Deep Learning for Network Biology

Marinka Zitnik and Jure Leskovec

Stanford University

This Tutorial

snap.stanford.edu/deepnetbio-ismb

ISMB 2018

July 6, 2018, 2:00 pm - 6:00 pm

This Tutorial

1) Node embeddings

- Map nodes to low-dimensional embeddings
- Applications: PPIs, Disease pathways

2) Graph neural networks

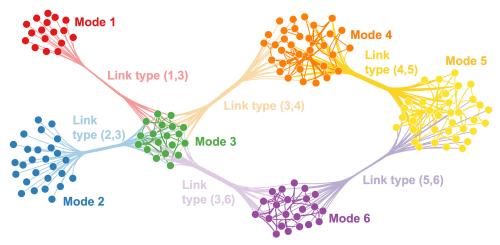
- Deep learning approaches for graphs
- Applications: Gene functions
- 3) Heterogeneous networks
 - Embedding heterogeneous networks
 - Applications: Human tissues, Drug side effects

Part 3: Heterogeneous Networks

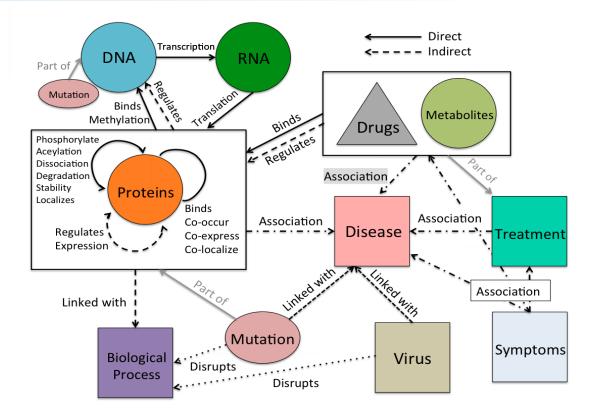
Homogeneous Nets

So far we have embedded homogeneous networks

Can we embed heterogeneous networks (i.e., het nets)?



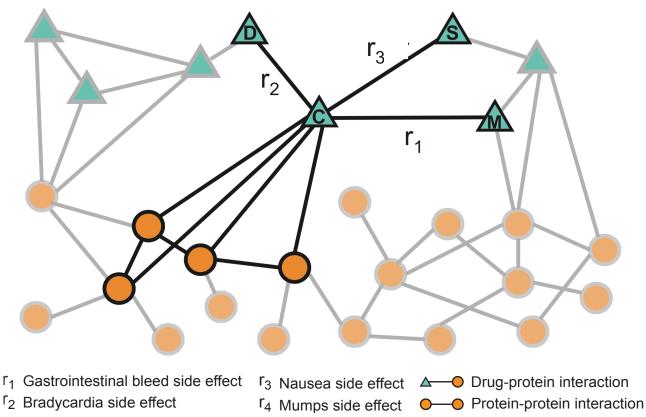
Many Het Nets in Biology



Setup

- Assume we have a graph G:
 - V_t is the vertex set for node type t
 - A_r is the adjacency matrix for edge type r
 - $\mathbf{X}_t \in \mathbb{R}^{m \times |V|}$ is a matrix of features for nodes of type t
 - Biologically meaningful node features:
 - E.g., immunological signatures, gene expression profiles, gene functional information
 - No features:
 - Indicator vectors (one-hot encoding of a node)

Example: Het Net



Tutorial Resource

MAMBO: Multimodal biomedical networks

- Tool for construction, representation and analysis of large multimodal networks:
 - Nets with millions of nodes and billions of edges
 - Nets with thousands of modes (i.e., entity types) and links (i.e., relationship types)
- Network analytics through SNAP

http://snap.stanford.edu/mambo

Outline of This Section

- 1. Shallow embeddings for het nets:
 - OhmNet
 - Metapath2vec

- 2. Deep embeddings for het nets:
 - Decagon

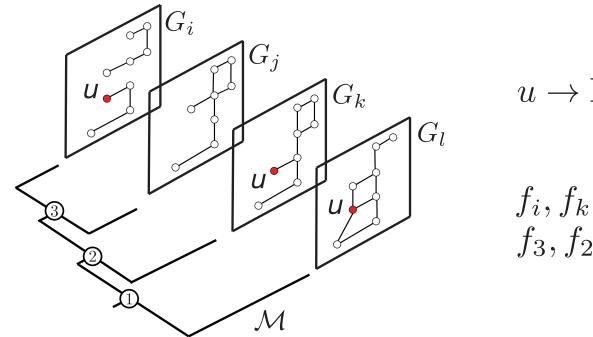
OhmNet

Based on material from:

