
Deep Learning for 
Network Biology
Marinka Zitnik and Jure Leskovec

Stanford University

1
Deep Learning for Network Biology --

snap.stanford.edu/deepnetbio-ismb -- ISMB 
2018



This Tutorial

snap.stanford.edu/deepnetbio-ismb

ISMB 2018
July 6, 2018, 2:00 pm - 6:00 pm

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 2



This Tutorial
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1) Node embeddings
§ Map nodes to low-dimensional embeddings
§ Applications: PPIs, Disease pathways

2) Graph neural networks
§ Deep learning approaches for graphs
§ Applications: Gene functions

3) Heterogeneous networks
§ Embedding heterogeneous networks
§ Applications: Human tissues, Drug side effects
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Part 1: 
Node Embeddings
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Some materials adapted from:
• Hamilton et al. 2018. Representation Learning on 

Networks. WWW.



Embedding Nodes
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Intuition: Map nodes to d-dimensional 
embeddings such that similar nodes in the graph 
are embedded close together

OutputInput



Setup
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§ Assume we have a graph G:
§ V is the vertex set
§ A is the adjacency matrix (assume binary)

§ No node features or extra information 
is used!



Embedding Nodes
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Goal: Map nodes so that similarity in the 
embedding space (e.g., dot product) 
approximates similarity in the network  

Input network d-dimensional 
embedding space



Embedding Nodes
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similarity(u, v) ⇡ z>v zuGoal:

Need to define!

Input network d-dimensional 
embedding space



Learning Node Embeddings
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1. Define an encoder (a function ENC
that maps node 𝑢 to embedding 𝒛))

2. Define a node similarity function 
(a measure of similarity in the input 
network)

3. Optimize parameters of the 
encoder so that:

similarity(u, v) ⇡ z>v zu



Two Key Components
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1. Encoder maps a node to a d-dimensional 
vector:

2. Similarity function defines how 
relationships in the input network map to 
relationships in the embedding space: 

enc(v) = zv
node in the input graph

d-dimensional 
embedding

Similarity of u and v in 
the network

dot product between node 
embeddings

similarity(u, v) ⇡ z>v zu



Embedding Methods
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§ Many methods use similar encoders:
§ node2vec, DeepWalk, LINE, struc2vec

§ These methods use different notions of 
node similarity:
§ Two nodes have similar embeddings if:

§ they are connected?
§ they share many neighbors?
§ they have similar local network structure?
§ etc.



Outline of This Section
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1. Adjacency-based similarity

2. Random walk approaches

3. Biomedical applications
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Adjacency-based 
Similarity
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Material based on:
• Ahmed et al. 2013. Distributed Natural Large Scale Graph Factorization. 

WWW.
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§ Similarity function is the edge weight 
between u and v in the network

§ Intuition: Dot products between node 
embeddings approximate edge existence

(weighted) 
adjacency matrix 

for the graph

loss (what we 
want to minimize)

sum over all 
node pairs 

Adjacency-based Similarity

L =
X

(u,v)2V⇥V

kz>u zv �Au,vk2

embedding 
similarity



Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 15

§ Find embedding matrix 𝐙 ∈ ℝ0	2	|4| that 
minimizes the loss ℒ:
§ Option 1: Stochastic gradient descent (SGD)

§ Highly scalable, general approach
§ Option 2: Solve matrix decomposition solvers

§ e.g., SVD or QR decompositions
§ Need to derive specialized solvers

Adjacency-based Similarity
L =

X

(u,v)2V⇥V

kz>u zv �Au,vk2



Adjacency-based Similarity

Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 16

§ O(|V|2)	runtime
§ Must consider all node pairs
§ O([E|)	if summing over non-zero edges (e.g., 

Natarajan et al., 2014)
§ O(|V|)	parameters

§ One learned embedding per node
§ Only consider direct connections

Red nodes are obviously more similar to 
Green nodes compared to Orange nodes, 
despite none being directly connected



Outline of This Section
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1. Adjacency-based similarity

2. Random walk approaches

3. Biomedical applications
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Random Walk 
Approaches
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Material based on:
• Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. 

KDD.
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. 

KDD.
• Ribeiro et al. 2017. struc2vec: Learning Node Representations from 

Structural Identity. KDD.



