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This Tutorial

1) Node embeddings ‘/

= Map nodes to low-dimensional embeddings
= Applications: PPIls, Disease pathways

2) Graph neural networks @

= Deep learning approaches for graphs
= Applications: Gene functions

3) Heterogeneous networks

= Embedding heterogeneous networks
= Applications: Human tissues, Drug side effects
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Part 2:

Graph Neural
Networks

Some materials adapted from:
 Hamilton et al. 2018. Representation Learning on
Networks. WV
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Embedding Nodes
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Disease similarity 2-dimensional node
network embeddings
Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together
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Embedding Nodes

Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity in the network
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encode nodes

d-dimensional
embedding space
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Embedding Nodes

-

Goal: similarity(u, v) ~ z, z,

AN

Need to define!

d-dimensional

Input network
P embedding space
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Two Key Components

= Encoder: Map a node to a low-dimensional

vector: d-dimensional
ENC(v) = z,” embedding

node in thefinput graph
= Similarity function defines how relationships
In the input network map to relationships in the

embedding space:

similarity (u, v) ~ z, 2z,

. _ X
Similarity of uand v dot product between node
IN the network

embeddings
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So Far: Shallow Encoders

Embedding

Shallow encoders: iokwp [

= One-layer of data
transformation Node u |

= A single hidden layer 00— 2y 2
maps node u to Node v
embedding z,, via
function f, e.g.,

Zy = f(zv: v € Np (U)) Embedding

lookup

Dot product
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Shallow Encoders

= Limitations of shallow encoding:

= O(|V]) parameters are needed:
= No sharing of parameters between nodes
= Every node has its own unique embedding

* Inherently “transductive’.

= Cannot generate embeddings for nodes that
are not seen during training

= Do not incorporate node features:

= Many graphs have features that we can and
should leverage
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Deep Graph Encoders

= Next: We will now discuss deep
methods based on graph neural
networks:

ENC (U) — multiple layers of non-linear
transformation of graph structure

= Note: All these deep encoders can be
combined with similarity functions from
the previous section
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Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
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Activation
function
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|dea: Convolutional Networks

CNN on an image:

Subsampling Convolutions Subsampling  Fully connected

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)
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From Images to Networks

Single CNN layer with 3x3 filter:

Image Graph

Transform information at the neighbors and combine it
Transform “messages” h; from neighbors: W; h;
Add them up: 3; W; h;
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Real-World Graphs

But what if your graphs look like this?

® ’ .
o /7 or this: o, o e
® ® ® .0 .0 . o
e [ o " ®
® o ° o 9 ° @ ¢
= Examples:

Biological networks, Medical networks, Social
networks, Information networks, Knowledge
graphs, Communication networks, Web graph, ...
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A Nalve Approach

= Join adjacency matrix and features
" Feed them into a deep neural net:

hidden layer 1 hidden layer 2 hidden layer 3

input layer

A B CDE
Al o1 1 1 0
Bl 1 o 0o 1 1 ?
Cl 1 o o 1 0 n
D 1 1 1 0o 1
El o1 0 1 0

* |ssues with this idea:
= O(N) parameters
= Not applicable to graphs of different sizes
= Not invariant to node ordering
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Outline of This Section

1.Basics of deep learning for graphs

2.Graph convolutional networks

3.Biomedical applications
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Basics of Deep

Learning for Graphs

Based on material from:

Hamilton et al. 2017. Representation Learning on Graphs: Methods and
Applications. IEEE Data Engineering Bulletin on Graph Systems.

Scarselli et al. 2005. The Graph Neural Network Model. |[EEE Transactions
on Neural Networks.

