Deep Learning for Network Biology

Marinka Zitnik and Jure Leskovec

Stanford University

This Tutorial

snap.stanford.edu/deepnetbio-ismb

ISMB 2018

July 6, 2018, 2:00 pm - 6:00 pm

This Tutorial

1) Node embeddings

- Map nodes to low-dimensional embeddings
- Applications: PPIs, Disease pathways

2) Graph neural networks

- Deep learning approaches for graphs
- Applications: Gene functions

3) Heterogeneous networks

- Embedding heterogeneous networks
- Applications: Human tissues, Drug side effects

Part 2: Graph Neural Networks

Some materials adapted from:

 Hamilton et al. 2018. <u>Representation Learning on</u> <u>Networks.</u> WWW.

Embedding Nodes

Disease similarity network 2-dimensional node embeddings

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

Embedding Nodes

Goal: Map nodes so that **similarity in the embedding space** (e.g., dot product) approximates **similarity in the network**

Embedding Nodes

Two Key Components

- Encoder: Map a node to a low-dimensional vector: $timesticate{LNC}(v) = \mathbf{z}_v$ embedding node in the input graph
- Similarity function defines how relationships in the input network map to relationships in the embedding space:

 $\begin{array}{c} \text{similarity}(u,v) \approx \mathbf{z}_v^\top \mathbf{z}_u \\ \text{Similarity of } u \text{ and } v \\ \text{in the network} \end{array} \qquad \begin{array}{c} \text{dot product between node} \\ \text{embeddings} \end{array}$

So Far: Shallow Encoders

Shallow Encoders

Limitations of shallow encoding:

O(|V|) parameters are needed:

- No sharing of parameters between nodes
- Every node has its own unique embedding
- Inherently "transductive":
 - Cannot generate embeddings for nodes that are not seen during training
- Do not incorporate node features:
 - Many graphs have features that we can and should leverage

Deep Graph Encoders

- Next: We will now discuss deep methods based on graph neural networks:
 - $\mathrm{ENC}(v) = \max_{\mathrm{transformation of graph structure}} v$
- Note: All these deep encoders can be combined with similarity functions from the previous section

Deep Graph Encoders

Idea: Convolutional Networks

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

From Images to Networks

Single CNN layer with 3x3 filter:

Image

Graph

Transform information at the neighbors and combine it

- Transform "messages" h_i from neighbors: $W_i h_i$
- Add them up: $\sum_i W_i h_i$

Real-World Graphs

But what if yc

• Examples:

Biological networks, Medical networks, Social networks, Information networks, Knowledge graphs, Communication networks, Web graph, ...

A Naïve Approach

- Join adjacency thatrix and features
- Feed them into a deep neural net:

Issues with this idea: **Problems:**

- O(N) parameters Huge number of parameters O(N)• Not applicable to graphs of different sizes No inductive learning possible
 - Not invariant to node ordering

Outline of This Section

Basics of deep learning for graphs Graph convolutional networks

3.Biomedical applications

Basics of Deep Learning for Graphs

Based on material from:

- Hamilton et al. 2017. <u>Representation Learning on Graphs: Methods and</u> <u>Applications</u>. *IEEE Data Engineering Bulletin on Graph Systems*.
- Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions* on Neural Networks.
- Kipf et al., 2017. <u>Semisupervised Classification with Graph Convolutional</u> <u>Networks</u>. *ICLR*. Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Setup

- Assume we have a graph G:
 - V is the vertex set
 - *A* is the adjacency matrix (assume binary)
 - $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
 - Biologically meaningful node features:
 - E.g., immunological signatures, gene expression profiles, gene functional information
 - No features:
 - Indicator vectors (one-hot encoding of a node)

Examples

Protein-protein interaction networks in different tissues, e.g., blood, substantia nigra

Node feature: Associations of proteins with angiogenesis

Node feature: Associations of proteins with midbrain development

Graph Convolutional Networks

Graph Co

Problem: For with canonical node ordering

Learning convolutional neural networks for graphs. M. Niepert, M. Ahmed, K. Kutzkov ICML. 2016.

Our Approach

Idea: Node's neighborhood defines a computation graph

Determine node Propagate and computation graph transform information Learn how to propagate information across the graph to compute node features

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017 Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018

Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on local network neighborhoods

Idea: Aggregate Neighbors

Intuition: Nodes aggregate information from their neighbors using neural networks

Idea: Aggregate Neighbors

Deep Model: Many Layers

- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node u is its input feature, i.e. x_u .

