This Talk

■ 1) Node embeddings

- Map nodes to low-dimensional embeddings.
- 2) Graph neural networks

- Deep learning architectures for graphstructured data
- 3) Applications 😴

Part 3: Applications

Outline for This Section

Recommender systems

 RW-GCNs: GraphSAGE-based model to make recommendations to millions of users on Pinterest.

Computational biology

 Decagon: Predicting polypharmacy side-effects with graph neural networks.

Practical insights

Code repos, useful frameworks, etc

Future directions

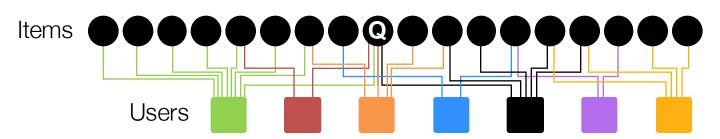
RW-GCNs:

Graph Convolutional Networks for Web-Scale Recommender Systems

Based on material from:

 Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. Under Review.

Bipartite Graph for RecSys



- Graph is dynamic: need to apply to new nodes without model retraining
- Rich node features: content, image

Graph Neural Nets for RecSys

- Two sources of information in traditional recommender systems:
 - Content features: User and item features, in the form of images, categories etc.
 - Network structure: User-item interactions, in the form of graph/network structure.
- Graph neural networks naturally incorporate both!!

Application: Pinterest

Human curated collection of pins

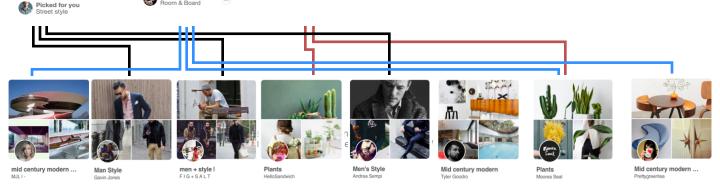
Very ape blue structured coat

Hans Wegner chair

image for thoughts.
Yay or nay, your choice.

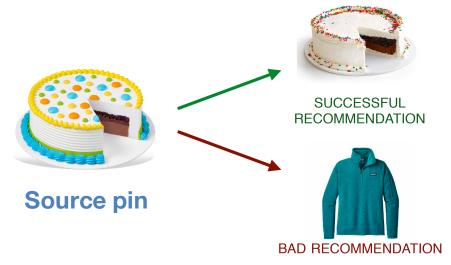
Pins: Visual bookmarks someone has saved from the internet to a board they've created.

Pin features: Image, text, link



Application: Pinterest

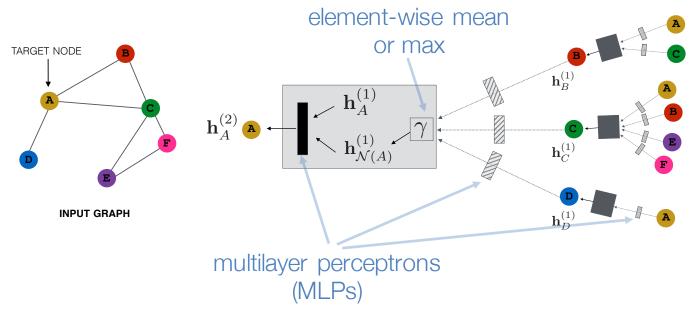
Task: Recommend related pins to users.



- Challenges:
 - Massive size: 3 billion pins and boards, 16 billion interactions
 - Heterogeneous data: Rich image and text features

RW-GCN Overview

- Random-Walk GCNs = RW-GCNs
- Architecture is an extension of GraphSAGE:

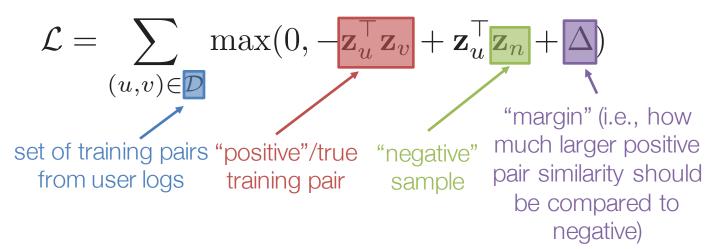


Overview of RW-GCN Pipeline

- 1. Collect billions of training pairs from user logs.
- 2. **Train** system to generate similar embeddings for training pairs.
- 3. Generate embeddings for all pins.
- 4. Make recommendations using nearest neighbor search in the embedding space (in real time).

