
This Talk
§ 1) Node embeddings

§ Map nodes to low-dimensional 
embeddings.

§ 2) Graph neural networks
§ Deep learning architectures for graph-

structured data

§ 3) Applications
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Part 2: 
Graph Neural 

Networks
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Embedding Nodes
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• Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the original network.  



Embedding Nodes
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similarity(u, v) ⇡ z>v zuGoal:

Need to define!



Two Key Components
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§ Encoder maps each node to a low-
dimensional vector.

§ Similarity function specifies how relationships 
in vector space map to relationships in the 
original network. 

enc(v) = zv
node in the input graph

d-dimensional 
embedding

Similarity of u and v in 
the original network

dot product between node 
embeddings

similarity(u, v) ⇡ z>v zu



From “Shallow” to “Deep”
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§ So far we have focused on “shallow” 
encoders, i.e. embedding lookups:

Z = Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node



From “Shallow” to “Deep”
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§ Limitations of shallow encoding:
§ O(|V|) parameters are needed: there no 

parameter sharing and every node has its 
own unique embedding vector.  

§ Inherently “transductive”: It is 
impossible to generate embeddings for 
nodes that were not seen during training.

§ Do not incorporate node features: 
Many graphs have features that we can 
and should leverage.



From “Shallow” to “Deep”
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§ We will now discuss “deeper” methods 
based on graph neural networks.

§ In general, all of these more complex 
encoders can be combined with the 
similarity functions from the previous 
section.

enc(v) = complex function that 
depends on graph structure.



Outline for this Section
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§ We will now discuss “deeper” methods 
based on graph neural networks.
1. The Basics
2. Graph Convolutional Networks (GCNs)
3. GraphSAGE
4. Gated Graph Neural Networks
5. Subgraph Embeddings
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The Basics: Graph Neural 
Networks
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Based on material from:
• Hamilton et al. 2017. Representation Learning on Graphs: Methods 

and Applications. IEEE Data Engineering Bulletin on Graph Systems.
• Scarselli et al. 2005. The Graph Neural Network Model. IEEE 

Transactions on Neural Networks. 



Setup
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§ Assume we have a graph G:
§ V is the vertex set.
§ A is the adjacency matrix (assume binary).
§ X	∈ R𝒎×|𝑽| is a matrix of node features.

§ Categorical attributes, text, image data
– E.g., profile information in a social network.

§ Node degrees, clustering coefficients, etc.
§ Indicator vectors (i.e., one-hot encoding of 

each node)



Neighborhood Aggregation
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§ Key idea: Generate node embeddings
based on local neighborhoods. 
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Neighborhood Aggregation
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§ Intuition: Nodes aggregate information 
from their neighbors using neural networks
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Neighborhood Aggregation
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§ Intuition: Network neighborhood defines 
a computation graph
Every node defines a unique 

computation graph!



Neighborhood Aggregation
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§ Nodes have embeddings at each layer.
§ Model can be arbitrary depth.
§ “layer-0” embedding of node u is its input feature, i.e. xu.
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Neighborhood “Convolutions”
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§ Neighborhood aggregation can be 
viewed as a center-surround filter.

§ Mathematically related to spectral graph 
convolutions (see Bronstein et al., 2017)
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what’s in the box!?

§ Key distinctions are in how different 
approaches aggregate information across 
the layers.



Neighborhood Aggregation
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§ Basic approach: Average neighbor 
information and apply a neural network.

1) average messages 
from neighbors 

2) apply neural network



average of neighbor’s 
previous layer embeddings

The Math
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§ Basic approach: Average neighbor messages 
and apply a neural network.

Initial “layer 0” embeddings are 
equal to node features

kth layer 
embedding 

of v
non-linearity (e.g., 

ReLU or tanh)

previous layer 
embedding of vh0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k > 0



Training the Model
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zA

Need to define a loss function 
on the embeddings, L(zu)!

§ How do we train the model to generate 
“high-quality” embeddings?



Training the Model
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§ After K-layers of neighborhood aggregation, 
we get output embeddings for each node.

§ We can feed these embeddings into any 
loss function and run stochastic gradient 
descent to train the aggregation parameters. 

trainable matrices 
(i.e., what we learn) h0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v
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§ Train in an unsupervised manner using only 
the graph structure.

