This Talk
= 1) Node embeddings L)

= Map nodes to low-dimensional
embeddings.

= 2) Graph neural networks

= Deep learning architectures for graph-
structured data

= 3) Applications
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Part 1:

Node Embeddings
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—mbedding Nodes
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Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.
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Setup

= Assume we have a graph G:
= Vis the vertex set.
= A is the adjacency matrix (assume binary).

= No node features or extra information
IS used!
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—mbedding Nodes

« Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the original network.
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—mbedding Nodes

Goal: similarity(u, v) ~ z, z,

AN

Need to define!

original network embedding space
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Learning Node Embeddings

1. Define an encoder (i.e., a mapping
from nodes to embeddings)

2. Define a node similarity function
(i.e., a measure of similarity in the
original network).

3. Optimize the parameters of the
encoder so that:
-

similarity(u, v) ~ z, 2z,

i Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Two Key Components

: maps each node to a low-

dimensional vector. | |
d-dimensional

ENC(v) =z, embedding
node in thefinput graph
= Similarity function specifies how relationships
INn vector space map to relationships in the
original network.

/Similarity(u, V) & ZTZ%,,
Similarity of uand vin dot product between node

the original network embeddings
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“Shallow” Encoding

= Simplest encoding approach: encoder
Is Just an embedding-lookup

ENC(v) = Zv

Z Rdx |V| matrix, each column is node
< embedding [what we learn!]

velV
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“Shallow” Encoding

= Simplest encoding approach: encoder
Is Just an embedding-lookup

embedding vector for a

embedding specific node
Dimension/size
Z - ~ of embeddings
\ )
|

one column per node
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“Shallow”

—Ncoding

= Simplest encoding approach: encoder
Is Just an embedding-lookup.

l.e., each node is assigned a unique
embedding vector.

= £.g., node2vec, DeepWalk, LINE



“Shallow” Encoding

= Simplest encoding approach: encoder
Is Just an embedding-lookup.

= We will focus on shallow encoding
in this section...

= After the break we will discuss more
encoders based on deep neural
networks.
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How to Define Node Similarity*?

= Key distinction between “shallow”
methods is how they define node
similarity.

= E.g., should two nodes have similar
embeddings if they....

= are connected?
share neighbors?

have similar “structural roles”?
= 2
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Outline of This Section

1. Adjacency-based similarity
2. Multi-nop similarity
3. Random walk approaches

High-level structure and material from:

« Hamilton et al. 2017. Representation Learning on Graphs:
Methods and Applications. IEEE Data Engineering Bulletin
on Graph Systems.




Adjacency-based Similarity

Material based on:
Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization.
WWww.
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Adjacency-based Similarity

« Similarity function is just the edge weight
between u and vin the original network.

 Intuition: Dot products between node
embeddings approximate edge existence.

L= )  llzgzd— ALl
/ (u,v)EV XV \ \

loss (what we embedding

want to minimize) similarity I(vve|ghted) .
adjacency matrix

for the graph
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Adjacency-based Similarity

L= ) lz4z0— Ayl
(u,v)eV XV

» Find embedding matrix Z € R4*Vlthat
minimizes the loss £

Option 1: Use stochastic gradient descent (SGD)
as a general optimization method.

« Highly scalable, general approach
Option 2: Solve matrix decomposition solvers (e.g.,
SVD or QR decomposition routines).

* Only works in limited cases.
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Adjacency-based Similarity

L= ) lzeze—Aul?

(u,v)EV XV
= Drawbacks:

= O(]V|?) runtime. (Must consider all node pairs.)

= Can make O([E|) by only summing over non-zero edges
and using regularization (e.g., Ahmed et al., 2013)

= O(]V]) parameters! (One learned vector per node).
= Only considers direct, local connections.
/’ e.g., the blue node is obviously more

v /l> similar to green compared to red node,
\

despite none having direct connections.
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Multi-hop Similarity

Material based on:

« Caoetal. 2015. GraRep: Leaing Graph Representations with Global
Structural Information. C/KM.

«  Quetal. 2016. Asymmetric Transitivity Presening Graph Embedding. KDD.
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Multi-hop Similarity

* ldea: Consider k-hop node neighbors.
= E.g., two or three-hop neighbors.

* Red: Target node
: 1-hop neighbors
* Af.e., adjacency matrix)
* Blue: 2-hop neighbors
e A2
*  Purple: 3-hop neighbors
° A3




Multi-hop Similarity

‘ 2

" Basicidea: £= Y |z]z, — A},
(u,v)eV XV

= Train embeddings to predict k-hop neighbors.

= |n practice (GraRep from Cao et al, 2015):

= Use log-transformed, probabilistic adjacency matrix:

~ 2] ' k
A7, = max <log (Zlé(j(ziﬂdz)k) E OKO>

node degree constant shift
= Train multiple different hop lengths and concatenate output.

21
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Multi-hop Similarity

= Another option: Measure overlap
between node neighborhoods.