RW-GCN Overview

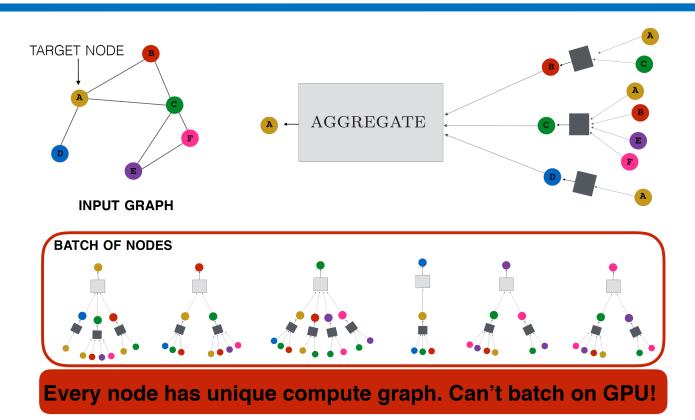
- Train so that pins that are consecutively clicked have similar embeddings.
- Max-margin loss:



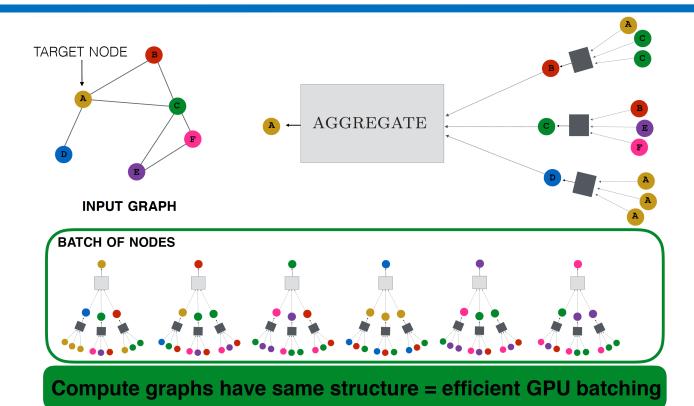
RW-GCN Efficiency

- 10,000X larger than any previous graph neural network application.
- Key innovations:
 - 1. Sub-sample neighborhoods for efficient GPU batching
 - 2. Producer-consumer training pipeline
 - 3. Curriculum learning for negative samples
 - 4. MapReduce for efficient inference

Neighborhood Subsampling



Neighborhood Subsampling



Neighborhood Subsampling

- Random-walk-based neighborhood
 - Approximates personalized PageRank (PPR) score.
 - Sampled neighborhood for a node is a list of nodes with the top-K PPR score.

Advantage:

 Algorithm finds the most relevant nodes(item) for high degree nodes

Producer-consumer Pipeline

Select a batch of pins

CPU (producer)

- Run random walks
- Construct their computation graphs

- Multi-layer aggregations
- Loss computation
- Backprop

GPU (consumer)

Curriculum Learning

- Idea: use harder and harder negative samples
- Include more and more hard negative samples for each epoch

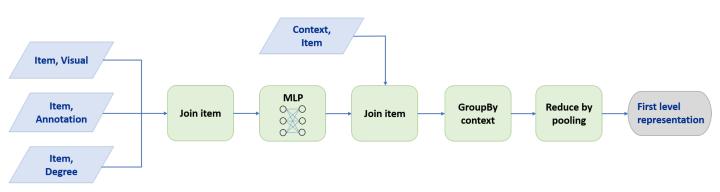
Source pin

Positive

Easy negative Hard negative

MapReduce Inference

- How to efficiently infer representations on nodes we have not seen during training time?
- Key insight: avoid repeated computation by sharing computation in MapReduce layers!

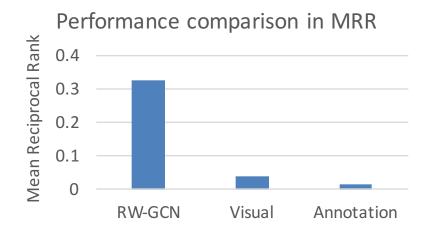


RW-GCN Performance

- 72% better recommendation quality than standard GraphSAGE model.
- Key innovations:
 - 1. Weigh importance of neighbors according to approximate PPR score.
 - 2. Use curriculum training to provide harder and harder training examples over time.

RW-GCN Performance

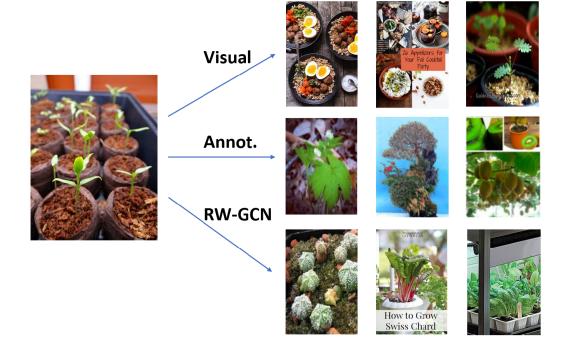
Set-up: Rank true "next-clicked" pin against 10⁹ other candidates.



