
This Talk
§ 1) Node embeddings

§ Map nodes to low-dimensional 
embeddings.

§ 2) Graph neural networks
§ Deep learning architectures for graph-

structured data

§ 3) Applications
Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 1



2

Part 1: 
Node Embeddings

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph 
have embeddings that are close together.

OutputInput



Setup

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 4

§ Assume we have a graph G:
§ V is the vertex set.
§ A is the adjacency matrix (assume binary).
§ No node features or extra information 

is used!



Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 5

• Goal is to encode nodes so that similarity in 
the embedding space (e.g., dot product) 
approximates similarity in the original network.  



Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 6

similarity(u, v) ⇡ z>v zuGoal:

Need to define!



Learning Node Embeddings

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 7

1. Define an encoder (i.e., a mapping 
from nodes to embeddings)

2. Define a node similarity function 
(i.e., a measure of similarity in the 
original network).

3. Optimize the parameters of the 
encoder so that:

similarity(u, v) ⇡ z>v zu



Two Key Components

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 8

§ Encoder maps each node to a low-
dimensional vector.

§ Similarity function specifies how relationships 
in vector space map to relationships in the 
original network. 

enc(v) = zv
node in the input graph

d-dimensional 
embedding

Similarity of u and v in 
the original network

dot product between node 
embeddings

similarity(u, v) ⇡ z>v zu



“Shallow” Encoding

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 9

§ Simplest encoding approach: encoder 
is just an embedding-lookup

matrix, each column is node 
embedding [what we learn!]
indicator vector, all zeroes 
except a one in column 
indicating node v

enc(v) = Zv

Z 2 Rd⇥|V|

v 2 I|V|



“Shallow” Encoding

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 10

§ Simplest encoding approach: encoder 
is just an embedding-lookup

Z = Dimension/size 
of embeddings

one column per node 

embedding 
matrix

embedding vector for a 
specific node



“Shallow” Encoding

11

§ Simplest encoding approach: encoder 
is just an embedding-lookup.

i.e., each node is assigned a unique 
embedding vector.

§ E.g., node2vec, DeepWalk, LINE

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



“Shallow” Encoding

12

§ Simplest encoding approach: encoder 
is just an embedding-lookup.

§ We will focus on shallow encoding 
in this section…

§ After the break we will discuss more 
encoders based on deep neural 
networks.

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



How to Define Node Similarity?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 13

§ Key distinction between “shallow” 
methods is how they define node 
similarity.

§ E.g., should two nodes have similar 
embeddings if they….
§ are connected?
§ share neighbors?
§ have similar “structural roles”?
§ …?



Outline of This Section

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 14

1. Adjacency-based similarity
2. Multi-hop similarity
3. Random walk approaches
High-level structure and material from:
• Hamilton et al. 2017. Representation Learning on Graphs: 

Methods and Applications. IEEE Data Engineering Bulletin 
on Graph Systems.



15

Adjacency-based Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Material based on:
• Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization. 

WWW.



Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 16

• Similarity function is just the edge weight 
between u and v in the original network.

• Intuition: Dot products between node 
embeddings approximate edge existence.

(weighted) 
adjacency matrix 

for the graph

loss (what we 
want to minimize)

sum over all 
node pairs 

Adjacency-based Similarity

L =
X

(u,v)2V⇥V

kz>u zv �Au,vk2

embedding 
similarity



Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 17

• Find embedding matrix 𝐙 ∈ ℝ𝒅	𝐱	|𝑽|that 
minimizes the loss ℒ
• Option 1: Use stochastic gradient descent (SGD) 

as a general optimization method.
• Highly scalable, general approach

• Option 2: Solve matrix decomposition solvers (e.g., 
SVD or QR decomposition routines).
• Only works in limited cases.

Adjacency-based Similarity

L =
X

(u,v)2V⇥V

kz>u zv �Au,vk2



Adjacency-based Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 18

§ Drawbacks:
§ O(|V|2)	runtime. (Must consider all node pairs.)

§ Can make O([E|)	by only summing over non-zero edges 
and using regularization (e.g., Ahmed et al., 2013)

§ O(|V|)	parameters! (One learned vector per node).
§ Only considers direct, local connections.

e.g., the blue node is obviously more 
similar to green compared to red node, 
despite none having direct connections.

