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This Tutorial
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1) Node embeddings
§ Map nodes to low-dimensional embeddings
§ Applications: PPIs, Disease pathways

2) Graph neural networks
§ Deep learning approaches for graphs
§ Applications: Gene functions

3) Heterogeneous networks
§ Embedding heterogeneous networks
§ Applications: Human tissues, Drug side effects
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Part 2: 
Graph Neural 

Networks
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Some materials adapted from:
• Hamilton et al. 2018. Representation Learning on 

Networks. WWW.
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Embedding Nodes
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Intuition: Map nodes to d-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together

Disease similarity
network 

2-dimensional node
embeddings



Embedding Nodes
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Goal: Map nodes so that similarity in the 
embedding space (e.g., dot product) 
approximates similarity in the network  

Input network d-dimensional 
embedding space



Embedding Nodes
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similarity(u, v) ⇡ z>v zuGoal:

Need to define!

Input network d-dimensional 
embedding space



Two Key Components
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§ Encoder: Map a node to a low-dimensional 
vector:

§ Similarity function defines how relationships 
in the input network map to relationships in the 
embedding space: 

enc(v) = zv
node in the input graph

d-dimensional 
embedding

Similarity of u and v
in the network

dot product between node 
embeddings

similarity(u, v) ⇡ z>v zu



So Far: Shallow Encoders
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Shallow encoders:
§ One-layer of data 

transformation
§ A single hidden layer 

maps node 𝑢 to 
embedding 𝒛& via 
function 𝑓, e.g.,            
𝒛& = 𝑓 𝒛), 𝑣 ∈ 𝑁. 𝑢



Shallow Encoders
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§ Limitations of shallow encoding:
§ O(|V|) parameters are needed: 

§ No sharing of parameters between nodes
§ Every node has its own unique embedding  

§ Inherently “transductive”: 
§ Cannot generate embeddings for nodes that 

are not seen during training
§ Do not incorporate node features:

§ Many graphs have features that we can and 
should leverage



Deep Graph Encoders
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§ Next: We will now discuss deep 
methods based on graph neural 
networks:

§ Note: All these deep encoders can be 
combined with similarity functions from 
the previous section

enc(v) = multiple layers of non-linear 
transformation of graph structure



Deep Graph Encoders

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 12

…



Idea: Convolutional Networks
CNN on an image:
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Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)



From Images to Networks
Single CNN layer with 3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
Transform information at the neighbors and combine it
§ Transform “messages” ℎ0 from neighbors: 𝑊0	ℎ0
§ Add them up: ∑ 𝑊0	ℎ0�

0



Real-World Graphs
But what if your graphs look like this?
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End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ Examples:
Biological networks, Medical networks, Social 
networks, Information networks, Knowledge 
graphs, Communication networks, Web graph, …



A Naïve Approach
§ Join adjacency matrix and features
§ Feed them into a deep neural net:

§ Issues with this idea:
§ 𝑂(𝑁) parameters
§ Not applicable to graphs of different sizes
§ Not invariant to node ordering
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End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]



Outline of This Section
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1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications
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Basics of Deep 
Learning for Graphs
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Based on material from:
• Hamilton et al. 2017. Representation Learning on Graphs: Methods and 

Applications. IEEE Data Engineering Bulletin on Graph Systems.
• Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions 

on Neural Networks. 
• Kipf et al., 2017. Semisupervised Classification with Graph Convolutional 

Networks. ICLR.



Setup
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§ Assume we have a graph 𝐺:
§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ=×|@| is a matrix of node features

§ Biologically meaningful node features:
– E.g., immunological signatures, gene 

expression profiles, gene functional information
§ No features:

– Indicator vectors (one-hot encoding of a node)



Examples
Protein-protein interaction networks in 
different tissues, e.g., blood, substantia nigra
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WNT1
RPT6

Node feature: Associations of 
proteins with midbrain development

Node feature: Associations of 
proteins with angiogenesis



Graph Convolutional Networks
Graph Convolutional Networks: 
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Problem: For a given subgraph how to come 
with canonical node ordering
Learning convolutional neural networks for graphs. M. Niepert,  M. Ahmed, K. Kutzkov ICML. 2016.

Learning Convolutional Neural Networks for Graphs

a sequence of words. However, for numerous graph col-
lections a problem-specific ordering (spatial, temporal, or
otherwise) is missing and the nodes of the graphs are not
in correspondence. In these instances, one has to solve two
problems: (i) Determining the node sequences for which
neighborhood graphs are created and (ii) computing a nor-
malization of neighborhood graphs, that is, a unique map-
ping from a graph representation into a vector space rep-
resentation. The proposed approach, termed PATCHY-SAN,
addresses these two problems for arbitrary graphs. For each
input graph, it first determines nodes (and their order) for
which neighborhood graphs are created. For each of these
nodes, a neighborhood consisting of exactly k nodes is ex-
tracted and normalized, that is, it is uniquely mapped to a
space with a fixed linear order. The normalized neighbor-
hood serves as the receptive field for a node under consider-
ation. Finally, feature learning components such as convo-
lutional and dense layers are combined with the normalized
neighborhood graphs as the CNN’s receptive fields.

