Rich image and text features
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RVW-GCN Overview

= Random-Walk GCNs = RW-GCNs
= Architecture is an extension of GraphSAGE:

element-wise mean ®
.
TARGET NODE Oor max ‘/‘
2) —
INPUT GRAPH hgi ‘

multilayer perceptrons
(MLPs)
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Overview of RW-GCN

1.

Pipeline

Collect billions of training pairs from

user logs.

. Train system to generate similar

embeddings for training pairs.

. Generate embeddings for all pins.
. Make recommendations using

nearest neighbor search in the
embedding space (in real time).

etworks. snap.stanford.edu/proj/embeddinas-www, WWW 2018



RW-GCN Overview

= Train so that pins that are consecutively
clicked have similar embeddings.

= Max-margin loss:

Lo Ym0, L TE B
(u,v)EI / \
/ “margin” (i.e., how

set of training pairs “positive”/true  “negative” much larger positive

fromuserlogs  training pair ~ sample Pair similarity should
lbe compared to

negative)
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RW-GCN Efficiency

= 10,000X larger than any previous
graph neural network application.

= Key innovations:

1.

2.
3.

Sub-sample neighborhoods for
efficient GPU batching

Producer-consumer training pipeline

Curriculum learning for negative
samples

MapReduce for efficient inference
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Neighborhood Subsampling
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Neighborhood Subsampling
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Neighborhood Sulbsampling

= Random-walk-based neighborhood

= Approximates personalized PageRank
(PPR) score.

= Sampled neighborhood for a node is a
list of nodes with the top-K PPR score.

= Advantage:

= Algorithm finds the most relevant
nodes(item) for high degree nodes

tworks. snap.stanford.edu/proi/embeddinas-www. WWW 2018



Producer-consumer Pipeline

g Select a batch of pins CPU

~

(producer)
= Run random walks

= (Construct their computation graphs

\_ _/
4 . . )
= Multi-layer aggregations 5,
= | oss computation (consumer)
" Backprop )




Curriculum Learning

* |dea: use harder and harder negative
samples

* |nclude more and more hard negative
samples for each epoch
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MapReduce Inference

= How to efficiently infer representations on
nodes we have not seen during training time”?

= Key insight: avoid repeated computation by
sharing computation in MapReduce layers!

Context,
Item
Item, Visual —
It MLP First level
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RVW-GCN Performance

72% better recommendation

quality than standard GraphSAGE
model.

Key innovations:

1. Weigh importance of neighbors
according to approximate PPR score.

2. Use curriculum training to provide
harder and harder training examples
over time.




RVW-GCN Performance

Set-up: Rank true “next-clicked” pin against
10° other candidates.

Performance comparison in MRR

o
I

[ ] —
RW-GCN Visual Annotation

Mean Reciprocal Rank
o o o
= N w

o .

MRR: Mean reciprocal  Baselines: Deep
rank of true example content-based models
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—Xample Recommendations

Visual

RW-GCN

A

How to Grow
Swiss Chard
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Decagon:
A Graph Convolutional

Approach to
Polypharmacy Side Effects

Based on material from:
« /Jitnik et al. 2018. Modeling polypharmacy side effects with graph
convolutional networks. Bioinformatics & ISMEB.
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Polypharmacy Side Effects

Goal: Predict side effects of taking multiple drugs.

Individual medications Patient’s side effeca

@ ) nosicecfrect
4 ) Nosideeffect

Drug combination Polypharmacy side
effect

\‘ o0
..
a4%°.
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Polypharmacy Side Effects

Polypharmacy is common to treat complex
diseases and co-existing conditions

High risk of side effects due to interactions
15% of the U.S. population affected

Annual costs exceed $177 billion

Difficult to identify manually:
= Rare, occur only in a subset of patients
= Not observed in clinical testing
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Modeling Polypharmacy

= Systematic experimental screening of
drug interactions is challenging

* |dea: Computationally screen/predict
polypharmacy side effects

= Use molecular, pharmacological and patient
population data

* (Guide strategies for combination treatments
IN patients



Data: Heterogeneous Graphs

= =

Doxycycline Q /@ Simvastatin
r2 E r2

Ciprofloxacin (@ r, J@ Mupirocin

Drugs

Genes

ODrug © Gene H Feature vector
ry Gastrointestinal bleed effect O—O0 Drug target interaction
2 Bradycardia effect ©—O Physical protein binding
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Task Description

= Predict labeled edges between drugs
= i.e., predict the likelihood that an edge
(c, 1, 5) exists
= Meaning: Drug combination (¢, s)
leads to polypharmacy side effect r,

Simvastatin @
M2
Ciproﬂoxacirﬁ:?
O Drug © Gene E Feature vector 2 I
Iy Gastrointestinal bleed effect O—0O Drug target interaction Doxycycline d b
I'> Bradycardia effect ©—O Physical protein binding Mupirocin
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Neural Architecture; Encoder