§ Unsupervised loss function can be anything 
from the last section, e.g., based on
§ Random walks (node2vec, DeepWalk)
§ Graph factorization
§ i.e., train the model so that “similar” nodes have 

similar embeddings.



Training the Model
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§ Alternative: Directly train the model for a 
supervised task (e.g., node classification):

Human or 
bot?

Human or 
bot?

e.g., an online social 
network 



Training the Model
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§ Alternative: Directly train the model for a 
supervised task (e.g., node classification):

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))

output node 
embedding

classification 
weights

node class label

Human or 
bot?



Overview of Model Design
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1) Define a neighborhood 
aggregation function.

zA

2) Define a loss function on 
the embeddings, L(zu)



Overview of Model Design
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3) Train on a set of nodes, i.e., a 
batch of compute graphs



Overview of Model
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4) Generate embeddings for 
nodes as needed

Even for nodes we never 
trained on!!!!



Inductive Capability
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§ The same aggregation parameters are 
shared for all nodes.

§ The number of model parameters is 
sublinear in |V|	and we can generalize to 
unseen nodes!



Inductive Capability
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Inductive node embedding          generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and 
generate embeddings on newly collected data about organism B

train on one graph generalize to new graph

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

zu



Inductive Capability
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train with snapshot new node arrives
generate embedding 
for new node

Many application settings constantly encounter previously unseen nodes.
e.g., Reddit, YouTube, GoogleScholar, ….

Need to generate new embeddings “on the fly”

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

zu



Quick Recap
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§ Recap: Generate node embeddings by 
aggregating neighborhood information.
§ Allows for parameter sharing in the encoder.
§ Allows for inductive learning.

§ We saw a basic variant of this idea…
now we will cover some state of the art 
variants from the literature. 



Neighborhood Aggregation
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What else can we put 
in the box?

§ Key distinctions are in how different 
approaches aggregate messages



Outline for this Section
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1. The Basics
2. Graph Convolutional Networks
3. GraphSAGE
4. Gated Graph Neural Networks
5. Subgraph Embeddings
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Graph Convolutional 
Networks

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Kipf et al., 2017. Semisupervised Classification with Graph Convolutional 

Networks. ICLR.



Graph Convolutional Networks
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§ Kipf et al.’s Graph Convolutional 
Networks (GCNs) are a slight variation 
on the neighborhood aggregation idea:

hk
v = �

0

@Wk

X

u2N(v)[v
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up
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1

A



Graph Convolutional Networks
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same matrix for self and 
neighbor embeddings

per-neighbor normalization
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Basic Neighborhood Aggregation

GCN Neighborhood Aggregation
VS.



Graph Convolutional Networks
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§ Empirically, they found this configuration to 
give the best results. 
§ More parameter sharing.
§ Down-weights high degree neighbors.

use the same transformation 
matrix for self and neighbor 

embeddings

instead of simple average, 
normalization varies across 

neighbors
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Batch Implementation
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§ Can be efficiently implemented using 
sparse batch operations:

§ O(|E|)	time complexity overall. 

H
(k+1) = �

⇣
D

� 1
2 ÃD

� 1
2H

(k)
Wk

⌘

Ã = A+ I

Dii =
X

j

Ai,j

where



Outline for this Section
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1. The Basics
2. Graph Convolutional Networks
3. GraphSAGE
4. Gated Graph Neural Networks
5. Subgraph Embeddings
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GraphSAGE

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. 

NIPS.



GraphSAGE Idea
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§ So far we have aggregated the neighbor 
messages by taking their (weighted) 
average, can we do better?
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GraphSAGE Idea
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hk
v = �

�⇥
Ak · agg({hk�1

u , 8u 2 N(v)}),Bkh
k�1
v

⇤�

Any differentiable function 
that maps set of vectors to a 

single vector.



§ Simple neighborhood aggregation:

§ GraphSAGE:

GraphSAGE Differences
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generalized aggregation

concatenate self embedding and 
neighbor embedding 
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GraphSAGE Variants
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§ Mean:

§ Pool
§ Transform neighbor vectors and apply symmetric 

vector function.