Figure 2 illustrates the PATCHY-SAN architecture which
has several advantages over existing approaches: First, it
is highly efficient, naively parallelizable, and applicable to
large graphs. Second, for a number of applications, rang-
ing from computational biology to social network analysis,
it is important to visualize learned network motifs (Milo
et al., 2002). PATCHY-SAN supports feature visualiza-
tions providing insights into the structural properties of
graphs. Third, instead of crafting yet another graph kernel,
PATCHY-SAN learns application dependent features with-
out the need to feature engineering. Our theoretical contri-
butions are the definition of the normalization problem on
graphs and its complexity; a method for comparing graph
labeling approaches for a collection of graphs; and a result
that shows that PATCHY-SAN generalizes CNNs on images.
Using standard benchmark data sets, we demonstrate that
the learned CNNs for graphs are both efficient and effec-
tive compared to state of the art graph kernels.

2. Related Work
Graph kernels allow kernel-based learning approaches such
as SVMs to work directly on graphs (Vishwanathan et al.,
2010). Kernels on graphs were originally defined as sim-
ilarity functions on the nodes of a single graph (Kondor
& Lafferty, 2002). Two representative classes of kernels
are the skew spectrum kernel (Kondor & Borgwardt, 2008)
and kernels based on graphlets (Kondor et al., 2009; Sher-
vashidze et al., 2009). The latter is related to our work,
as it builds kernels based on fixed-sized subgraphs. These
subgraphs, which are often called motifs or graphlets, re-
flect functional network properties (Milo et al., 2002; Alon,
2007). However, due to the combinatorial complexity of
subgraph enumeration, graphlet kernels are restricted to

... ...
neighborhood graph construction

convolutional architecture

node sequence selection

graph normalization

Figure 2. An illustration of the proposed architecture. A node
sequence is selected from a graph via a graph labeling procedure.
For some nodes in the sequence, a local neighborhood graph is as-
sembled and normalized. The normalized neighborhoods are used
as receptive fields and combined with existing CNN components.

subgraphs with few nodes. An effective class of graph
kernels are the Weisfeiler-Lehman (WL) kernels (Sher-
vashidze et al., 2011). WL kernels, however, only sup-
port discrete features and use memory linear in the num-
ber of training examples at test time. PATCHY-SAN uses
WL as one possible labeling procedure to compute re-
ceptive fields. Deep graph kernels (Yanardag & Vish-
wanathan, 2015) and graph invariant kernels (Orsini et al.,
2015) compare graphs based on the existence or count of
small substructures such as shortest paths (Borgwardt &
Kriegel, 2005), graphlets, subtrees, and other graph in-
variants (Haussler, 1999; Orsini et al., 2015). In con-
trast, PATCHY-SAN learns substructures from graph data
and is not limited to a predefined set of motifs. More-
over, while all graph kernels have a training complexity
at least quadratic in the number of graphs (Shervashidze
et al., 2011), which is prohibitive for large-scale problems,
PATCHY-SAN scales linearly with the number of graphs.

Graph neural networks (GNNs) (Scarselli et al., 2009) are
a recurrent neural network architecture defined on graphs.
GNNs apply recurrent neural networks for walks on the
graph structure, propagating node representations until a
fixed point is reached. The resulting node representations
are then used as features in classification and regression
problems. GNNs support only discrete labels and perform
as many backpropagation operations as there are edges and
nodes in the graph per learning iteration. Gated Graph Se-
quence Neural Networks modify GNNs to use gated recur-
rent units and to output sequences (Li et al., 2015).

Recent work extended CNNs to topologies that differ from
the low-dimensional grid structure (Bruna et al., 2014;
Henaff et al., 2015). All of these methods, however, assume
one global graph structure, that is, a correspondence of the
vertices across input examples. (Duvenaud et al., 2015)
perform convolutional type operations on graphs, develop-
ing a differentiable variant of one specific graph feature.

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?



Our Approach

Learn how to propagate information across 
the graph to compute node features
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Determine node 
computation graph

Propagate and
transform information

𝑖

Idea: Node’s neighborhood defines a 
computation graph

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017



Idea: Aggregate Neighbors
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Key idea: Generate node embeddings
based on local network neighborhoods 

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A



Idea: Aggregate Neighbors
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Intuition: Nodes aggregate information from 
their neighbors using neural networks

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks



Idea: Aggregate Neighbors
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Intuition: Network neighborhood defines a 
computation graph

Every node defines a computation 
graph based on its neighborhood!