Kipf et al., 2017. Semisupervised Classification with Graph Convolutional
Networks. /CLR.
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Setup

= Assume we have a graph G:
= 1V Is the vertex set
= A is the adjacency matrix (assume binary)

= X € R™IVl is a matrix of node features

= Biologically meaningful node features:

— E.g., immunological signatures, gene
expression profiles, gene functional information

= No features:
— Indicator vectors (one-hot encoding of a node)
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Examples

Protein-protein interaction networks in
different tissues, e.g., blood, substantia nigra

RPT6
WNT1
Node feature: Associations of Node feature: Associations of
proteins with angiogenesis proteins with midbrain development
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Graph Convolutional Networks

Graph Convolutional Networks:

I graph normalization

f neighborhood graph construction f
OO = OO0 O - 060 O

node sequence selection

Problem: For a given subgraph how to come
with canonical node ordering

Learning convolutional neural networks for graphs. M. Niepert, M. Ahmed, K. Kutzkov ICML. 2016.
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Our Approach

Idea: Node’s neighborhood defines a
computation graph

Determine node Propagate and
computation graph transform information

Learn how to propagate information across
the graph to compute node features

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017
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|[dea: Aggregate Neighbors

Key idea: Generate node embeddings
based on local network neighborhoods

TARGETl NODE " ® A‘: ..................... ©

INPUTGRAPH . . e ‘
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|[dea: Aggregate Neighbors

Intuition: Nodes aggregate information from
their neighbors using neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks
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|[dea: Aggregate Neighbors

Intuition: Network neighborhood defines a
computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH
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Deep Model: Many Layers

= Model can be of arbitrary depth:
= Nodes have embeddings at each layer
= |Layer-O embedding of node u is its input feature, i.e. x,.

TARGET NODE

l

INPUT GRAPH

Layer-0
Layer-1 @XA
) ‘ A“ ...................... . X C
Layer-2 XA
x . @xp
. < : ................. .4-.7. X E
. . XF
W5y,
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Aggregation Strategies

= Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
iInformation across the layers

---------------- ®

TARGET NODE - " ® A‘: ..................... ©
l What’s in the box!? °

. r':::jiff;f: ..... B

. <+ 9 : ................. ‘4'.: ...... ‘
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Neighborhood Aggregation

= Basic approach: Average information from

neighbors and apply a neural network

1) average messages

| L a
TARGET NODE fI’Om ﬂelghbo 'S .A“ ----------------- '
x ]
s .4—. o
. v. .. ...... ‘
oy
INPUTGRAPH @« . e ‘
2) apply neural network
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The Math: Deep Encoder

= Basic approach: Average neighbor

messages and apply a neural network
Initial O-th layer embeddings

are equal to node features Previous layer
- - ) embedding of v

hy =[@] | W

Z, = h"

previous layer embeddings
\ Embedding after K Non-linearity
layers of neighborhood  (e.g., RelLU)

aggregageie?n
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Training the Model

How do we train the model to generate
embeddings? 4‘ ........................ a

zZ, ® <

Need to define a loss function
on the embeddings!

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee



Model Parameters

tramable weight matrices

hg = x, (i.e., what we learn)

hy =0 |[[Wi > HBih* 1|, Vke{1,.. K}
e IN (v)]

z, = h’*

We can feed these embeddings into any
loss function and run stochastic gradient
descent to train the weight parameters
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Unsupervised Training

= Train in an unsupervised manner:
= Use only the graph structure
= “Similar” nodes have similar embeddings

= Unsupervised loss function can be anything
from the last section, e.g., a loss based on
= Random walks (node2vec, DeepWalk, struc2vec)

= Graph factorization
= Node proximity in the graph
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Unsupervised: Example
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Image from: Rhee et al. 2017. Hybrid Approach of Relation Network and Localized
Graph Convolutional Filtering for Breast Cancer Subtype Classification. arXiv.
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Supervised Training

Directly train the model for a supervised task
(e.g., node classification)

_ Safe or

Safe or toxic toxic drug? ....,
drug? 3

® .

K E.g., a drug-drug
interaction network
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Supervised: Example

;’;3 - Node aggregation
- Drop-out 40% 1 >°"€ - Max pooling Predlcuon
_— N

ADD3

I P L) e e Single gene inference task by
o wmew e X adding nodes based on their distance
| 234 from the node we want to predict
RFWD2 ,,/ ,,'/’{7/" | a3 \‘\\ \\ KAl
'll ll/ m- / X A 4‘\‘ ‘|‘
RAKL : HSPAB {~ V7 . L Lwera : TRAPPC2L : HsPA2
l‘\ X uwu‘ ; K~ 1’, /
AN N Image from: Dutil et al. 2018, Towards Gene
A SN Expression Convolutions using Gene
ol T . Interaction Graphs. arXiv.
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Training the Model

Directly train the model for a supervised task
(e.g., node classification)

L= @los(c@0) + (1 —[@) log(1 — - @ 9))

veV x

Encoder output:
node embedding

®
~— Safe or toxic Node class
7§ drug?
% label
]

o il oe
G Q
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Model Design: Overview

1) Define a neighborhood
aggregation function

ZA."