Aggregation Strategies

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers

Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

The Math: Deep Encoder

Basic approach: Average neighbor messages and apply a neural network

Initial 0-th layer embeddings Previous layer are equal to node features $\mathbf{h}_v^0 = \mathbf{x}_v$ embedding of v $\mathbf{h}_{v}^{k} = \mathbf{\sigma}\left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1}\right), \ \forall k \in \{1, ..., K\}$ $\mathbf{z}_v = \mathbf{h}_v^K$ Average of neighbor's previous layer embeddings 🔨 Embedding after K Non-linearity layers of neighborhood (e.g., ReLU) aggregation

Training the Model

Model Parameters

We can feed these embeddings into any loss function and run stochastic gradient descent to train the weight parameters

Unsupervised Training

- Train in an unsupervised manner:
 - Use only the graph structure
 - "Similar" nodes have similar embeddings
- Unsupervised loss function can be anything from the last section, e.g., a loss based on
 - Random walks (node2vec, DeepWalk, struc2vec)
 - Graph factorization
 - Node proximity in the graph

Unsupervised: Example

Image from: Rhee et al. 2017. <u>Hybrid Approach of Relation Network and Localized</u> <u>Graph Convolutional Filtering for Breast Cancer Subtype Classification.</u> *arXiv*.

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Supervised: Example

Graph neural network applied to gene-gene interaction graph to predict gene expression level

Single gene inference task by adding nodes based on their distance from the node we want to predict

Image from: Dutil et al. 2018. <u>Towards Gene</u> <u>Expression Convolutions using Gene</u> Interaction Graphs. *arXiv*.

Training the Model

Directly train the model for a supervised task (e.g., node classification)

Model Design: Overview

Model Design: Overview

Model Design: Overview

4) Generate embeddings for nodes

INPUT GRAPH

Summary So Far

- Recap: Generate node embeddings by aggregating neighborhood information
 - We saw a **basic variant of this idea**
 - Key distinctions are in how different approaches aggregate information across the layers

Next: Describe state-of-the-art graph neural network

Outline of This Section

1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications

Graph Convolutional Networks

Based on material from:

 Hamilton et al., 2017. <u>Inductive Representation Learning on Large Graphs</u>. NIPS.

GraphSAGE

So far we have aggregated the neighbor messages by taking their (weighted) average **Can we do better?**

GraphSAGE: Idea

 $\mathbf{h}_{v}^{k} = \sigma\left(\left[\mathbf{A}_{k} \cdot \operatorname{AGG}(\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\}), \mathbf{B}_{k}\mathbf{h}_{v}^{k-1}\right]\right)$

GraphSAGE Aggregation

Simple neighborhood aggregation:

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right)$$
GraphSAGE:
$$\mathbf{h}_{v}^{k} = \sigma \left(\begin{bmatrix} \mathbf{W}_{k} \cdot \overline{\operatorname{AGG}\left(\{\mathbf{h}_{u}^{k-1}, \forall u \in N(v)\}\right)}, \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \end{bmatrix} \right)$$
generalized aggregation

Variants of Aggregation

Mean: Take a weighted average of neighbors

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_u^{k-1}}{|N(v)|}$$

Pool: Transform neighbor vectors and apply symmetric vector function

$$AGG = \gamma \left(\{ \mathbf{Qh}_{u}^{k-1}, \forall u \in N(v) \} \right)$$

LSTM: Apply LSTM to reshuffled of neighbors

$$AGG = LSTM\left(\left[\mathbf{h}_{u}^{k-1}, \forall u \in \pi(N(v)) \right] \right)$$

Summary So Far

Key idea: Generate node embeddings based on local neighborhoods

 Nodes aggregate "messages" from their neighbors using neural networks

More on Graph Neural Nets

Attention-based neighborhood aggregation:

 Graph attention networks (<u>Hoshen, 2017</u>; <u>Velickovic et al., 2018</u>; <u>Liu et al., 2018</u>)

Embedding edges and entire graphs:

- Graph neural nets with edge embeddings (<u>Battaglia et al., 2016;</u> <u>Gilmer et. al., 2017</u>)
- Embedding entire graphs (<u>Duvenaud et al., 2015;</u> <u>Dai et al., 2016;</u> <u>Li et al., 2018</u>)

Spectral approaches to graph neural networks:

 Spectral graph CNN & ChebNet (Bruna et al., 2015; Defferrard et al., 2016)

Hyperbolic geometry and hierarchical embeddings:

Hierarchical relations (<u>Nickel et al., 2017</u>; <u>Nickel et al., 2018</u>)

Outline of This Section

1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications

Application: Tissue-specific Protein Function Prediction

Material based on:

- Zitnik and Leskovec. 2017. <u>Predicting Multicellular Function through</u> <u>Multilayer Tissue Networks</u>. *ISMB.*
- Hamilton et al., 2017. Inductive Representation Learning on Large Graphs. *NIPS.*

Why Protein Functions?