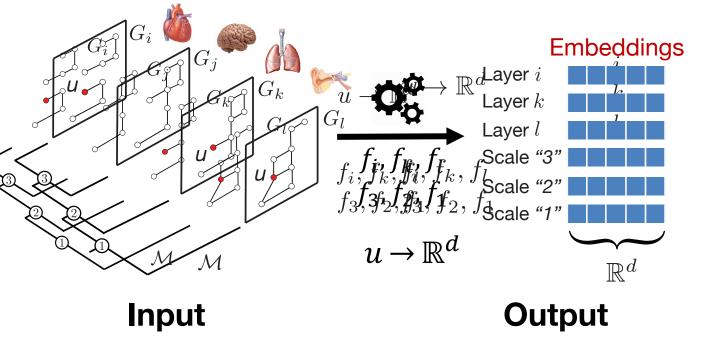
• Zitnik et al., 2017. <u>Predicting multicellular function through multi-layer</u> <u>tissue networks</u>. *ISMB & Bioinformatics*.

Embedding Layered Graphs

Extending node2vec to multi-layer graphs



OhmNet: Multi-Layer Graphs



How to learn mapping functions f_i ?

 \mathbb{R}

Multi-Layer Graphs

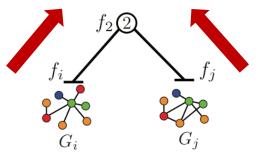
- Input: Given graphs G_i and hierarchy M
- Output: Embeddings for:
 - Nodes in each graph
 - Nodes in each sub-hierarchy_{f2}

• Capture hierarchical structure G_i of M

 G_1

Multi-Layer Graphs

- For graphs G_i :
 - Use node2vec's biased walks (see Part T1)
- For hierarchy M:
 - Encode dependencies between graphs
 - Recursive regularization: embeddings at level *i* are encouraged to be similar to embeddings in *i*'s parent in the hierarchy

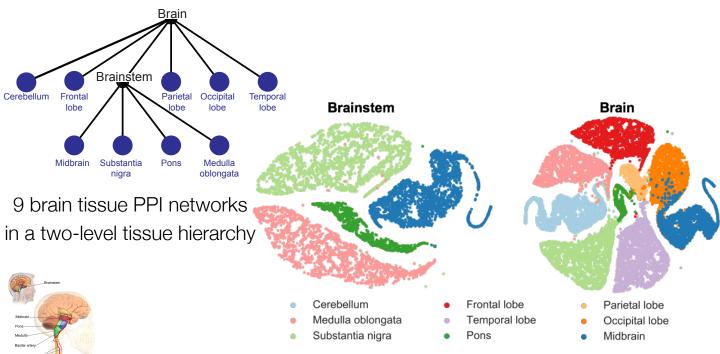


Random Walk Optimization

- Given simulated random walks for each graph:
 - Optimize node embeddings as described in Part T1
 - Extra: Include terms for recursive regularization in the loss function

Example: Brain Networks

Do embeddings match human anatomy?

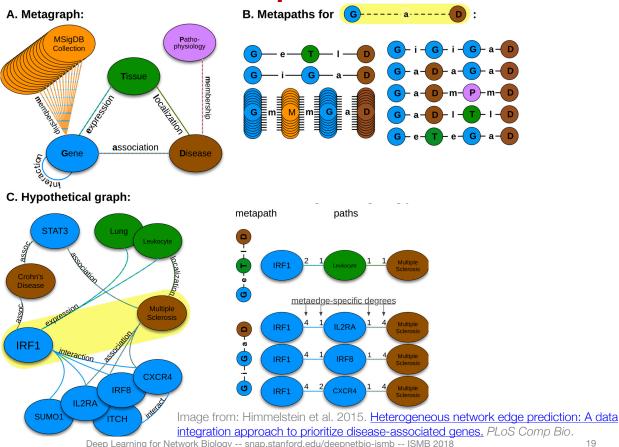


Metapath2vec

Based on material from:

 Dong et al., 2017. <u>metapath2vec: Scalable representation learning for</u> <u>heterogeneous networks</u>. *KDD*.