L =
X

(u,v)2V⇥V

kz>u zv �Au,vk2



19

Multi-hop Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Material based on:
• Cao et al. 2015. GraRep: Learning Graph Representations with Global 

Structural Information. CIKM.
• Ou et al. 2016. Asymmetric Transitivity Preserving Graph Embedding. KDD.



Multi-hop Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 20

§ Idea: Consider k-hop node neighbors.
§ E.g., two or three-hop neighbors.

• Red: Target node
• Green: 1-hop neighbors

• A	(i.e., adjacency matrix)
• Blue: 2-hop neighbors

• A2
• Purple: 3-hop neighbors

• A3



L =
X

(u,v)2V⇥V

kz>u zv �Ak
u,vk2

Multi-hop Similarity

21

§ Basic idea:

§ Train embeddings to predict k-hop neighbors.
§ In practice (GraRep from Cao et al, 2015):

§ Use log-transformed, probabilistic adjacency matrix:

§ Train multiple different hop lengths and concatenate output.
constant shiftnode degree

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Ãk
i,j = max

 
log

✓
(Ai,j/di)P

l2V (Al,j/dl)k

◆k

� ↵, 0

!



Multi-hop Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 22

§ Another option: Measure overlap 
between node neighborhoods.

§ Example overlap functions:
§ Jaccard similarity
§ Adamic-Adar score 



embedding 
similarity

L =
X

(u,v)2V⇥V

kz>u zv � Su,vk2
Multi-hop Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 23

§ Su,v is the neighborhood overlap between 
u and v (e.g., Jaccard overlap or Adamic-
Adar score).

§ This technique is known as HOPE (Yan et 
al., 2016).

multi-hop network similarity 
(i.e., any neighborhood 

overlap measure)



Summary so far

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 24

§ Basic idea so far:
§ 1) Define pairwise node similarities.
§ 2) Optimize low-dimensional embeddings to 

approximate these pairwise similarities. 
§ Issues:

§ Expensive: Generally O(|V|2),	since we need to 
iterate over all pairs of nodes.

§ Brittle: Must hand-design deterministic node 
similarity measures.

§ Massive parameter space: O(|V|)	parameters



25

Random Walk Approaches

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Material based on:
• Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. 

KDD.
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. 

KDD.



Random-walk Embeddings

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 26

probability that u
and v co-occur on 

a random walk over 
the network

z>u zv ⇡



Random-walk Embeddings

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 27

1. Estimate probability of visiting 
node v on a random walk 
starting from node u using 
some random walk strategy R.

2. Optimize embeddings to 
encode these random walk 
statistics. 



Why Random Walks?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 28

1. Expressivity: Flexible stochastic 
definition of node similarity that 
incorporates both local and higher-
order neighborhood information.

2. Efficiency: Do not need to consider 
all node pairs when training; only 
need to consider pairs that co-occur 
on random walks.



Random Walk Optimization
1. Run short random walks starting from each 

node on the graph using some strategy R.
2. For each node u collect NR(u), the multiset*

of nodes visited on random walks starting 
from u.	

3. Optimize embeddings to according to:

29Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

* NR(u) can have repeat elements since nodes can be visited 
multiple times on random walks.

L =
X

u2V

X

v2NR(u)

� log(P (v|zu))



Random Walk Optimization

30Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

• Intuition: Optimize embeddings to maximize 
likelihood of random walk co-occurrences.

• Parameterize P(v |	zu) using softmax:

L =
X

u2V

X

v2NR(u)

� log(P (v|zu))

P (v|zu) =
exp(z>u zv)P

n2V exp(z>u zn)



Random Walk Optimization

31Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Putting things together:

sum over all 
nodes u

sum over nodes v	
seen on random 

walks starting from u

predicted probability of u
and v co-occuring on 

random walk

Optimizing random walk embeddings =
Finding embeddings zu that minimize L

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆



Random Walk Optimization

32Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

But doing this naively is too expensive!!

Nested sum over nodes 
gives O(|V|2)	complexity!!