Deep Model: Many Layers
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§ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node u is its input feature, i.e. xu.

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0



Aggregation Strategies
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What’s in the box!?

§ Neighborhood aggregation: Key distinctions 
are in how different approaches aggregate 
information across the layers



Neighborhood Aggregation
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INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

§ Basic approach: Average information from 
neighbors and apply a neural network

1) average messages 
from neighbors 

2) apply neural network



Average of neighbor’s 
previous layer embeddings

The Math: Deep Encoder
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§ Basic approach: Average neighbor 
messages and apply a neural network

Initial 0-th layer embeddings
are equal to node features

Embedding after K 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

Previous layer 
embedding of vh0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v



Training the Model
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Need to define a loss function 
on the embeddings!

How do we train the model to generate 
embeddings?

𝒛C



Model Parameters
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We can feed these embeddings into any 
loss function and run stochastic gradient 
descent to train the weight parameters 

trainable weight matrices 
(i.e., what we learn) h0

v = xv

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A , 8k 2 {1, ...,K}

zv = hK
v



Unsupervised Training
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§ Train in an unsupervised manner:
§ Use only the graph structure
§ “Similar” nodes have similar embeddings

§ Unsupervised loss function can be anything 
from the last section, e.g., a loss based on
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Graph factorization
§ Node proximity in the graph



Unsupervised: Example
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Image from: Rhee et al. 2017. Hybrid Approach of Relation Network and Localized 
Graph Convolutional Filtering for Breast Cancer Subtype Classification. arXiv.



Supervised Training
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Directly train the model for a supervised task 
(e.g., node classification)

Safe or toxic 
drug?

Safe or 
toxic drug?

E.g., a drug-drug 
interaction network



Supervised: Example
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Graph neural network applied to gene-gene interaction graph to predict gene expression level

Single gene inference task by
adding nodes based on their distance 
from the node we want to predict

Image from: Dutil et al. 2018. Towards Gene 
Expression Convolutions using Gene 
Interaction Graphs. arXiv.



Training the Model
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Directly train the model for a supervised task 
(e.g., node classification)

Encoder output:
node embedding

Classification 
weights

Node class 
label

Safe or toxic 
drug?

L =
X

v2V

yv log(�(z
>
v ✓)) + (1� yv) log(1� �(z>v ✓))



Model Design: Overview
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1) Define a neighborhood 
aggregation function

2) Define a loss function on 
the embeddings

𝒛C



Model Design: Overview
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3) Train on a set of nodes, i.e., a 
batch of compute graphs



Model Design: Overview
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4) Generate embeddings
for nodes

𝒛C

𝒛D

𝒛E



Summary So Far
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§ Recap: Generate node embeddings by 
aggregating neighborhood information
§ We saw a basic variant of this idea
§ Key distinctions are in how different approaches 

aggregate information across the layers

§ Next: Describe state-of-the-art graph 
neural network



Outline of This Section
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1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications
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Graph Convolutional 
Networks

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Based on material from:
• Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. 

NIPS.



GraphSAGE

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 43

INPUT GRAPH
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???

?

?

?

So far we have aggregated the neighbor 
messages by taking their (weighted) average

Can we do better?
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GraphSAGE: Idea
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hk
v = �

�⇥
Ak · agg({hk�1

u , 8u 2 N(v)}),Bkh
k�1
v

⇤�

Any differentiable function 
that maps set of vectors in 
𝑁(𝑢) to a single vector



§ Simple neighborhood aggregation:

§ GraphSAGE:

GraphSAGE Aggregation
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generalized aggregation

Concatenate self embedding and 
neighbor embedding 

hk
v = �

�⇥
Wk · agg

�
{hk�1

u , 8u 2 N(v)}
�
,Bkh

k�1
v

⇤�

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A



Variants of Aggregation
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Mean: Take a weighted average of neighbors

Pool: Transform neighbor vectors and apply 
symmetric vector function

LSTM: Apply LSTM to reshuffled of neighbors

agg =
X

u2N(v)

hk�1
u

|N(v)|

agg = LSTM
�
[hk�1

u , 8u 2 ⇡(N(v))]
�

element-wise mean/max
agg = �

�
{Qhk�1

u , 8u 2 N(v)}
�



Summary So Far

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 47

Key idea: Generate node embeddings
based on local neighborhoods 

§ Nodes aggregate “messages” from their 
neighbors using neural networks

𝑣

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

Ahk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A

hk
v = �

0

@Wk

X

u2N(v)

hk�1
u

|N(v)| +Bkh
k�1
v

1

A



More on Graph Neural Nets
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Attention-based neighborhood aggregation:
§ Graph attention networks (Hoshen, 2017; Velickovic et al., 2018; 

Liu et al., 2018)

Embedding edges and entire graphs:
§ Graph neural nets with edge embeddings (Battaglia et al., 2016; 

Gilmer et. al., 2017)
§ Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016; 

Li et al., 2018)

Spectral approaches to graph neural networks:
§ Spectral graph CNN & ChebNet (Bruna et al., 2015; 

Defferrard et al., 2016)

Hyperbolic geometry and hierarchical embeddings:
§ Hierarchical relations (Nickel et al., 2017; Nickel et al., 2018)



Outline of This Section
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1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications
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Application: 
Tissue-specific Protein 

Function Prediction

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Material based on:
• Zitnik and Leskovec. 2017. Predicting Multicellular Function through 

Multilayer Tissue Networks. ISMB.
• Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. 