Metapaths



Metapath2vec: Two Main Steps

Extending node2vec to **het nets**:

1. Metapath-based random walks

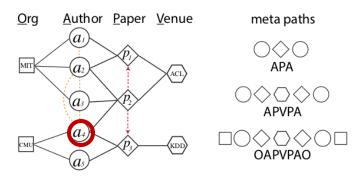
- Specify a metapath of interest
- Run random walks that capture structural correlations between different node types

2. Random walk optimization

 Given the random walks, optimize node embeddings (similar to Part T1)

Step 1: Run Random Walks

- Given a metapath:
 - E.g., **OAP**VPAO



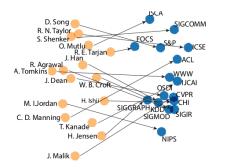
- What is the next step of a walker on node a₄ that transitioned from node CMU?
 - Standard random walk: The next step can be all types of nodes surrounding it:
 - a_2, a_3, a_5, p_2, p_3 , and *CMU*
 - Metapath-based random walk: The next step can only be a paper node (P), given that its current node is an author node a₄ (A) and its previous step was an organization node CMU (O):
 - Follow the semantics of this metapath

Step 2: Optimize

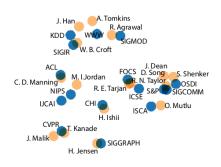
- Simulate many metapath-based random walks starting from each node
- 2. For each node u, get $N_t(u)$ as a nodes of type t that are visited by random walks starting at u
- **3.** For each node u, learn its embedding by predicting which nodes are in $N_t(u)$:

$$\mathcal{L} = \sum_{u \in V} \sum_{t \in V_t} \sum_{v \in N_t(u)} -\log(P(v|\mathbf{z}_u))$$

Metapath2vec: Example



DeepWalk / node2vec



metapath2vec

- 2D projections of the learned embeddings for:
 - 16 CS conferences and corresponding high-profile researchers in each field
- Metapath2vec:
 - Groups author-conference pairs closely
 - Automatically organizes these two types of nodes
 - Learns internal relationships between them:
 - E.g., J. Dean → OSDI
 - E.g., C. D. Manning \rightarrow ACL
- Not possible using methods for homogeneous networks

Outline of This Section

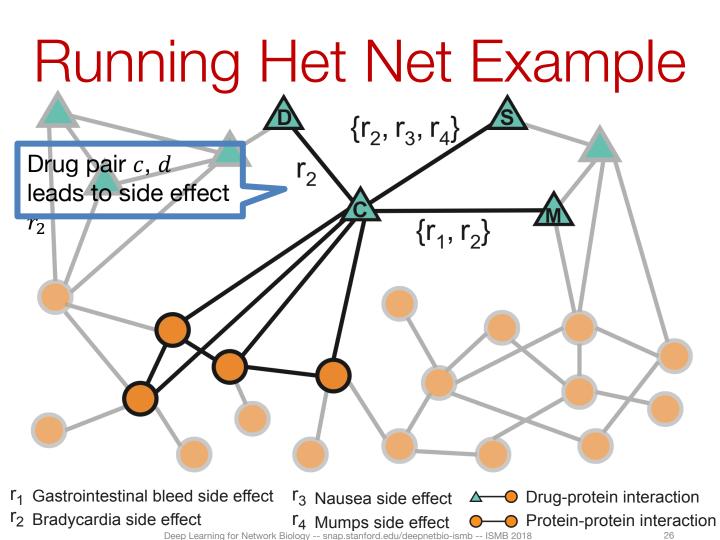
- **1.Shallow embeddings** for het nets:
 - OhmNet
 - Metapath2vec
- 2.Deep embeddings for het nets:

Decagon

Deep Embeddings for Heterogeneous Graphs

Based on material from:

• Zitnik et al., 2018. <u>Modeling polypharmacy side effects with graph</u> <u>convolutional networks</u>. *ISMB & Bioinformatics*.