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆



Random Walk Optimization

33Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

But doing this naively is too expensive!!

The normalization term from the softmax is 
the culprit… can we approximate it? 

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆



Negative Sampling

34Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Solution: Negative sampling

i.e., instead of normalizing w.r.t. all nodes, just 
normalize against k random “negative samples”

sigmoid function random distribution 
over all nodes

log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆

⇡ log(�(z>u zv))�
kX

i=1

log(�(z>u zni)), ni ⇠ PV



log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆

⇡ log(�(z>u zv))�
kX

i=1

log(�(z>u zni)), ni ⇠ PV

Negative Sampling

35Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

random distribution 
over all nodes

§ Sample negative nodes proportional to degree.
§ Two considerations for k (# negative samples):

1. Higher k gives more robust estimates.
2. Higher k corresponds to higher prior on negative events.



Random Walks: Stepping Back
1. Run short random walks starting from each 

node on the graph using some strategy R.

2. For each node u collect NR(u), the multiset of 
nodes visited on random walks starting from u.	

3. Optimize embeddings to according to:

36Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

We can efficiently approximate this 
using negative sampling!

L =
X

u2V

X

v2NR(u)

� log(P (v|zu))



How should we randomly walk?
§ So far we have described how to optimize 

embeddings given random walk statistics.
§ What strategies should we use to run 

these random walks?
§ Simplest idea: Just run fixed-length, unbiased 

random walks starting from each node (i.e., 
DeepWalk from Perozzi et al., 2013).

§ But can we do better?

37Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



node2vec: Biased Walks
Idea: use flexible, biased random walks 
that can trade off between local and 
global views of the network (Grover and 
Leskovec, 2016).  

38Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-



node2vec: Biased Walks
Two classic strategies to define a 
neighborhood 𝑁@ 𝑢 of a given node 𝑢:

39

𝑁BCD 𝑢 = {	𝑠H, 𝑠I, 𝑠J}

𝑁LCD 𝑢 = {	𝑠M, 𝑠N, 𝑠O}
Local microscopic view
Global macroscopic view

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Interpolating BFS and DFS
Biased random walk 𝑅 that given a node 
𝑢 generates neighborhood 𝑁@ 𝑢
§ Two parameters:

§ Return parameter 𝑝:
§ Return back to the previous node

§ In-out parameter 𝑞:
§ Moving outwards (DFS) vs. inwards (BFS)

40Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Biased Random Walks
Biased 2nd-order random walks explore 
network neighborhoods:

§ Rnd. walk started at 𝑢 and is now at 𝑤
§ Insight: Neighbors of 𝑤 can only be:

Idea: Remember where that walk came from
41

s1

s2

w
s3

u
Closer to 𝒖

Same distance to 𝒖

Farther from 𝒖

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Biased Random Walks
§ Walker is at w. Where to go next?

§ 𝑝, 𝑞 model transition probabilities
§ 𝑝 … return parameter
§ 𝑞 … ”walk away” parameter

1

1/𝑞
1/𝑝

42

1/𝑝, 1/𝑞, 1 are 
unnormalized
probabilitiess1

s2

w
s3

u

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Biased Random Walks
§ Walker is at w. Where to go next?

§ BFS-like walk: Low value of 𝑝
§ DFS-like walk: Low value of 𝑞

𝑁D(𝑢) are the nodes visited by the 
walker

43

w →
s1
s2
s3

1/𝑝
1
1/𝑞

Unnormalized
transition prob.

1

1/𝑞
1/𝑝s1

s2

w
s3

u

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Unnormalized
transition prob.



BFS vs. DFS

BFS:
Micro-view of 

neighbourhood

u

DFS:
Macro-view of 
neighbourhood

44Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Experiments: Micro vs. Macro
Interactions of characters in a novel:

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

p=1, q=2
Microscopic view of the 
network neighbourhood

p=1, q=0.5
Macroscopic view of the 
network neighbourhood

45Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Other random walk ideas
(not covered in detail here)

46Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

§ Different kinds of biased random walks:
§ Based on node attributes (Dong et al., 2017).
§ Based on a learned weights (Abu-El-Haija et al., 2017)

§ Alternative optimization schemes:
§ Directly optimize based on 1-hop and 2-hop random 

walk probabilities (as in LINE from Tang et al. 2015).
§ Network preprocessing techniques:

§ Run random walks on modified versions of the original 
network (e.g., Ribeiro et al. 2017’s struct2vec, Chen et 
al. 2016’s HARP).



