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This Tutorial

1) Node embeddings <)

= Map nodes to low-dimensional embeddings
= Applications: PPIls, Disease pathways

2) Graph neural networks

= Deep learning approaches for graphs
= Applications: Gene functions

3) Heterogeneous networks

= Embedding heterogeneous networks
= Applications: Human tissues, Drug side effects
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Part 1:

Node Embeddings

Some materials adapted from:
 Hamilton et al. 2018. Representation Learning on
Networks. WV
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Embedding Nodes
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Input Output
Intuition: Map nodes to d-dimensional

embeddings such that similar nodes in the graph
are embedded close together
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Setup

= Assume we have a graph G:
= V is the vertex set
= A is the adjacency matrix (assume binary)

= No node features or extra information
IS used!
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Embedding Nodes

Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity in the network
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Embedding Nodes

-

Goal: similarity(u, v) ~ z, z,

AN

Need to define!

d-dimensional

Input network embedding space
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Learning Node Embeddings

1. Define an encoder (a function ENC
that maps node u to embedding z,,)

2. Define a node similarity function
(a measure of similarity in the input
network)

3. Optimize parameters of the
encoder so that:
-

similarity (u, v) ~ z,, z,
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Two Key Components

1. Encoder maps a node to a d-dimensional

vector: d-dimensional
ENC(v) = z,~ embedding

7
node in the input graph

2. Similarity function defines how
relationships in the input network map to

relationships in the embedding space:

similarity(u,v) ~ z, Zy

Similarity of & and vin

dot product between node
the network

embeddings
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Embedding Methods

= Many methods use similar encoders:
= node2vec, DeepWalk, LINE, struc2vec

= These methods use different notions of
node similarity:
= Two nodes have similar embeddings if:

= they are connected?

» they share many neighbors?

= they have similar local network structure?
= gtc.
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Outline of This Section

1. Adjacency-based similarity@
2. Random walk approaches

3. Biomedical applications

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



Adjacency-based

Similarity

Material based on:
«  Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization.
WWwWw.
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Adjacency-based Similarity

= Similarity function is the edge weight
between u and v in the network

= [Intuition: Dot products between node
embeddings approximate edge existence

T 2
L= E qu Loy — Au,v ’
/ (u,’U)EVXV \ \
loss (what we embedding (weighted)

want to minimize) similarity , .
adjacency matrix

for the graph
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Adjacency-based Similarity

L= >  lzgzo— Auol
(u,v)EV XV

= Find embedding matrix Z € RE* VI that

minimizes the loss L:
= QOption 1: Stochastic gradient descent (SGD)
= Highly scalable, general approach
= QOption 2: Solve matrix decomposition solvers
= e.g., SVD or QR decompositions
= Need to derive specialized solvers
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Adjacency-based Similarity

= O(|V|?) runtime
= Must consider all node pairs

= O([E]) if summing over non-zero edges (e.g.,
Natarajan et al., 2014)

= O(|V|) parameters
= One learned embedding per node
= Only consider direct connections

Red nodes are obviously more similar to
Green nodes compared to
despite none being directly connected
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Outline of This Section

1. Adjacency-based similarity/
2. Random walk approaches@

3. Biomedical applications
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Random Walk

Approaches

Material based on:

« Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations.
KDD.

« Grover et al. 2016. node2vec: Scalable Feature Learning for Networks.
KDD.

* Ribeiro et al. 2017. struc2vec: Learning Node Representations from
Structural |dentity. KDD.
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Multi-Hop Similarity

Idea: Define node similarity function based on
higher-order neighborhoods

= Red: Target node
= k=1: 1-hop neighbors
= A(i.e., adjacency matrix)
= k= 2: 2-hop neighbors
» k=3: 3-hop neighbors

How to stochastically
define these higher-order
neighborhoods?
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Unsupervised Feature Learning

= |ntuition: FInd embedding of nodes to
d-dimensions that preserves similarity

= |dea: Learn node embedding such
that nearby nodes are close together

= Given a node u, how do we define
nearby nodes?

