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This Tutorial

1) Node embeddings ‘/

= Map nodes to low-dimensional embeddings
= Applications: PPIls, Disease pathways

2) Graph neural networks ‘/

= Deep learning approaches for graphs
= Applications: Gene functions

3) Heterogeneous networks @

= Embedding heterogeneous networks
= Applications: Human tissues, Drug side effects
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Part 3:

Heterogeneous
Networks
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Homogeneous Nets

So far we have embedded homogeneous
networks

Can we embed heterogeneous
networks (i.e., het nets)?
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Many Het Nets in Biology
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Setup

= Assume we have a graph G:
= V. is the vertex set for node type t
= A, is the adjacency matrix for edge type r

= X, € R™ IVl is a matrix of features for
nodes of type t

= Biologically meaningful node features:

— E.g., immunological signatures, gene
expression profiles, gene functional information

= No features:
— Indicator vectors (one-hot encoding of a node)
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Example: Het Net

r1 Gastrointestinal bleed side effect r's Nausea side effect A—@ Drug-protein interaction
'> Bradycardia side effect 4 Mumps side effect ©—@ Protein-protein interaction
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Tutorial Resource

MAMBO: Multimodal biomedical networks

= Tool for construction, representation and
analysis of large multimodal networks:
= Nets with millions of nodes and billions of edges

= Nets with thousands of modes (i.e., entity types)
and links (i.e., relationship types)

= Network analytics through SNAP

http://snap.stanford.edu/mambo
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Outline of This Section

1. Shallow embeddings for het nets:

= OhmNet %

= Metapath2vec
2. Deep embeddings for het nets:

= Decagon
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Based on material from:
o /Jitnik et al., 2017. Predicting multicellular function through multi-layer

tissue networks. ISMB & Bioinformatics.
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—mbedding Layered Graphs

Extending node2vec to multi-layer graphs

/ji?G
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OhmNet: Multi-Layer Graphs
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Multi-Layer Graphs

= Input: Given graphs G; and hierarchy M

= QOutput: Embeddings for:

= Nodes in each graph M
" Nodes in each sub-hierarchyy,
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Multi-Layer Graphs

= [or graphs G;:
= Use node?2vec’s biased walks (see Part T1)
= For hierarchy M:

* Encode dependencies between graphs

* Recursive regularization: embeddings at
level i are encouraged to be similar to
embeddings in i’s parent in the hierarchy

R

G Gj
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Random Walk Optimization

= (Given simulated random walks for
each graph:

= Optimize node embeddings as described
in Part T1

= Extra: Include terms for recursive
reqularization in the loss function



Example: Brain Networks

Do embeddings match human anatomy?

Brain

Brainstem

Cerebellum  Frontal Parietal Occipital ~ Temporal
lobe lobe lobe lobe Brainstem Brain

Midbrain  Substantia Pons Medulla
nigra oblongata

9 brain tissue PPI networks
in a two-level tissue hierarchy

R
i ’

Cerebellum e Frontal lobe Parietal lobe
Medulla oblongata Temporal lobe o Occipital lobe
Substantia nigra e Pons e Midbrain
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Metapath2vec

Based on material from:
« Dong et al., 2017. metapath2vec: Scalable representation learning for
heterogeneous networks. KDD.
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I\/Ietapaths

B. Metapaths for .—

A. Metagraph:

“diysiequsw

Image from: Himmelstein et al. 2015. Heterogeneous network edge prediction: A data

integration approach to prioritize disease-associated genes. PLoS Comp Bio.
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Metapath2vec: Two Main Steps

Extending node2vec to het nets:

1. Metapath-based random walks
= Specify a metapath of interest

= Run random walks that capture structural
correlations between different node types

2. Random walk optimization

= Given the random walks, optimize node
embeddings (similar to Part T1)
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Step 1: Run Random Walks

= Given a metapath: Org  Author Paper Venue meta paths

E.g., OAPVPAO OG0

APA

OO0

APVPA

0O>O00

OAPVPAO

= What is the next step of a walker on node a, that
transitioned from node CMU?