Summary so far

47Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

§ Basic idea: Embed nodes so that 
distances in embedding space reflect 
node similarities in the original network.

§ Different notions of node similarity:
§ Adjacency-based (i.e., similar if connected)
§ Multi-hop similarity definitions.
§ Random walk approaches. 



Summary so far

48Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

§ So what method should I use..?
§ No one method wins in all cases….

§ e.g., node2vec performs better on node classification 
while multi-hop methods performs better on link 
prediction (Goyal and Ferrara, 2017 survey).

§ Random walk approaches are generally 
more efficient (i.e., O(|E|)	vs. O(|V|2))

§ In general: Must choose def’n of node 
similarity that matches application!



49

Multilayer Networks

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Material based on:
• Zitnik and Leskovec. 2017. Predicting Multicellular Function through 

Multilayer Tissue Networks. ISMB.



Multilayer Networks

Let’s generalize to multilayer networks!

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 50



Multilayer Networks

51

§ Each network is a layer 𝐺Z = (𝑉Z, 𝐸Z)
§ Similarities between layers are given in 

hierarchy ℳ, map 𝜋 encodes parent-
child relationships

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Multilayer Network Embeddings

52

§ Given: Layers 𝐺Z , hierarchy ℳ
§ Layers 𝐺Z Z_H..` are in leaves of ℳ

§ Goal: Learn functions: 𝑓Z:𝑉Z →ℝc

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Nodes have different 
embeddings in different 

layers, but we want 
these embeddings to be 

related!



Multilayer Network Embeddings

53

§ Approach has two components:
§ Per-layer objectives: Standard node 

embedding objective (e.g., node2vec).
§ Hierarchical dependency objectives: 

Nodes in nearby layers in hierarchy are 
encouraged to share similar features

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Interdependent Layers

54

§ How do we incorporate the hierarchy ℳ
§ Per-layer node2vec objectives are learned 

independently of each other
How to model dependencies between 
layers when learning node features?

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Interdependent Layers

55

§ Given node 𝑢, learn 𝑢’s representation in 
layer 𝑖 to be close to 𝑢’s representation in 
parent 𝜋(𝑖):

§ Multi-scale: Repeat at every level of ℳ

4 Zitnik & Leskovec

The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet

with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2
kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [ Vj at an intermediate scale, and the mapping f1

representing features for nodes V1 = Vi [ Vj [ Vk [ Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2

N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T

2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max
f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the

4 Zitnik & Leskovec

The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet

with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2
kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [ Vj at an intermediate scale, and the mapping f1

representing features for nodes V1 = Vi [ Vj [ Vk [ Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2

N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T

2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max
f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the

𝐿Z has all layers appearing in sub-hierarchy rooted at 𝑖
Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



OhmNet: Final Model

56

Learning node features in multi-layer networks

Solve maximum likelihood problem:

Per-layer 
network 

objectives

Hierarchical 
dependency 
objectives

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

4 Zitnik & Leskovec

The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet

with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2
kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [ Vj at an intermediate scale, and the mapping f1

representing features for nodes V1 = Vi [ Vj [ Vk [ Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2

N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T

2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max
f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the



Experiments: Biological Nets
§ Proteins are worker molecules
§ Understanding protein function 

has great biomedical and 
pharmaceutical implications

107 genome-wide  tissue-specific 
protein interaction networks
§ 584 tissue-specific cellular functions 
§ Examples (tissue, cellular function): 

§ (renal cortex, cortex development)
§ (artery, pulmonary artery morphogenesis)

57Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Brain Tissues

Frontal
lobe

Medulla
oblongata

PonsSubstantia
nigra

Midbrain

Parietal
lobe

Occipital
lobe

Temporal
lobe

Brainstem

Brain

Cerebellum

58

9 brain tissue PPI networks
in two-level hierarchy

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018



Meaningful Node Embeddings

59Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018