\

2) Define a loss function on
the embeddings
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Model Design: Overview

“.‘

3) Train on a set of nodes, i.e., a
batch of compute graphs

® * A
h m
%6 oo ®e e e '/
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Model Design: Overview

“.‘

4) Generate embeddings
for nodes

& )
£ e .xu..w.
e o | N
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Summary So Far

= Recap: Generate node embeddings by
aggregating neighborhood information
= \We saw a basic variant of this idea

= Key distinctions are in how different approaches
aggregate information across the layers

= Next: Describe state-of-the-art graph
neural network
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Outline of This Section

1.Basics of deep learning for graphj

2.Graph convolutional networks @

3.Biomedical applications

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



Graph Convolutional

Networks

Based on material from:
Hamilton et al., 2017. Inductive Representation Learning on Large Graphs.
NIPS.
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GraphSAGE

So far we have aggregated the neighbor
messages by taking their (weighted) average

Can we do better? ®

TARGETl NODE " ® A‘: ..................... ©

® < ??? € ‘4'.3 """""""""" E

INPUT GRAPH ‘
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GraphSAGE: Idea

TARGET NODE

R
0
-
R3
R3
-
-
0
o
R3
o

.4. @errrrnaneennsl .

INPUT GRAPH Any differentiable function | ®
that maps set of vectors in
N (u) to a single vector
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GraphSAGE Aggregation

= Simple neighborhood aggregation:

hk 1
hy =0 | W, +Bihy ™!
( 2 N ()]

ueN (v)

Concatenate self embedding and

= GraphSAGE: neighbor embedding
/ \
h? = o ([Wy, -Jace ({hE 1 Vu € N(v)}), Byhi 1))
/

generalized aggregation
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Variants of Aggregation

Mean: Take a weighted average of neighbors
hF-!
A= 2 NG

ueN (v)

Pool: Transform neighbor vectors and apply

symmetric vector function
element-wise mean/max

acc =f|({Qhy ", Vu € N(v)})
LSTM: Apply LSTM to reshuffled of neighbors

AGG = LSTM ([hf ! vu € 7(N(v)))])
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Summary So Far

Key idea: Generate node embeddings
based on local neighborhoods

= Nodes aggregate “messages” from their
neighbors using neural networks
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More on Graph Neural Nets

Attention-based neighborhood aggregation:
= Graph attention networks (Hoshen, 2017; Velickovic et al., 2018;
Liu et al., 2018)

Embedding edges and entire graphs:

= Graph neural nets with edge embeddings (Battaglia et al., 2016;
Gilmer et. al., 2017)

= Embedding entire graphs (Duvenaud et al., 2015; Dai et al., 2016;
Li et al., 2018)

Spectral approaches to graph neural networks:

= Spectral graph CNN & ChebNet (Bruna et al., 2015;
Defferrard et al., 2016)

Hyperbolic geometry and hierarchical embeddings:
= Hierarchical relations (Nickel et al., 2017; Nickel et al., 2018)
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Outline of This Section

1.Basics of deep learning for grapb}/
2.Graph convolutional networks ‘/

3.Biomedical applications @
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Application:

Tissue-specific Protein
Function Prediction

Material based on:

« /itnik and Leskovec. 2017. Predicting Multicellular Function through
Multilayer Tissue Networks. ISMEB.

« Hamilton et al., 2017. Inductive Representation Learning on Large Graphs.
NIPS.
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Why Protein Functions?

Knowledge of protein functions in different
tissues is essential for:

= Understanding human biology
= |nterpreting genetic variation
= Developing disease treatments

[Greene et al. 2015, Yeger & Sharan 2015, GTEx and others]

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018
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Why Predicting Protein
Functions?

