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This Tutorial
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1) Node embeddings
§ Map nodes to low-dimensional embeddings
§ Applications: PPIs, Disease pathways

2) Graph neural networks
§ Deep learning approaches for graphs
§ Applications: Gene functions

3) Heterogeneous networks
§ Embedding heterogeneous networks
§ Applications: Human tissues, Drug side effects
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Part 3: 
Heterogeneous 

Networks
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Homogeneous Nets
So far we have embedded homogeneous 

networks
Can we embed heterogeneous 

networks (i.e., het nets)?
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Many Het Nets in Biology
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Setup
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§ Assume we have a graph 𝐺:
§ 𝑉# is the vertex set for node type 𝑡
§ 𝑨& is the adjacency matrix for edge type 𝑟
§ 𝐗# ∈ ℝ+×|.| is a matrix of features for 

nodes of type 𝑡
§ Biologically meaningful node features:

– E.g., immunological signatures, gene 
expression profiles, gene functional information

§ No features:
– Indicator vectors (one-hot encoding of a node)



Example: Het Net
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r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effect



Tutorial Resource
MAMBO: Multimodal biomedical networks
§ Tool for construction, representation and 

analysis of large multimodal networks:
§ Nets with millions of nodes and billions of edges
§ Nets with thousands of modes (i.e., entity types) 

and links (i.e., relationship types)
§ Network analytics through SNAP
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http://snap.stanford.edu/mambo



Outline of This Section
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1. Shallow embeddings for het nets:
§ OhmNet
§ Metapath2vec

2. Deep embeddings for het nets:
§ Decagon
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OhmNet
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Based on material from:
• Zitnik et al., 2017. Predicting multicellular function through multi-layer 

tissue networks. ISMB & Bioinformatics.



Embedding Layered Graphs
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Extending node2vec to multi-layer graphs
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OhmNet: Multi-Layer Graphs
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Embeddings
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How to learn mapping functions 𝒇𝒊?
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Input Output



Multi-Layer Graphs
§ Input: Given graphs 𝐺𝑖 and hierarchy 𝑀
§ Output: Embeddings for:
§ Nodes in each graph
§ Nodes in each sub-hierarchy

§ Capture hierarchical structure of 𝑀
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Multi-Layer Graphs
§ For graphs 𝐺𝑖:

§ Use node2vec’s biased walks (see Part T1)
§ For hierarchy 𝑀:

§ Encode dependencies between graphs
§ Recursive regularization: embeddings at 

level 𝑖 are encouraged to be similar to 
embeddings in 𝑖’s parent in the hierarchy
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Random Walk Optimization
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§ Given simulated random walks for 
each graph:
§ Optimize node embeddings as described 

in Part T1
§ Extra: Include terms for recursive 

regularization in the loss function



Example: Brain Networks
Do embeddings match human anatomy?
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9 brain tissue PPI networks
in a two-level tissue hierarchy
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Metapath2vec

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Based on material from:
• Dong et al., 2017. metapath2vec: Scalable representation learning for 

heterogeneous networks. KDD.



Metapaths
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Image from: Himmelstein et al. 2015. Heterogeneous network edge prediction: A data 
integration approach to prioritize disease-associated genes. PLoS Comp Bio.
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Metapath2vec: Two Main Steps
Extending node2vec to het nets:
1. Metapath-based random walks
§ Specify a metapath of interest
§ Run random walks that capture structural 

correlations between different node types
2. Random walk optimization
§ Given the random walks, optimize node 

embeddings (similar to Part T1)
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Step 1: Run Random Walks
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§ Given a metapath:
§ E.g., OAPVPAO

§ What is the next step of a walker on node 𝑎? that 
transitioned from node CMU?
§ Standard random walk: The next step can be all types of 

nodes surrounding it:
§ 𝑎5, 𝑎4, 𝑎@, 𝑝5, 𝑝4, and 𝐶𝑀𝑈

§ Metapath-based random walk: The next step can only be a 
paper node (P), given that its current node is an author node 𝑎?
(A) and its previous step was an organization node 𝐶𝑀𝑈	(O):