MRR: Mean reciprocal rank of true example.

Baselines: Deep content-based models

Example Recommendations



Decagon:

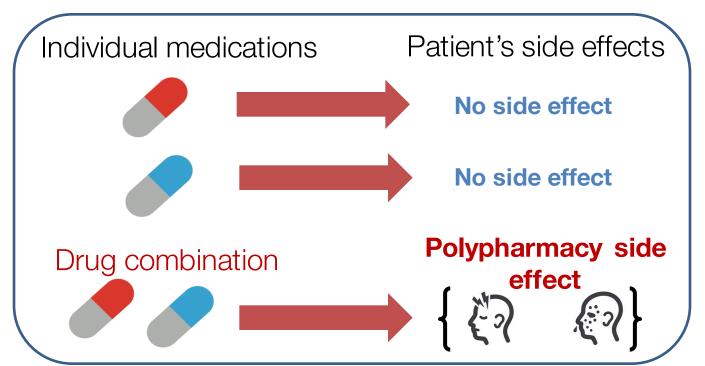
A Graph Convolutional Approach to Polypharmacy Side Effects

Based on material from:

Zitnik et al. 2018. <u>Modeling polypharmacy side effects with graph convolutional networks</u>. *Bioinformatics & ISMB*.

Polypharmacy Side Effects

Goal: Predict side effects of taking multiple drugs.



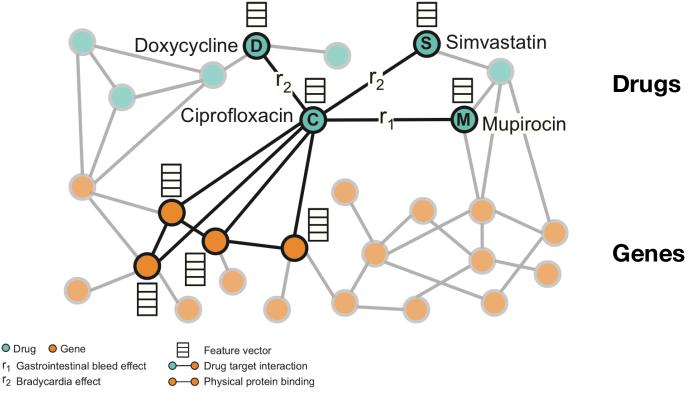
Polypharmacy Side Effects

- Polypharmacy is common to treat complex diseases and co-existing conditions
- High risk of side effects due to interactions
- 15% of the U.S. population affected
- Annual costs exceed \$177 billion
- Difficult to identify manually:
 - Rare, occur only in a subset of patients
 - Not observed in clinical testing

Modeling Polypharmacy

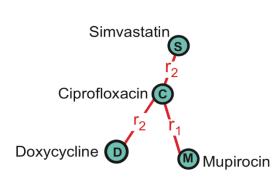
- Systematic experimental screening of drug interactions is challenging
- Idea: Computationally screen/predict polypharmacy side effects
 - Use molecular, pharmacological and patient population data
 - Guide strategies for combination treatments in patients

Data: Heterogeneous Graphs



Task Description

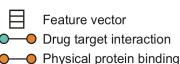
- Predict labeled edges between drugs
 - i.e., predict the likelihood that an edge (c, r_2, s) exists
- Meaning: Drug combination (c, s) leads to polypharmacy side effect r_2



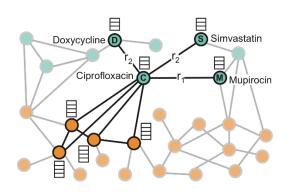
O Drug O Gene

r₁ Gastrointestinal bleed effect

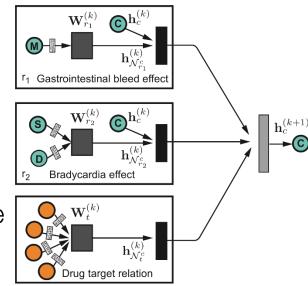
r₂ Bradycardia effect



Neural Architecture: Encoder



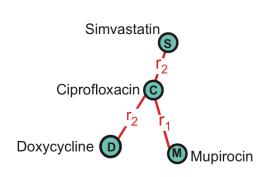
- Input: graph, additional node features
- Output: node embeddings