Biotechnological limits & rapid growth of
sequence data: most proteins can only be
annotated computationally
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Protein Function Prediction

Cell
cycle

CDC3 CDC3

CLB4
CDC16 CDC16
UNK1 'Qb.
—
Celll.f ti Machine
proliferation | zring
RPT1 RPN3 RPN3
RPT6 UNK2 UNK2

This is a multi-label node classification task
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What Does My Protein Do?

Goal: Given a protein and a tissue, predict the
protein’s functions in that tissue

Proteins X Functions X Tissues — [0,1]

Substantia Blood tissue

nigra tissue

RPT6

Midbrain WNT1

development Angiogenesis

WNT1 X (Midbrain development, Substantia nigra) — 0.9
RPT6 x (Angiogenesis, Blood) = 0.05
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EXisting Research

= Guilty by association: protein’s function is
determined based on who it interacts with

= No tissue-specificity
= Protein functions are assumed constant
across organs and tissues:

= Functions in heart are the same as in skin

Lack of methods for predicting protein functions
In different biological contexts
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Challenges

= [|ssues are related to each other:

= Proteins in biologically similar tissues
have similar functions

= Proteins are missing in some tissues

= [jttle is known about tissue-specific
protein functions:
= Many tissues have no annotations

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018
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Approach

. Represent every tissue with a separate

protein-protein interaction graph:

= Protein function prediction is a multi-label node
classification task

= Each protein can have O, 1, or more functions
(labels) in each tissue

. Learn protein embeddings:

= Use PPI graphs and labels to train GraphSAGE:

= |Learn how to embed proteins in each tissue:
— Aggregate neighborhood information
— Share parameters in the encoder

= Use inductive learning!
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Inductive Learning of Tissues

* The same aggregation parameters are
shared for all nodes:
= Can generalize to unseen nodes

= Can make predictions on entirely unseen
graphs (tissues)!

DT SRR R RS B R

i Ealie S sl H
B e e T B e T P P PP PP P P PP P PP PP PP PPTT PP PP

INPUT GRAPH Neural model for node A Neural model for node B
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Inductive Learning of Tissues

RPT6

Midbrain WNTH
development ‘ Angiogenesis

Train on forebrain tissue Generalize to blood tissue

Inductive node embedding # generalize to entirely unseen graphs

1. Train on a protein-protein interaction graph from one tissue
2. Generate embeddings and make predictions for newly
collected data about a different tissue
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Data and Setup

= Data:

= Protein-protein interaction (PPI) graphs, with each graph
corresponding to a different human tissue

= Use positional gene sets, motif gene sets, and
immunological signatures from MSigDB as node features
= Feature data is very sparse (42% of nodes have no features)
= This makes leveraging neighborhood information critical

= Use Gene Ontology annotations as labels
= Setup:
= Multi-label node classification:
= Each protein can have O, 1, or more functions (labels) in each tissue
= Train GraphSAGE on 20 tissue-specific PPl graphs
= (Generate new embeddings “on the fly”
= Make prediction on entirely unseen graphs (i.e., new tissues)
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Annotating New Tissues

= Transfer protein functions to an unannotated tissue

= Task: Predict functions in target tissue without access to
any annotation/label in that tissue

Name Unsup- F1_ Sup-Fl o GraphSAGE significantly
Random 0.396 0.396 -

Raw features 0.422 0.422 outperforms the baseline
DeepWalk — — approaches

DeepWalk + features - — ,
GraphSAGE-GCN 0.465 0500 " LSTM-and pooling-based
GraphSAGE-mean 0.486 0.598 aggregators outperform
GraphSAGE-LSTM 0.482 0.612 ) )
GraphSAGE-pool 0.502 0.600 mean- and GCN-based

% gain over feat. 19% 45% aggregators

Unsup. — unsupervised; Sup. — fully supervised GraphSAGE
F1 — scores are in [0,1], higher is better
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Outline of This Section

1.Basics of deep learning for grapbj/
2.Graph convolutional networks ‘/

3.Biomedical applications ‘/
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Many interesting high-impact projects
In Machine Learning and Large Biomedical Data

Applications: Precision Medicine & Health, Drug Repurposing,
Drug Side Effect modeling, Network Biology, and many more

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 64



