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This Tutorial

1) Node embeddings ‘/

= Map nodes to low-dimensional embeddings
= Applications: PPIls, Disease pathways

2) Graph neural networks ‘/

= Deep learning approaches for graphs
= Applications: Gene functions

3) Heterogeneous networks /

= Embedding heterogeneous networks
= Applications: Human tissues, Drug side effects
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Outline of This Section
1. Practical advice and demos

2. Future directions & conclusion
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Practical Advice

and Demos
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Demo: Diseases
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Embedding the Human Disease Network

(This demo is a part of Deep Learning for Network Biology tutorial,)

Human disease network is a network, in which nodes represent diseases and two diseases are connected to each other if they share at least one gene in which
mutations are associated with both diseases.

The network is described in Goh et al., The Human Disease Network, PNAS 2007.

The figure below show the human disease network.

Although the layout of the network was i of any of disease classes, the resulting network is naturally and visibly clustered

according to major disease classes (e.g., bone, cancer, cardiovascular, skeletal, or metabolic diseases; each disease class is represented by a different color).
The size of a node is proportional to the number of genes participating in the corresponding disease.
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Demo: Protein Interactions
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Graph Convolutional Prediction of Protein Interactions in Yeast
(This demo is a part of Deep Learning_for Network Biology tutorial.)

In this example, we demonstrate the utility of deep learning methods for an important prediction problem on biological graphs. In particular, we consider the
problem of predicting protein-protein interactions (PPIs).

Protein-protein interactions (PPIs) are essential to almost every process in a cell. Understanding PPIs is crucial for understanding cell physiology in normal and
disease states. Furthermore, knowledge of PPIs can be used:

+ for drug development, since drugs can affect PPIs,
= to assign roles (i.e., protein functions) to uncharacterized proteins,
 to characterize the relationships between proteins that form multi- lecul such as the

We represent the totality of PPIs that happen in a cell, an organism or a specific biological context with a protein-protein interaction network. These networks
are mathematical representations of all physical contacts between proteins in the cell.

The development of large-scale PP| screening i especially high: affinity puri ion combined with and the yeast two-
hybrid assay, has caused an explosion in the amount of PPI data and the construction of ever more complex and complete interaction networks. For example,
the figure below is a graphical representation of three different types of protein-protein i ion networks in yeast S. cerevisiae. The structure of the binary

interaction network is obviously different from the structure of the co-complex interaction network. The network structure of the literature-curated dataset
resembles that of the co-complex dataset, even though the literature-curated datasets are reported to contain mostly binary interactions.

However, current of protein-protein i ion networks is both ir and noisy, as PPI screening i are limited in how many true
interactions they can detect. Furthermore, PPI screening techniques often have high false positive and negative rates. These limitations present a great
opportunity for computational methods to predict protein-protein interactions.

Binary Co-complex Literature
(Y2H-union) (Combined-AP/MS) (LC-multiple)
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General Tips

1) Network data preprocessing is important:
= renormalization tricks
= variance-scaled initialization
= network data whitening

2) Use the ADAM optimizer:

=  ADAM naturally takes care of decaying the learning rate
3) RelU (activation function) often works really well

4) No activation function at your output layer:
= Easy mistake if you build layers with a shared function

5) Include bias term in every layer
6) Graph convolution layer of size 64 or 128 is plenty
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Debugging

= Debug?!:

Deep Networks

= | oss/accuracy not converging during training

= |mportant for model development:

= QOverfit on training data:
= Accuracy should be essentially 100% or error

close to O

= |f neural network cannot overfit a single data
point, something is wrong

= Scrutinize your loss function!
= Scrutinize your visualizations!
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Future Directions

and Opportunities

Material based on:

« Zitnik et al. 2018. Machine Learning for Integrating Data in Biology and
Medicine: Principles, Practice, and Opportunities.

« Camacho et al. 2018 Next-Generation Machine Learning for Biological
Networks. Cell.
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Learning Hierarchies

Hierarchical structures are
ubiquitous in network biology
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Challenges:

= How to infer hierarchies from s o)
pairwise similarity scores”? o It e
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= How to learn continuous s ) Vs
representations of hierarchies? R
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= How to exploit the properties of
networks’ hyperbolic geometry?

Image from: Nickel et al. 2018. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. ICMIL.
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Explainabillity
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Phenotype Phenotype

Explanation Human makes decision

Image from: Ma et al. 2018. Using deep learning to model the hierarchical structure and function of a cell. Nature
Methods. Ribeiro et al. 2016. “Why Should | Trust You?” Explaining the Predictions of Any Classifier. KDD.
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INnternet-Based
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Data on UK Biobank participants

Gognitive function and
hearing tests

Health outcome data

Genotyping & imputation
(n = 500,000)

Urinary biomarkers

Physical activity

Genetic data via the monitor (100,000)
EGA (500,000)

Imaging (15,000+)

nature :L\(\/¥

COMMUNICATIONS

Article = OPEN = Published: 02 February 2016

GWAS of 89,283 individuals identifies
genetic variants associated with self-
reporting of being a morning person

gelska, David Tran, Nicholas Eriksson, Joyce Y. Tung & David A. Hinds

Self-reported &
ecological data

UK Biobank: A prospective cohort of 500 K
people to support the investigation of risk factors
for major diseases of middle and old age