= Example overlap functions:
= Jaccard similarity
= Adamic-Adar score
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Multi-hop Sim

L = Z |z, Z, —

\
(u,0)EV X V/multi—hop ne

twork similarity

embedding
similarity

larity

Su,v

|

(i.e., any neighborhood
overlap measure)

= S, is the neighborhood overlap between
u and v(e.qg., Jaccard overlap or Adamic-

Adar score).

= This technigue is known as HOPE (Yan et

al., 2016).
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Summary so far

= Basic idea so far:

1) Define pairwise node similarities.

2) Optimize low-dimensional embeddings to
approximate these pairwise similarities.

= |SsSues:

Expensive: Generally O(|V|?), since we need to
iterate over all pairs of nodes.

Brittle: Must hand-design deterministic node
similarity measures.

Massive parameter space: O(|V|) parameters
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Random Walk Approaches

Material based on:

«  Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations.
KDD.

«  Grover et al. 2016. node2vec: Scalable Feature Learning for Networks.
KDD.
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Random-walk Embeddings

probability that u
ZTZ ~~ and v Cco-occuron
U U
a random walk over
the network



Random-walk Embeddings

Estimate probability of visiting
node v on a random walk
starting from node u using

some random walk strategy R. >

Optimize embeddings to
encode these random walk
statistics.
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Why Random Walks"

1. EXxpressivity: Flexible stochastic
definition of node similarity that
iIncorporates both local and higher-
order neighborhood information.

2. Efficiency: Do not need to consider
all node pairs when training; only
need to consider pairs that co-occur
on random walks.
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Random Walk Optimization

1. Run short random walks starting from each
node on the graph using some strategy R.

2. For each node u collect Ny(u), the multiset’
of nodes visited on random walks starting
from u.

3. Optimize embeddings to according to:

L= > —log(P(v|z.))

ueV veNR(u)

* Ngz(u) can have repeat elements since nodes can be visited
multiple tlmes on random Walks
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Random Walk Optimization

L = Z Z —log(P(v|zy))

ueV UENR(U>

* Intuition: Optimize embeddings to maximize
likelihood of random walk co-occurrences.

- Parameterize P(v| z,) using softmax:

-
Polz,) = exp(z,, Zy)

B ZnEV exp(zgzn)
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Putting things together:

L =

2

ueV

sum over all
nodes u

Z —log(

vENR(u)

Random Walk Optimization

TS

C exp(z,Z,) )
\ ZnEV eXp(ZIZn) /
‘

predicted probability of
and v co-occuring on
random walk

Optimizing random walk embeddings =

Finding embeddings z, that minimize L

tworks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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Random Walk Optimization

But doing this naively is too expensive!!

L= % _log<2 exp(z, Zv) )

=
EXP\Z,, Z
ueV veNR(u) neV p( u n)

\/

Nested sum over nodes
gives O(|V|?) complexity!!
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Random Walk Optimization

But doing this naively is too expensive!!

I I )

ueV veNR(u)

The normalization term from the softmax is
the culprit... can we approximate it?
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Negative Sampling

Solution: Negative sampling

10g< eXp(ZTZv) )
Znevexp( n)
~ log(o z Zy)) Zlog z Zn.)),n; ~ Py
e

random distribution
over all nodes

l.e., Instead of normalizing w.r.t. all nodes, just

normalize against k random “negative samples”
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Negative Sampling

-

exp(z, z
p( v> ) random distribution
”) over all nodes

log (
Znev eXp(
N,
~ log(o z Zy)) Zlog z Zn,)),n; ~ Py

= Sample negative nodes proportional to degree.
= Two considerations for k (# negative samples):

1. Higher k gives more robust estimates.
2. Higher k corresponds to higher prior on negative events.
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Random Walks: Stepping Back

1.

Run short random walks starting from each
node on the graph using some strategy R.

For each node u collect Ng(u), the multiset of
nodes visited on random walks starting from u.

Optimize embeddings to according to:

L= ) —log(P(vlz.))

ueV veENRg(u)
We can efficiently approximate this
usmg negatlve sampllng'
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How should we randomly walk??

» 50 far we have described how to optimize
embeddings given random walk statistics.

» What strategies should we use to run
these random walks?

= Simplest idea: Just run fixed-length, unbiased
random walks starting from each node (i.c.,
DeepWalk from Perozzi et al., 2013).

= But can we do better?
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node?2vec: Blased \Walks

Idea: use flexible, biased random walks
that can trade off between local and

global views of the network (Grover and
Leskovec, 20106).




node2vec:

Slased Walks

Two classic strategies to define a
neighborhood N (u) of a given node u:

Nprs(u) = { s1, 2,53}

LLocal microscopic view

Npps(u) = {s4,55,5,}  Global macroscopic view
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Interpolating BFS and DFS

Biased random walk R that given a node
u generates neighborhood Ny (u)

= [woO parameters:

= Return parameter p:
= Return back to the previous node

* |n-out parameter q:
= Moving outwards (DFS) vs. inwards (BFS)
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Slased

Random Walks

Biased 2"d-order random walks explore
network neighborhoods:
= Rnd. walk started at u and is now at w
* Insight: Neighbors of w can only be:

Same distanceto u

Farther from u

Closertou

Idea: Remember where that walk came from

Representation Leam
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Slased

Random Walks

= Walker is at w. Where to go next?