§ Follow the semantics of this metapath



Step 2: Optimize
1. Simulate many metapath-based random 

walks starting from each node
2. For each node u, get Nt(u) as a nodes of type 

𝑡 that are visited by random walks starting at u
3. For each node u,	learn its embedding by 

predicting which nodes are in Nt(u):
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Metapath2vec: Example
§ 2D projections of the learned 

embeddings for:
§ 16 CS conferences and corresponding 

high-profile researchers in each field 
§ Metapath2vec: 

§ Groups author-conference pairs closely
§ Automatically organizes these two types of 

nodes
§ Learns internal relationships between them:

§ E.g., J. Dean → OSDI 
§ E.g., C. D. Manning → ACL 

§ Not possible using methods for 
homogeneous networks
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Outline of This Section
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1.Shallow embeddings for het nets:
§ OhmNet
§ Metapath2vec

2.Deep embeddings for het nets:
§ Decagon
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Deep Embeddings
for Heterogeneous 

Graphs
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Based on material from:
• Zitnik et al., 2018. Modeling polypharmacy side effects with graph 

convolutional networks. ISMB & Bioinformatics.



Running Het Net Example
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r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effect

Drug pair 𝑐, 𝑑
leads to side effect 
𝑟5
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Idea: Aggregate Neighbors
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Key idea: Generate node embeddings
based on network neighborhoods 
separated by edge type 
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Each edge type is modeled separately
A node’s neighborhood defines a computation graph

Idea: Aggregate Neighbors
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Example: Aggregation

29Neural network weight matricesDeep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



Example: Aggregation
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An example batch of computation graphsNeural network weight matricesDeep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



Aggregate neighbor’s 
previous layer embeddings

The Math: Deep Encoder
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§ Approach: Average neighbor messages for 
each edge type and apply a neural network

Initial 0-th layer embeddings
are equal to node features

Embedding after K 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

Previous layer 
embedding of vh0
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Training the Model
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Need to define a loss function 
on the embeddings!

How do we train the model to generate 
embeddings?

….												𝒛O



Goal: Predict labeled edges between drug 
nodes

Example: Drug Side Effects

33

Ciprofloxacin
r1

r2

Simvastatin

Mupirocin

r2

Doxycycline

S

C

MD

Query: Given a drug pair 𝑐, 𝑠, how likely does an 
edge (𝑐, 𝑟5, 𝑠) exist?

Co-prescribed drugs 𝑐 and 
𝑠 lead to side effect 𝑟5
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Example: Drug Side Effects
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2) Use the learned 
embeddings to predict side 
effects of drug pairsr1 Gastrointestinal bleed side effect  

r2 Bradycardia side effect Protein-protein interaction
Drug-protein interactionr3 Nausea side effect

r4 Mumps side effect

r, ?

Embedding1) Take the graph and learn a 
𝑑-dimensional vector 
(embedding) for every node
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Example: Drug Side Effects

35Neural network weight matrices

This is multi-relational link 
prediction task!
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Modeling Polypharmacy Side 
Effects with Graph Convolutional 

Networks
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July 10, 2018 at 12:20 pm 
http://snap.stanford.edu/decagon



Outline of This Section

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 37

1.Shallow embeddings for het nets:
§ OhmNet
§ Metapath2vec

2.Deep embeddings for het nets:
§ Decagon



This Tutorial
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1) Node embeddings
§ Map nodes to low-dimensional embeddings
§ Applications: PPIs, Disease pathways

2) Graph neural networks
§ Deep learning approaches for graphs
§ Applications: Gene functions

3) Heterogeneous networks
§ Embedding heterogeneous networks
§ Applications: Human tissues, Drug side effects
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Many interesting high-impact projects 
in Machine Learning and Large Biomedical Data 

Applications: Precision Medicine & Health, Drug Repurposing, 
Drug Side Effect modeling, Network Biology, and many more
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