= Np(u) ... neighbourhood of u obtained
by some strategy R
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Feature Learning as Optimization

= Given G = (V,E)
= Goalistolearn f:u » R?

= where f is a table lookup

= We directly “learn” coordinates z,, = f(u) of u

= Given node u, we want to learn feature

representation f(u) that is predictive of

nodes in u’s neighborhood Ng (1)

m}gx z log Pr(Ngr(w)| z,,)

uev
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Unsupervised Feature Learning

Goal: Find embedding z,, that predicts
nearby nodes Ny (u)'

> log(P(Ng(u)|z.))
veV
Assume conditional likelihood factorizes:

P(Ng(u)lz.) = ][ Plnilza)

n;ENg(u)
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Random-walk Embeddings

Probability that u
ZTZ ~ and v Co-Occur in a
u U random walk over
the network
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Why Random Walks"

1. Flexibility: Stochastic definition of
node similarity:
= |ocal and higher-order neighborhoods

2. Efficiency: Do not need to consider
all node pairs when training

= (Consider only node pairs that co-occur
In random walks
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Random Walk Optimization

1. Simulate many short random walks starting
from each node using a strategy R

2. For each node u, get N,(u) as a sequence of
nodes visited by random walks starting at u

3. , learn its embedding by
predicting which nodes are in Ny(u):

L= > —log(P(v|z.))

ueV vENRg(u)
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Random Walk Optimization

( exp(z, z,)
L=, > |—log wil )
ueVveENR(u) (\ZHEVGXP(Z’LLZTL)/

‘

predicted probability of u
and v co-occuring on
random walk, i.e., use

softmax to parameterize

P(v|zy,)

Random walk embeddings = z,, minimizing L
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Random Walk Optimization

But doing this naively is too expensive!

L = Z — log

ENR(u)

-
Z,, Zoy

)

exp(

Nested sum over nodes gives 0(|V|?) complexity!

The problem is normalization term in the
softmax function?
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Solution: Negative Sampling

Solution: Negative sampling (Mikolov et al., 2013)

e (et

log z zv Zlog z zn n; ~ Py
/'
random distribution
over all nodes

sigmoid function

l.e., instead of normalizing w.r.t. all nodes, just
normalize against k random negative samples
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Random Walks: Overview

1. Simulate many short random walks starting
from each node using a strategy R

2. For each node u, get N,(u) as a sequence of
nodes visited by random walks starting at u

3. Foreach node 1, learn its embedding by
predicting which nodes are in Ny(u):

-y

uevV

Can efficiently approximate using negative sampling
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What is the strategy R”

= So far:

= Given simulated random walks, we described how to
optimize node embeddings

* What strategies can we use to obtain these
random walks?

= Simplest idea:

» Fixed-length, unbiased random walks starting from each node
(i.e., DeepWalk from Perozzi et al., 2013)

= Can we do better?

= Grover et al., 2016; Ribeiro et al., 2017; Abu-El-Haija et al., 2017
and many others
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node?2vec: Biased Walks

Idea: Use flexible, biased random walks
that can trade off between local and
global views of the network (Grover and
Leskovec, 2016)




node?2vec: Biased Walks

Two classic strategies to define a
neighborhood Ny (u) of a given node u:

Nprs(u) = {s1,52,83}  Local microscopic view
Nprs(u) = { 54, Sc, Sg Global macroscopic view
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Interpolate BFS and

DFS

Biased random walk R that given a node
u generates neighborhood Ny (1)

= [woO parameters:
= Return parameter p:

= Return back to the previous node

* |n-out parameter q:

= Moving outwards (DFS) vs. inwards (BFS)
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Biased Random Walks

Biased 2"d-order random walks explore
network neighborhoods:

= Rnd. walk started at u and is now at w

= Insight: Neighbors of w can only be:

Same distance to u




Biased Random Walks

= Walker is at w. Where to go next?

1/p,1/q,1 are
unnormalized
probabillities

= p,q model transition probabilities
= p ... return parameter
= g ... walk avvay parameter
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Biased Random Walks

= Walker is at w. Where to go next”

1/p
1

1/q

= BFS-like walk: Low value of p /
= DFS-like walk: Low value of g [onomaizes

transition prob.