. . ® el
Doxycycline Simvastatin T1 ©\~
r2 E r2 E h(k) I
Ciprofloxacin r1—® Mupirocin N;:]
1 Gastrointestinal bleed effect
E E hgkﬂ)
r,  Bradycardia effect
. oy (k)
= |nput: graph, additional node .Qggwt
features Q%%g. h{(? I
' Drug target relation
= Qutput: node embeddings
ODrug O Gene E Feature vector
r, Gastrointestinal bleed effect O—O Drug target interaction
I'2> Bradycardia effect O—O0 Physical protein binding
28
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Making Edge Predictions

Simvastatin polypharmacy

side effects
@ p(@a r1! @)

r
Ciprofloxacirfc%2 query
drug pair
r p(@ ’ r2! @)
p(©’ |'4, @)

2 r»] ZC

Doxycycline d b Mupirocin

= Input: Query drug pairs g P®, 15 ®)
and their embeddings

= Qutput: predicted edges

ODrug © Gene E Feature vector p(©, rm@)

r, Gastrointestinal bleed effect O—O Drug target interaction

I'2> Bradycardia effect O—O0 Physical protein binding
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—Xperimental Setup

= Data:

= Molecular: protein-protein interactions and drug
target relationships

= Patient data: Side effects of individual drugs,
polypharmacy side effects of drug combinations

= Setup:
= (Construct a heterogeneous graph of all the data

= TJrain: Fit a model to predict known associations of
drug pairs and polypharmacy side effects

= Test: Given a query drug pair, predict candidate
polypharmacy side effects
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Prediction Performance

' |AuROC  |AUPRC  |AP@50

Decagon (3-laver)  (0.834 0.776 0.731
Decagon (2-layer) 0.809 0.762 0.713
RESCAL 0.693 0.613 0.476
Node2vec 0.725 0.708 0.643
Drug features 0.736 0.722 0.679

= Up to 54% improvement over baselines

= First opportunity to computationally flag
polypharmacy side effects for follow-up analyses
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Practical Insights
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GraphSAG

— [ensorfFlow

—X.

= A quick example: Using
GraphSAGE for a supervised node
classification task.

= Key steps:

1. Preprocess network and training

data.

2. Run GraphSAGE



GraphSAGE TensorFlow Ex.

= Preprocessing

from networkx.readwrite import json_graph
import json
import numpy as np

Data = json_graph.node_link_data(G)

with open(‘data-G.json’) as f: Save graph

f.write(json.dumps(data))

class_map = {nodes[i]: labels[i] for i in range(len(nodes))}

with open(‘data-class_map.json’) as f: Save Iabels

f.write(json.dumps(data))

id_map = {nodes[i]: i for i in range(len(nodes))} Save nOdeS

with open(‘data-id_map.json’) as f:
f.write(json.dumps(data))

Save features

np.save(feats, ‘data-feats.npy’)
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GraphSAGE TensorFlow Ex.

= Example: PPl data (available in
GraphSAGE repo)

= Run both training and evaluation (random
split of data)

python -m graphsage.utils ppi-G.json ppi-walks.txt
python -m graphsage.supervised_train --train_prefix=./ --model=graphsage_mean

= Alternative models:
= gcn, graphsage_seq, graphsage_maxpool
= Fasy to customize using Tensorflow
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Future Directions
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(Sub)graph embedding

= EXxisting approaches

* Pool learned node embeddings via
element-wise max/mean/sum

= Add a “virtual” node representing the
entire (sub)graph

= |s there better pooling strategy?
» Handle massive graphs”
= | earn “coarsened” representations?
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Dynamic graphs

= Many graphs evolve over time:
= Recommender systems
* Financial transaction and event graphs
= Social networks

= Applications:
= Predict graph evolution
= Anomaly detection (e.g., fraud)



Dynamic graphs

= Challenges:

= How to efficiently and incrementally
update the learned representations?

= How to incorporate edge timing?
= How to “forget” old/irrelevant info?



Combinatorial Applications

= Efficient SAT solvers via graph
embeddings (Selsam et al., 2018).

= | earn embeddings of clause and
literals (form a bipartite graph

= Graph embeddings for
neural theorem proving?




Reinforcement Learning

= |dea: Allow agents to use node
embedding information to make

decisions
= So far: Used for combinatorial
optimization (Dai et al., 2017) and
question answering (Das et al., 2018)
= New directions:
= Game playing?
= Graph representations of dialogue state?
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Using Graph Neural Networks

= Popular Code Bases:

= GCN (Tensorflow):
https://github.com/tkipf/gcn/

= GraphSAGE (Tensorflow):
https://github.com/williamleif/ GraphSAGE

= GraphSAGE (PyTorch):
https://github.com/williamleif/graphsage-
simple/




This Talk
» 1) Node embeddings v

= Map nodes to low-dimensional
embeddings.

= 2) Graph neural networks /

= Deep learning architectures for graph-
structured data

= 3) Applications ‘/
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