Standard random walk: The next step can be all types of
nodes surrounding it:

" a,,as;, as,pPy, Pz, and CMU
Metapath-based random walk: The next step can only be a
paper node (P), given that its current node is an author node a,
(A) and its previous step was an organization node CMU (O):

=  Follow the semantics of this metapath
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Step 2: Optimize

1. Simulate many metapath-based random
walks starting from each node

2. For each node u, get N,(u) as a nodes of type
t that are visited by random walks starting at u

3. , learn its embedding by
predicting which nodes are in N (u):

L = S‘Y Z —log(P(v|2,))

ueV teVy ve N,y (u)
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Metapath2vec: Example

DeepWalk / node2vec
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2D projections of the learned
embeddings for:

= 16 CS conferences and corresponding
high-profile researchers in each field

Metapath2vec:

= Groups author-conference pairs closely

= Automatically organizes these two types of
nodes

= |_earns internal relationships between them:
= E.g., J. Dean = OSDI
= E.g., C. D. Manning - ACL

Not possible using methods for
homogeneous networks
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Outline of This Section

1.Shallow embeddings for het nets:
= OhmNet ‘/
= Metapath2vec

2.Deep embeddings for het nets:

= Decagon %
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Deep Embeddings

for Heterogeneous
Graphs

Based on material from:
«  /Jitnik et al., 2018. Modeling polypharmacy side effects with graph
convolutional networks. ISMB & Bioinformatics.
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Running Het Net Example

Drug pair ¢, d
leads‘to side effect

ry Gastrointestinal bleed side effect I's Nausea side effect 4&—@ Drug-protein interaction
' Bradycardia side effect r'4 Mumps side effect @—@ Protein-protein mteractlon
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|[dea: Aggregate Neighbors

Key idea: Generate node embeddings
based on network neighborhoods
separated by edge type

TARGETl NODE " B A‘: ..................... )

INPUTGRAPH . . e ‘



|dea: Aggregate Neighbors

Each edge type is modeled separately
A node’s neighborhood defines a computation graph

Edge type 3 g
E

KK
I S I G

Determine a node’s Learn how to transform and
computation graph propagate information across the graph
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Example: Aggregation

One-layer computation graph
for drug

0% \
Drug target relation
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Example: Aggregation

One-layer computation graph

| for drug A
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The Math: Deep Encoder

= Approach: Average neighbor messages for

each edge type and apply a neural network
Previous layer

— Initial O-th layer embeddings embedding of v
are equal to node features

ko k—1 hy !
e (v EE 5

Z,|= hX* \ Aggregate neighbor’ls
previous layer embeddings

\ Embedding after K Non-linearity
layers of neighborhood  (e.g., Rel.U)
aggregation
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Training the Model

How do we train the model to generate
embeddings?

. k
wi Mi

h NE,
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Drug target relation

Need to define a loss function
on the embeddlngs'
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—xample: Drug Side Effects

Goal: Predict labeled edges between drug
nodes

Query: Given a drug pair c, s, how likely does an
edge (c, 1y, s) exist?

Simvastatin

4 Co-prescribed drugs ¢ and

s lead to side effect r,

P
Ciprofloxacin

Mupirocin

Doxycycline

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 33



—xample: Drug Side Effects

1) Take the graph and learn a Embedding
d-dimensional vector A =) INEEE

(embedding) for every node @ mwm) EEEEE

?2) Use the learned HEEEE NEEER
embeddings to predict side ‘

effects of drug pairs A"’
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Example: Drug Side Effects

or-B—} Predictions
4\ Query p(Aa r1!A)
@li\lgh _— drug pair
] ZA P~ plA, 1, A)
:?I—Ikh
A A This is multi-relational link
y il prediction task! P(A, I, A)
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Modeling Polypharmacy Side
Effects with Graph Convolutional
Networks

July 10, 2018 at 12:20 pm
http.//snap.stanford.edu/decagon




Outline of This Section

1.Shallow embeddings for het nets:
= OhmNet ‘/
= Metapath2vec

2.Deep embeddings for het nets:

= Decagon ‘/
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This Tutorial

1) Node embeddings ‘/

= Map nodes to low-dimensional embeddings
= Applications: PPIls, Disease pathways

2) Graph neural networks ‘/

= Deep learning approaches for graphs
= Applications: Gene functions

3) Heterogeneous networks /

= Embedding heterogeneous networks
= Applications: Human tissues, Drug side effects
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Many interesting high-impact projects
In Machine Learning and Large Biomedical Data

Applications: Precision Medicine & Health, Drug Repurposing,
Drug Side Effect modeling, Network Biology, and many more
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