N (u) are the nodes visited by the
walker
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BFS vs. DFS

BFS: DFS:

Micro-view of Macro-view of
neighbourhood neighbourhooad
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=xperiment: Micro vs. Macro

Interactions of characters in a novel:

o g0
£ ol ‘-’

oo%o y °
p=1, g=2 p=1, 9=0.5
Microscopic view of the Macroscopic view of the

network neighbourhood network neighbourhood

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 38



Summary So Far

= |dea: Embed nodes so that distances In
the embedding space reflect node
similarities in the network

= Different notions of node similarity:
= Adjacency-based (i.e., similar if connected)
= Random walk approaches:

» Fixed-length, unbiased random walks starting from
each node in the original network (Perozzi et al.,
2013)

» Fixed-length, biased random walks on the original
network (node2vec, Grover et al., 2016)

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 39



Summary So Far

So what method should | use..?

No one method wins in all cases....

= e.g., node2vec performs better on node classification
while multi-hop methods performs better on link
prediction (Goyal and Ferrara, 2017 survey).

Random walk approaches are generally
more efficient (i.e., O(|E]) vs. O(|V]|%))

In general: Must choose def’'n of node
similarity that matches application!
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Outline of This Section

1. Adjacency-based similarity/
2. Random walk approaches ¢/
3. Biomedical applications L)
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Biomedical

Applications

Material based on:

« Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.

« /Zitnik and Leskovec. 2017. Predicting Multicellular Function through
Multilayer Tissue Networks. /SVIB.

« Agrawal et al. 2018. Large-scale analysis of disease pathways in the human
interactome. PSE.

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 42



Biomedical Applications

1. Disease pathway detection:

= |dentify proteins whose mutation is

linked with a particular disease
= Task: Multi-label node classification m)f“\._/_/m\

2. Protein interaction prediction:

]

RASA2

= |dentify protein pairs that physmally

Interact in a cell

= Task: Link prediction

Dee|

p Learn

ing for Network Biology -- sna
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Human Interactome

RAD51

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 44



Human Interactome

RADS50 RFC1

Key principle (Cowen et al., 2017):
Proteins that interact underlie similar

phenotypes (e.g., diseases)

DMC1
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Disease Pathways

= Pathway: Subnetwork of interacting
proteins associated with a disease

RADS0

pathway

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



Disease Pathways: lask

@ Known (seed) disease protein @ Predicted disease protein
Predicted protein-disease association

Disease Disease

Disease protein
discovery

O Protein

@ Disease protein

== Protein-protein interaction
Protein-disease association
Pathway component
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Disease Pathway Dataset

= Protein-protein interaction (PPl) network
culled from 15 knowledge databases:

= 350k physical interactions, e.g., metabolic
enzyme-coupled interactions, signaling
interactions, protein complexes

= All protein-coding human genes (21k)
* Protein-disease associations:

= 21k associations split among 519 diseases
= Multi-label node classification: every

node (i.e., protein) can have O, 1 or more
labels (i.e., disease associations)
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Experimental Setup

= Two main stages:

1.

Take the PPl network and use node?vec
to learn an embedding for every node

For each disease:

= Fits a logistic regression classifier that predicts
disease proteins based on the embeddings:

— Train the classifier using training proteins

— Predict disease proteins in the test test:
probability that a particular protein is
associated with the disease
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hits@100

hits@100

hits@100

Pathways: Results

node2vec embeddings

1.0

p=0.45

1.0 . Te
.

p=-0.18

Distance of pathw%:3 gg@&mgg%

= Best performers:

= node2vec embeddings
hits@100 = 0.40

= DIAMOND
hits@100 = 0.30

= Matrix completion
hits@100 = 0.29

= Worst performer:

= Neighbor scoring
hits@100 = 0.24

hits@100: fraction of all the disease proteins are
ranked within the first 100 predicted proteins
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Biomedical Applications