§ LSTM:
§ Apply LSTM to random permutation of neighbors.

agg =
X

u2N(v)

hk�1
u

|N(v)|

agg = �
�
{Qhk�1

u , 8u 2 N(v)}
�

agg = LSTM
�
[hk�1

u , 8u 2 ⇡(N(v))]
�

element-wise mean/max



Outline for this Section
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1. The Basics
2. Graph Convolutional Networks
3. GraphSAGE
4. Gated Graph Neural Networks
5. Subgraph Embeddings
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Gated Graph Neural 
Networks

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Li et al., 2016. Gated Graph Sequence Neural Networks. ICLR.



Neighborhood Aggregation
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§ Basic idea: Nodes aggregate “messages” 
from their neighbors using neural networks
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Neighborhood Aggregation
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§ GCNs and GraphSAGE generally only  
2-3 layers deep.
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Neighborhood Aggregation
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§ But what if we want to go deeper?
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Gated Graph Neural Networks
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§ How can we build models with many 
layers of neighborhood aggregation?

§ Challenges:
§ Overfitting from too many parameters.
§ Vanishing/exploding gradients during 

backpropagation. 
§ Idea: Use techniques from modern 

recurrent neural networks! 
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Gated Graph Neural Networks
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§ Idea 1: Parameter sharing across layers.
same neural network 

across layers



Gated Graph Neural Networks
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§ Idea 2: Recurrent state update.

RNN module
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aggregation function 
does not depend on k

§ Intuition: Neighborhood aggregation 
with RNN state update.
1. Get “message” from neighbors at step k:

2. Update node “state” using Gated Recurrent 
Unit (GRU). New node state depends on the 
old state and the message from neighbors:

mk
v = W

X

u2N(v)

hk�1
u

The Math

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 53

hk
v = GRU(hk�1

v ,mk
v)



Gated Graph Neural Networks
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§ Can handle models with >20 layers.
§ Most real-world networks have small diameters 

(e.g., less than 7).
§ Allows for complex information about global graph 

structure to be propagated to all nodes.

RNN module
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Gated Graph Neural Networks
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§ Useful for complex networks 
representing:
§ Logical formulas.
§ Programs.

RNN module
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1. The Basics
2. Graph Convolutional Networks
3. GraphSAGE
4. Gated Graph Neural Networks
5. Subgraph Embeddings



Summary so far
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§ Key idea: Generate node embeddings
based on local neighborhoods. 
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Summary so far
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§ Graph convolutional networks
§ Average neighborhood information and 

stack neural networks.
§ GraphSAGE

§ Generalized neighborhood aggregation.
§ Gated Graph Neural Networks

§ Neighborhood aggregation + RNNs



Recent advances in graph neural nets
(not covered in detail here)
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§ Attention-based neighborhood aggregation:
§ Graph Attention Networks (Velickovic et al., 2018)
§ GeniePath (Liu et al., 2018)

§ Generalizations based on spectral convolutions:
§ Geometric Deep Learning (Bronstein et al., 2017)
§ Mixture Model CNNs (Monti et al., 2017)

§ Speed improvements via subsampling:
§ FastGCNs (Chen et al., 2018)
§ Stochastic GCNs (Chen et al., 2017)



Outline for this Section
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1. The Basics
2. Graph Convolutional Networks
3. GraphSAGE
4. Gated Graph Neural Networks
5. Subgraph Embeddings
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Subgraph Embeddings

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Based on material from:
• Duvenaud et al. 2016. Convolutional Networks on Graphs for 

Learning Molecular Fingerprints. ICML.
• Li et al. 2016. Gated Graph Sequence Neural Networks. ICLR.



(Sub)graph Embeddings
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§ So far we have focused on node-
level embeddings…



(Sub)graph Embeddings
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§ But what about subgraph
embeddings?



Approach 1
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§ Simple idea: Just sum (or average) the 
node embeddings in the (sub)graph

§ Used by Duvenaud et al., 2016 to 
classify molecules based on their graph 
structure.

zS =
X

v2S

zv



Approach 2
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§ Idea: Introduce a “virtual node” to 
represent the subgraph and run a standard 
graph neural network.

§ Proposed by Li et al., 2016 as a general 
technique for subgraph embedding.



(Sub)graph Embeddings
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§ Still an open research area!
§ How to embed (sub)graphs with millions or 

billions of nodes?
§ How to do analogue of CNN “pooling” on 

networks?