Idea: Aggregate Neighbors

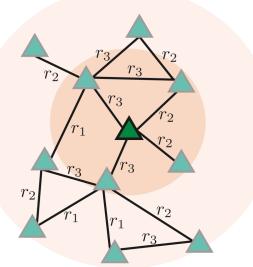
Key idea: Generate node embeddings based on network neighborhoods separated by edge type



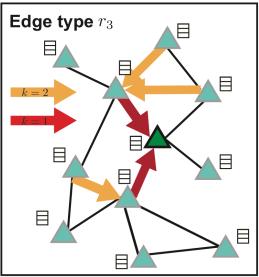
Idea: Aggregate Neighbors

Each edge type is **modeled separately**

A node's neighborhood defines a **computation graph**

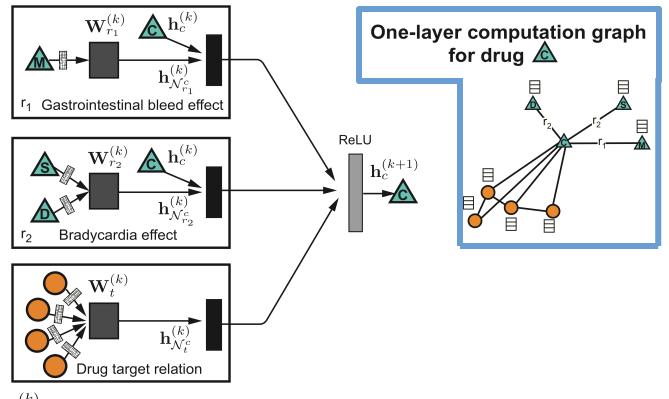


Determine a node's computation graph



Learn how to transform and propagate information across the graph

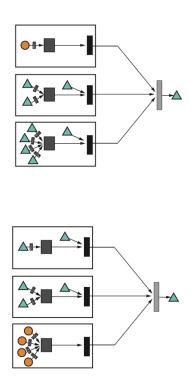
Example: Aggregation

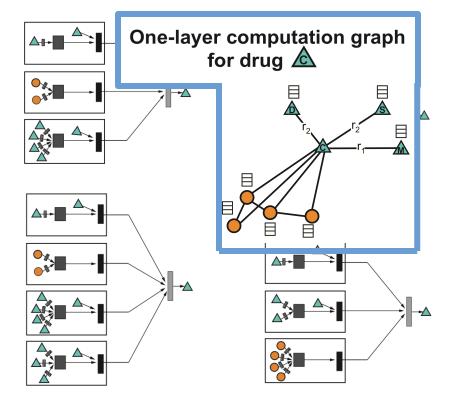


 $\mathbf{W}_{r_i}^{(k)}$ Neural network weight matrices

Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Example: Aggregation

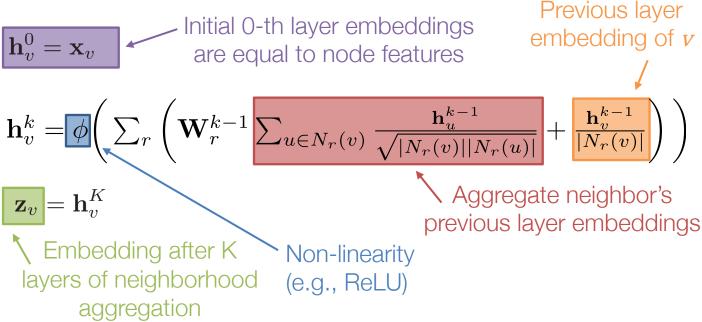




 $\mathbf{W}_{r_i}^{(k)}$ Neural network Areexample batch of computation graphs

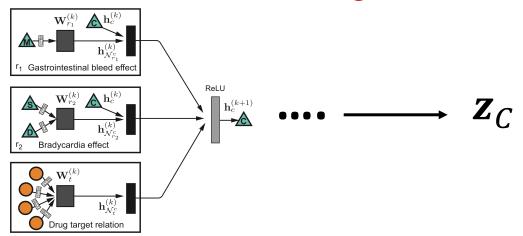
The Math: Deep Encoder

 Approach: Average neighbor messages for each edge type and apply a neural network



Training the Model

How do we train the model to generate embeddings?