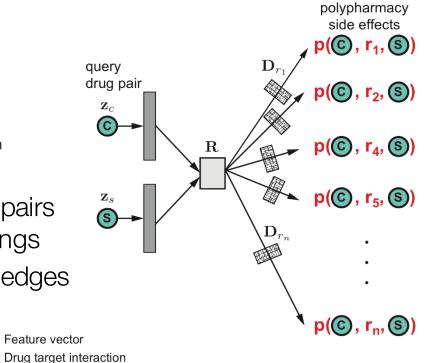
- Drug
- Gene
- r₁ Gastrointestinal bleed effect
- r₂ Bradycardia effect

- Feature vector
- Drug target interaction
- Physical protein binding

Making Edge Predictions



- Input: Query drug pairs and their embeddings
- Output: predicted edges



- O Drug O Gene
- r₁ Gastrointestinal bleed effect
- r₂ Bradycardia effect

Physical protein binding

Experimental Setup

Data:

- Molecular: protein-protein interactions and drug target relationships
- Patient data: Side effects of individual drugs, polypharmacy side effects of drug combinations

Setup:

- Construct a heterogeneous graph of all the data
- Train: Fit a model to predict known associations of drug pairs and polypharmacy side effects
- Test: Given a query drug pair, predict candidate polypharmacy side effects

Prediction Performance

	AUROC	AUPRC	AP@50
Decagon (3-layer)	0.834	0.776	0.731
Decagon (2-layer)	0.809	0.762	0.713
RESCAL	0.693	0.613	0.476
Node2vec	0.725	0.708	0.643
Drug features	0.736	0.722	0.679

- Up to 54% improvement over baselines
- First opportunity to computationally flag polypharmacy side effects for follow-up analyses

Practical Insights

GraphSAGE TensorFlow Ex.

- A quick example: Using GraphSAGE for a supervised node classification task.
- Key steps:
 - 1. Preprocess network and training data.
 - 2. Run GraphSAGE

GraphSAGE TensorFlow Ex.

Preprocessing

```
from networkx.readwrite import json graph
import json
import numpy as np
Data = json graph.node link data(G)
                                        Save graph
with open('data-G.json') as f:
   f.write(json.dumps(data))
class map = {nodes[i]: labels[i] for i in range(len(nodes))}
with open('data-class map.json') as f:
                                                           Save labels
   f.write(json.dumps(data))
id map = {nodes[i]: i for i in range(len(nodes))}
                                                           Save nodes
with open('data-id map.json') as f:
   f.write(json.dumps(data))
                                                           Save features
np.save(feats, 'data-feats.npy')
```

GraphSAGE TensorFlow Ex.

Example: PPI data (available in GraphSAGE repo)

 Run both training and evaluation (random split of data)

```
python -m graphsage.utils ppi-G.json ppi-walks.txt
python -m graphsage.supervised_train --train_prefix=./ --model=graphsage_mean
```

- Alternative models:
 - gcn, graphsage_seq, graphsage_maxpool
- Easy to customize using Tensorflow

Future Directions

(Sub)graph embedding

- Existing approaches
 - Pool learned node embeddings via element-wise max/mean/sum
 - Add a "virtual" node representing the entire (sub)graph
- Is there better pooling strategy?
 - Handle massive graphs?
 - Learn "coarsened" representations?

Dynamic graphs

- Many graphs evolve over time:
 - Recommender systems
 - Financial transaction and event graphs
 - Social networks
- Applications:
 - Predict graph evolution
 - Anomaly detection (e.g., fraud)

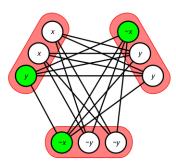
Dynamic graphs

Challenges:

- How to efficiently and incrementally update the learned representations?
- How to incorporate edge timing?
- How to "forget" old/irrelevant info?

Combinatorial Applications

- Efficient SAT solvers via graph embeddings (<u>Selsam et al., 2018</u>).
- Learn embeddings of clause and literals (form a bipartite graph
- Graph embeddings for neural theorem proving?



Reinforcement Learning

- Idea: Allow agents to use node embedding information to make decisions
- So far: Used for combinatorial optimization (<u>Dai et al., 2017</u>) and question answering (<u>Das et al., 2018</u>)
- New directions:
 - Game playing?
 - Graph representations of dialogue state?

Using Graph Neural Networks

Popular Code Bases:

- GCN (Tensorflow): https://github.com/tkipf/gcn/
- GraphSAGE (Tensorflow):
 https://github.com/williamleif/GraphSAGE
- GraphSAGE (PyTorch): <u>https://github.com/williamleif/graphsage-simple/</u>

This Talk

■ 1) Node embeddings

Map nodes to low-dimensional embeddings.

- Deep learning architectures for graphstructured data
- 3) Applications ✓