Image from: Zitnik et al. 2018. Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and

Opportunities.
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Giga-Scale Network Data

Goal: Handle massive graphs

Challenge: Existing methods
do not scale to new high-
throughput datasets

Idea: Use graph neural
networks with efficient batch
optimization and parameter
sharing

Image from: Wolf et al. 2018. SCANPY: large-scale single-cell gene
expression data analysis. Genome Biology.
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This Tutorial

1) Node embeddings ‘/

= Map nodes to low-dimensional embeddings
= Applications: PPIls, Disease pathways

2) Graph neural networks ‘/

= Deep learning approaches for graphs
= Applications: Gene functions

3) Heterogeneous networks /

= Embedding heterogeneous networks
= Applications: Human tissues, Drug side effects
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Deep Learning for
Network Biology

How to Start?
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Tutorial Resources

= Network analytics tools in SNAP

* Deep learning code bases:
= End-to-end examples in Tensorflow/PyTorch
= Popular code bases for graph neural nets
= Easy to adapt and extend for your application

= Network data:

= gnap.stanford.edu/projects.html:

= (CRank, Decagon, MAMBO, NE, OhmNet,
Pathways, and many others
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Network Analytics with SNAP

= Stanford Network Analysis Platform (SNAP)
is our general purpose, high-performance system for analysis
and manipulation of large networks

= http://snap.stanford.edu

=  Scales to massive networks with hundreds of millions of nodes
and bl“IOnS Of edgeS Prior knowledge
O

= SNAP software: C++, Python

(f) Integrate |external data

= Software requirements: none / «é\
(a) Spedify (b) Specify (c) Optimize (%’
entities| relationships representatlon (é)
Relational
Unstructured tables Tabular Network
data networks representation
(d) Perform
(e) Integrate analytic reasoning
the results % and inference

Results
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BioSNAP: Network

Biomedical network

dataset collection:

= Different types of biomedical
networks

= Ready to use for:
= Algorithm benchmarking
= Method development
=  Knowledge discovery

= Easy to link entities across
datasets

Total: 250M entities,
2.2TB raw network data

COMING SOON

Data

Dataset #ltems Raw Size
DisGeNet 30K 10MB
STRING 10M 1TB
OMIM 25K 100MB
CTD 55K 1.2GB
HPRD 30K 30MB
BioGRID 64K 100MB
DrugBank 7K 60MB
Disease Ontology 10K 5MB
Protein Ontology 200K 130MB
Mesh Hierarchy 30K 40MB
PubChem 90M 1GB
DGldb 5K 30MB
Gene Ontology 45K 10MB
MSigDB 14K 70MB
Reactome 20K 100MB
GEO 1.7M 80GB
ICGC (66 cancer projects) 40M 1TB
GTEX 50M 100GB
Many more...

19
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Deep Learning Code Bases

= Node2vec:
= https://github.com/aditya-grover/node2vec (Python)

= https://github.com/snap-stanford/snap/tree/master/examples/node2vec (C++)

= Graph Convolutional Networks (GCNSs):
= https://github.com/tkipf/gcn (Tensorflow)
=  https://github.com/tkipf/pygen (PyTorch)
= https://github.com/tkipf/keras-gcn (Keras)
= GraphSAGE:
= https://github.com/williamleif/GraphSAGE (Tensorflow)
= https://github.com/williamleif/graphsage-simple (Pytorch)
= Metapath2vec and metapath2vec++ (Python):
= https://ericdongyx.github.io/metapath2vec/m2v.html
= OhmNet (Python):
= https://github.com/marinkaz/ohmnet
= Decagon (Tensorflow):
= https://github.com/marinkaz/decagon
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Deep Learning for
Network Biology

Next-Generation Machine Learning for
Networks in Biology and Medicine
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Gordon Hallac
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Lakkaraju Ying Althoff ~ Hamilton Porter
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Post-Doctoral Fellows

Dan Jurafsky, Linguistics, Stanford University
Christian Danescu-Miculescu-Mizil, Information Science, Cornell University
Stephen Boyd, Electrical Engineering, Stanford University

Baharan Marinka Michele Srijan David Gleich, Computer Science, Purdue University
Mirzasoleiman  Zitnik Catasta Kumar VS Subrahmanian, Computer Science, University of Maryland

Sarah Kunz, Medicine, Harvard University
Russ Altman, Medicine, Stanford University I‘ ‘
Jochen Profit, Medicine, Stanford University
Eric Horvitz, Microsoft Research N q
Jon Kleinberg, Computer Science, Cornell University I

Stephen Adrijan Sendhill Mullainathan, Economics, Harvard University STANFO R‘D

Bach Bradaschia Sosic Scott Delp, Bioengineering, Stanford University INFOLAB

Jens Ludwig, Harris Public Policy, University of Chicago
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Many interesting high-impact projects
In Machine Learning and Large Biomedical Data

Applications: Precision Medicine & Health, Drug Repurposing,
Drug Side Effect modeling, Network Biology, and many more
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