NIPS.



[Greene et al. 2015, Yeger & Sharan 2015, GTEx and others]
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Why Protein Functions?
Knowledge of protein functions in different 

tissues is essential for:
§ Understanding human biology
§ Interpreting genetic variation
§ Developing disease treatments
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Biotechnological limits & rapid growth of 
sequence data: most proteins can only be 

annotated computationally

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Why Predicting Protein 
Functions?



Protein Function Prediction
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CDC3

CDC16
CLB4

RPN3RPT1

RPT6

UNK1

UNK2

CDC3

CDC16
CLB4

RPN3RPT1

RPT6

UNK1

Cell
proliferation

Cell 
cycle

UNK2

Machine 
Learning

This is a multi-label node classification task
Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



What Does My Protein Do?
Goal: Given a protein and a tissue, predict the 
protein’s functions in that tissue

Proteins	×	Functions	×	Tissue𝑠 → [0,1]

𝑊𝑁𝑇1	×	(Midbrain	development, Substantia	nigra) → 0.9
RPT6	×	(Angiogenesis, Blood) → 0.05

Midbrain 
development

WNT1

Substantia 
nigra tissue

Angiogenesis

RPT6

Blood tissue
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Existing Research
§ Guilty by association: protein’s function is 

determined based on who it interacts with 
§ No tissue-specificity

§ Protein functions are assumed constant
across organs and tissues:
§ Functions in heart are the same as in skin

Lack of methods for predicting protein functions 
in different biological contexts
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Challenges
§ Tissues are related to each other:

§ Proteins in biologically similar tissues 
have similar functions 

§ Proteins are missing in some tissues
§ Little is known about tissue-specific 

protein functions:
§ Many tissues have no annotations
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Approach
1. Represent every tissue with a separate 

protein-protein interaction graph:
§ Protein function prediction is a multi-label node 

classification task
§ Each protein can have 0, 1, or more functions 

(labels) in each tissue
2. Learn protein embeddings:

§ Use PPI graphs and labels to train GraphSAGE:
§ Learn how to embed proteins in each tissue:

– Aggregate neighborhood information
– Share parameters in the encoder

§ Use inductive learning!
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Inductive Learning of Tissues
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INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

Wk
This image 
cannot 
currently be 

§ The same aggregation parameters are 
shared for all nodes:
§ Can generalize to unseen nodes
§ Can make predictions on entirely unseen 

graphs (tissues)!

Neural model for node A Neural model for node B



Inductive Learning of Tissues

59

1. Train on a protein-protein interaction graph from one tissue 
2. Generate embeddings and make predictions for newly 

collected data about a different tissue

Train on forebrain tissue Generalize to blood tissue

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Midbrain 
development

WNT1

Angiogenesis

RPT6

Inductive node embedding generalize to entirely unseen graphs



Data and Setup
§ Data:  

§ Protein-protein interaction (PPI) graphs, with each graph 
corresponding to a different human tissue

§ Use positional gene sets, motif gene sets, and 
immunological signatures from MSigDB as node features
§ Feature data is very sparse (42% of nodes have no features)
§ This makes leveraging neighborhood information critical

§ Use Gene Ontology annotations as labels 
§ Setup:

§ Multi-label node classification:
§ Each protein can have 0, 1, or more functions (labels) in each tissue

§ Train GraphSAGE on 20 tissue-specific PPI graphs
§ Generate new embeddings “on the fly”
§ Make prediction on entirely unseen graphs (i.e., new tissues)
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Annotating New Tissues
§ Transfer protein functions to an unannotated tissue
§ Task: Predict functions in target tissue without access to 

any annotation/label in that tissue
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§ GraphSAGE significantly 
outperforms the baseline 
approaches

§ LSTM- and pooling-based 
aggregators outperform 
mean- and GCN-based 
aggregators

Unsup. – unsupervised; Sup. – fully supervised GraphSAGE
F1 – scores are in [0,1], higher is better 



Outline of This Section
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1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications
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Many interesting high-impact projects 
in Machine Learning and Large Biomedical Data 

Applications: Precision Medicine & Health, Drug Repurposing, 
Drug Side Effect modeling, Network Biology, and many more
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