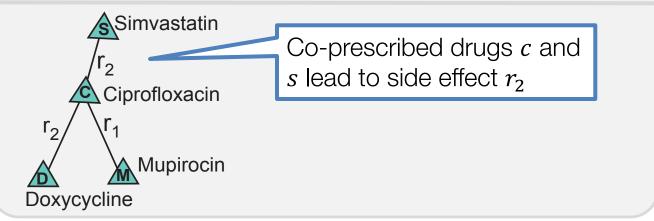


Need to define a loss function on the embeddings!

Example: Drug Side Effects

Goal: Predict labeled edges between drug nodes

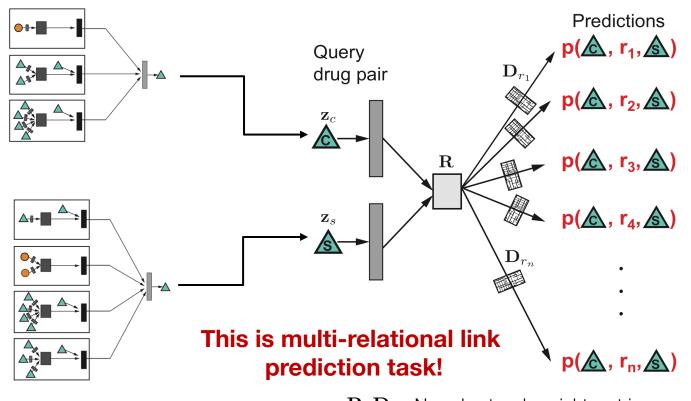
Query: Given a drug pair c, s, how likely does an edge (c, r_2, s) exist?



Example: Drug Side Effects

1) Take the graph and learn a *d*-dimensional vector (*embedding*) for every node

Example: Drug Side Effects



Deep Learning for Network Biology -- snap.stantord.ed Proceeding on the part of the state of the

Modeling Polypharmacy Side Effects with Graph Convolutional Networks

July 10, 2018 at 12:20 pm http://snap.stanford.edu/decagon

Outline of This Section

- **1.Shallow embeddings** for het nets:
 - OhmNet
 - Metapath2vec
- 2.Deep embeddings for het nets:Decagon

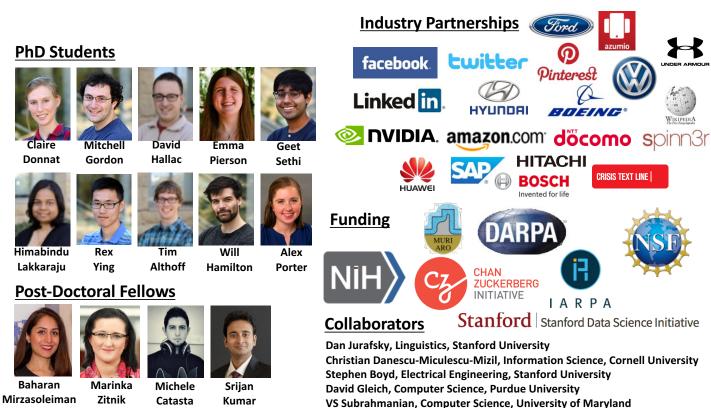
This Tutorial

1) Node embeddings

- Map nodes to low-dimensional embeddings
- Applications: PPIs, Disease pathways

2) Graph neural networks

- Deep learning approaches for graphs
- Applications: Gene functions
- 3) Heterogeneous networks
 - Embedding heterogeneous networks
 - Applications: Human tissues, Drug side effects



Stephen Bach

Adrijan **Bradaschia**

Sosic

Jens Ludwig, Harris Public Policy, University of Chicago Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Sarah Kunz, Medicine, Harvard University Russ Altman, Medicine, Stanford University

Eric Horvitz, Microsoft Research

Jochen Profit, Medicine, Stanford University

Jon Kleinberg, Computer Science, Cornell University Sendhill Mullainathan, Economics, Harvard University

Scott Delp, Bioengineering, Stanford University

Many interesting high-impact projects in Machine Learning and Large Biomedical Data

Applications: Precision Medicine & Health, Drug Repurposing, Drug Side Effect modeling, Network Biology, and many more