1. Disease pathway detection:

= |dentify proteins whose mutation is ... .
linked with a particular disease

= Task: Multi-label node classification LHRNW\,%/““\

2. Protein interaction prediction:

= |dentify protein pairs that physmally
Interact in a cell TN\

= Task: Link prediction

Dee|

p Learn

ing for Network Biology -- sna
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Protein-Protein Interaction

Cyclin az.—e-..- P

USP7

i il T
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A
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Image from: Perkins et al. Transient Protein-Protein Interactions: Structural,

Functional, and Network Properties. Structure 2010.
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Network Data

= Human PPl network;

= Experimentally validated physical protein-
protein interactions from the BioGRID

= Link prediction: Given two proteins,
predict probability that they interact




Learning Edge Embeddings

= So far: Methods learn embeddings for
nodes:

= Great for tasks involving individual nodes (e.g.,
node classification)

= Question: How to address tasks involving
pairs of nodes (e.g., link prediction)?

= |dea: Given u and v, define an operator g
that generates an embedding for pair (u, v):

Zoyv)y — 9 (u,v)
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Learning Edge Embeddings

How to define operator g~

* Desiderata: The operator needs to
be defined for any pair of nodes, even
If the nodes are not connected

= \We consider four choices for g:

Scoring node pairs Definition

(a) Average [z, Bz,]; = —Z“(Z);Z”(z)

(b) Hadamard [z, [ z,]; = 2,(3) * 2, (7)

(c) Weighted-L1 |Zo, « 20|75 = |20 (2) — 2, (7)]

(d) Weighted-L2 |2 - Zo|3; = |20 (1) — 20, (7)|?
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Experimental Setup

= \We are given a PPl network with a certain
fraction of edges removed:
= Remove about 50% of edges

= Randomly sample an equal number of node pairs
at random which have no edge connecting them

= Explicitly removed edges and non-existent (or
false) edges form a balanced test data set

= [wo main stages:

1. Use node2vec to learn an embedding
for every node in the filtered PPI network

2. Predict a score for every protein pair in
the test set based on the embeddings
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PPl Prediction: Results

Op Algorithm Dataset '
Facebook | PPI arXiv u Learﬂed em beddlﬂgS

Common Neighbors || 0.8100 0.8153 I
Jaccard’s Coefficient || 0.8880 0.8067 d raStlcal |y OUtperform
Adamic-Adar 0.8289 0.8315
Pref. Attachment 0.7137 0.6996
Spectral Clustering 0.5960 0.5812

(a) | DeepWalk 0.7238 0.7066
LINE 0.7029 sste  m Hadamard operator:

node2vec
Spectral Clustering

Highly stable

(b) | DeepWalk = Best average performance
LINE 0.9490
node2vec
~Spectral Clustering | 0.
(c) | DeepWalk 0.9574
LINE 0.9483
node2vec 0.9602 Scoring node pairs | Definition
Spectral Clustering 0.7107 (a) Average 2, Bz, = zu(i);zv(i)
(d) | DeepWalk 0.9584 (b) Hadamard [Zy O 2] = 24, (4) * 2y (4)
LINE 0.9460 (c) Weighted-L1 |Zo - 20|75 = |20 (3) — 2, (3)]
node2vec 0.9606 (d) Weighted-L2 122 - 2o l|2; = |20 (i) — 20 (3)|?

F1 — scores are in [0,1], higher is better
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Biomedical Applications

1. Disease pathway detection:

= |dentify proteins whose mutation is

linked with a particular disease
= Task: Multi-label node classification m)f“\._/_/m\

2. Protein interaction prediction:

v

RASA2

= |dentify protein pairs that physmally

Interact in a cell

= Task: Link prediction

Dee|

p Learn

ing for Network Biology -- sna

p.stanford.edu/deepnetbio-ismb -- ISMB 2018
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Outline of This Section

1. Adjacency-based similarity/
2. Random walk approaches ‘/
3. Biomedical applications ¢/
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Many interesting high-impact projects
In Machine Learning and Large Biomedical Data

Applications: Precision Medicine & Health, Drug Repurposing,
Drug Side Effect modeling, Network Biology, and many more
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