Knowledge of protein functions in different tissues is essential for:

- Understanding human biology
- Interpreting genetic variation
- Developing disease treatments

[Greene et al. 2015, Yeger & Sharan 2015, GTEx and others]

Why Predicting Protein Functions?

Biotechnological limits & rapid growth of sequence data: most proteins can only be annotated computationally

Protein Function Prediction

This is a multi-label node classification task

What Does My Protein Do?

Goal: Given a protein and a tissue, **predict the protein's functions in that tissue**

Proteins × Functions × Tissues \rightarrow [0,1]

 $WNT1 \times (Midbrain development, Substantia nigra) \rightarrow 0.9$ RPT6 × (Angiogenesis, Blood) $\rightarrow 0.05$

Existing Research

- Guilty by association: protein's function is determined based on who it interacts with
 - No tissue-specificity
- Protein functions are assumed constant across organs and tissues:
 - Functions in heart are the same as in skin

Lack of methods for predicting protein functions in different biological contexts

Challenges

- Tissues are related to each other:
 - Proteins in biologically similar tissues have similar functions
 - Proteins are missing in some tissues
- Little is known about tissue-specific protein functions:
 - Many tissues have no annotations

Approach

- 1. Represent every tissue with a separate protein-protein interaction graph:
 - Protein function prediction is a multi-label node classification task
 - Each protein can have 0, 1, or more functions (labels) in each tissue
- 2. Learn protein embeddings:
 - Use PPI graphs and labels to train GraphSAGE:
 - Learn how to embed proteins in each tissue:
 - Aggregate neighborhood information
 - Share parameters in the encoder
 - Use inductive learning!

Inductive Learning of Tissues

- The same aggregation parameters are shared for all nodes:
 - Can generalize to unseen nodes
 - Can make predictions on entirely unseen graphs (tissues)!

Inductive Learning of Tissues

Inductive node embedding is generalize to entirely unseen graphs

- 1. Train on a protein-protein interaction graph from one tissue
- 2. Generate embeddings and make predictions for newly collected data about a different tissue

Data and Setup

Data:

- Protein-protein interaction (PPI) graphs, with each graph corresponding to a different human tissue
- Use positional gene sets, motif gene sets, and immunological signatures from MSigDB as node features
 - Feature data is very sparse (42% of nodes have no features)
 - This makes leveraging neighborhood information critical
- Use Gene Ontology annotations as labels

Setup:

- Multi-label node classification:
 - Each protein can have 0, 1, or more functions (labels) in each tissue
- Train GraphSAGE on 20 tissue-specific PPI graphs
- Generate new embeddings "on the fly"
- Make prediction on entirely unseen graphs (i.e., new tissues)

Annotating New Tissues

- Transfer protein functions to an unannotated tissue
- Task: Predict functions in target tissue without access to any annotation/label in that tissue

Name	Unsup. F1	Sup. F1		GraphSAGE significantly
Random	0.396	0.396		outperforms the baseline
Raw features	0.422	0.422		
DeepWalk				approaches
DeepWalk + features			_	CTM and nealing based
GraphSAGE-GCN	0.465	0.500	÷.,	LSTW- and pooling-based
GraphSAGE-mean	0.486	0.598		aggregators outperform
GraphSAGE-LSTM	0.482	0.612		mean- and GCN-based
GraphSAGE-pool	0.502	0.600		
% gain over feat.	19%	45%	-	aggregators

Unsup. - unsupervised; Sup. - fully supervised GraphSAGE

F1 - scores are in [0,1], higher is better

Outline of This Section

1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications

Stephen Bach

Adrijan **Bradaschia**

Sosic

VS Subrahmanian, Computer Science, University of Maryland Sarah Kunz, Medicine, Harvard University Russ Altman, Medicine, Stanford University Jochen Profit, Medicine, Stanford University Eric Horvitz, Microsoft Research Jon Kleinberg, Computer Science, Cornell University Sendhill Mullainathan, Economics, Harvard University Scott Delp, Bioengineering, Stanford University Jens Ludwig, Harris Public Policy, University of Chicago

Many interesting high-impact projects in Machine Learning and Large Biomedical Data

Applications: Precision Medicine & Health, Drug Repurposing, Drug Side Effect modeling, Network Biology, and many more