1/p,1/q,1 are
unnormalized
probabilities

= p,q model transition probabilities

= p ... return parameter
" q. vvalk avvay parameter
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Slased

Random Walks

= Walker is at w. Where to go next?

1/p
1

1/q

= BFS-like walk: Low value of p /
= DFS-like walk: Low value of ¢ it

N¢(u) are the nodes visited by the

Representation Leaming on Ne
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BFS:
Micro-view of
neighlbbourhood

BFS vs. DFS

DFS:
Macro-view of
neighbbourhood
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=Xxperiments: Micro vs. Macro

Interactions of characters in a novel:

Microscopic view of the
network neighbourhood

p=1, g=0.5
Macroscopic view of the
network neighbourhood
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Other random walk ideas
(not covered in detail here)

Different kinds of biased random walks:
= Based on node attributes (Dong et al., 2017).
= Based on a learned weights (Abu-El-Haija et al., 2017)

Alternative optimization schemes:
= Directly optimize based on 1-hop and 2-hop random
walk probabilities (as in LINE from Tang et al. 2015).
Network preprocessing techniques:

= Run random walks on modified versions of the original
network (e.g., Ribeiro et al. 2017’s struct?2vec, Chen et
al. 2016’s HARP).

Representation Leaming on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
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Summary so far

= Basic idea: Embed nodes so that
distances in embedding space reflect
node similarities in the original network.

= Different notions of node similarity:
= Adjacency-based (i.e., similar if connected)
= Multi-hop similarity definitions.
= Random walk approaches.



Summary so far

So what method should | use..?

No one method wins in all cases....

= e.g., hode2vec performs better on node classification
while multi-hop methods performs better on link
prediction (Goyal and Ferrara, 2017 survey).

Random walk approaches are generally
more efficient (i.e., O(|E]) vs. O(|V[?))

In general: Must choose def’'n of node
S|m|lar|ty that matches application!
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Multilayer Networks

Material based on:
«  /Zitnik and Leskovec. 2017. Predicting Multicellular Function through
Multilayer Tissue Networks. ISNB.
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Multilayer Networks

Let’s generalize to multilayer networks!
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Multilayer Networks

Each network is a layer G; = (V;, E;)

Similarities between layers are given in
hierarchy M, map m encodes parent-
child relationships
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Multilayer Network Embeddings

= Given: Layers {G;} , hierarchy M
= Layers {G;};=1.r arein leaves of M

= Goal: Learn functions: f;:V; » R%

Nodes have different
fi  embeddings in different
layers, but we want
G G, these embeddings to be

% i@g related!




Multilayer Network Emlbeddings

= Approach has two components:

= Per-layer objectives: Standard node
embedding objective (e.g., node2vec).

= Hierarchical dependency objectives:
Nodes in nearby layers in hierarchy are
encouraged to share similar features



Interdependent Layers

* How do we incorporate the hierarchy M

= Per-layer node2vec objectives are learned
iIndependently of each other

How to model dependencies between
layers when learning node features?

f1




Interdependent Layers

= Given node u, learn u’s representation in
layer i to be close to u’s representation in
parent (i):

ciu) = S () = Faciy ()3

=  Multi-scale: Repeat at every level of M

Cizu;ici(u) / y 2

L; has all layers appearing in sub-hierarchy rooted at i % %
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OhmNet: Final Model

Learning node features in multi-layer networks

Solve maximum likelihood problem:

— A

Imax

f17f27°°°7f|M|

Per-layer Hierarchical
network dependency
objectives objectives
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=Xxperiments: Biological Nets

= Proteins are worker molecules = < -

= Understanding protein function . 5 .5
has great biomedical and
pharmaceutical implications

107 genome-wide tissue-specific
protein interaction networks

= 584 tissue-specific cellular functions

= Examples (tissue, cellular function):
= (renal cortex, cortex development)
= (artery, pulmonary artery morphogenesis)
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Brain

Brainstem

Cerebellum Frontal
lobe

Parietal Occipital  Temporal
lobe lobe lobe

Midbrain  Substantia Pons Medulla
nigra oblongata

9 brain tissue PPl networks
in two-level hierarchy

Vertebral arteries

Brain Tissues

Brainstem

Midbrain

Pons

Medulla

Basilar artery
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Meaningful Node Emlbeddings

Brainstem Brain
‘)
i ’
Cerebellum e Frontal lobe Parietal lobe \ i
Medulla oblongata Temporal lobe e Occipital lobe —~ ~

Substantia nigra e Pons e Midbrain Vidori
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