Multi-Hop Similarity
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Idea: Define node similarity function based on 
higher-order neighborhoods

§ Red: Target node
§ k=1: 1-hop neighbors

§ A	(i.e., adjacency matrix)
§ k= 2: 2-hop neighbors
§ k=3: 3-hop neighbors

How to stochastically 
define these higher-order 

neighborhoods?



Unsupervised Feature Learning
§ Intuition: Find embedding of nodes to 
𝑑-dimensions that preserves similarity

§ Idea: Learn node embedding such 
that nearby nodes are close together

§ Given a node 𝑢, how do we define 
nearby nodes?
§ 𝑁= 𝑢 … neighbourhood of 𝑢 obtained 

by some strategy 𝑅
Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 20



Feature Learning as Optimization

§ Given 𝐺 = (𝑉, 𝐸)
§ Goal is to learn 𝑓: 𝑢 → ℝ0

§ where 𝑓 is a table lookup
§ We directly “learn” coordinates 𝒛𝒖 = 𝑓 𝑢 of 𝑢

§ Given node 𝑢, we want to learn feature 
representation 𝑓(𝑢) that is predictive of 
nodes in 𝑢’s neighborhood 𝑁H(𝑢)

max
L

M log Pr(𝑁H(𝑢)|	𝒛S)
�

)	∈4
Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018 21



Unsupervised Feature Learning
Goal: Find embedding 𝒛)	that predicts 
nearby nodes 𝑁= 𝑢 :

Assume conditional likelihood factorizes:
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X

v2V

log(P (NR(u)|zu))

22



Random-walk Embeddings
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Probability that u
and v co-occur in a 
random walk over 

the network

z>u zv ⇡



Why Random Walks?
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1. Flexibility: Stochastic definition of 
node similarity:
§ Local and higher-order neighborhoods

2. Efficiency: Do not need to consider 
all node pairs when training
§ Consider only node pairs that co-occur 

in random walks



Random Walk Optimization
1. Simulate many short random walks starting 

from each node using a strategy R
2. For each node u, get NR(u) as a sequence of 

nodes visited by random walks starting at u
3. For each node u,	learn its embedding by 

predicting which nodes are in NR(u):
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L =
X

u2V

X

v2NR(u)

� log(P (v|zu))



Random Walk Optimization
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sum over all 
nodes u

sum over nodes v	
seen on random 

walks starting from u

predicted probability of u
and v co-occuring on 
random walk, i.e., use 

softmax to parameterize 
𝑃(𝑣|𝒛))

Random walk embeddings = 𝒛) minimizing L

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆



Random Walk Optimization
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But doing this naively is too expensive!

Nested sum over nodes gives O(|V|2)	complexity!

The problem is normalization term in the 
softmax function?

L =
X

u2V

X

v2NR(u)

� log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆



Solution: Negative Sampling
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Solution: Negative sampling (Mikolov et al., 2013)

i.e., instead of normalizing w.r.t. all nodes, just 
normalize against k random negative samples

sigmoid function random distribution 
over all nodes

log

✓
exp(z>u zv)P

n2V exp(z>u zn)

◆

⇡ log(�(z>u zv))�
kX

i=1

log(�(z>u zni)), ni ⇠ PV



Random Walks: Overview
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Can efficiently approximate using negative sampling

1. Simulate many short random walks starting 
from each node using a strategy R

2. For each node u, get NR(u) as a sequence of 
nodes visited by random walks starting at u

3. For each node u,	learn its embedding by 
predicting which nodes are in NR(u):

L =
X

u2V

X

v2NR(u)

� log(P (v|zu))



What is the strategy R?
§ So far:

§ Given simulated random walks, we described how to 
optimize node embeddings

§ What strategies can we use to obtain these 
random walks?
§ Simplest idea: 

§ Fixed-length, unbiased random walks starting from each node 
(i.e., DeepWalk from Perozzi et al., 2013)

§ Can we do better?
§ Grover et al., 2016; Ribeiro et al., 2017; Abu-El-Haija et al., 2017

and many others
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node2vec: Biased Walks
Idea: Use flexible, biased random walks 
that can trade off between local and 
global views of the network (Grover and 
Leskovec, 2016)  
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ABSTRACT
Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-
search in the broader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features
themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Here we propose node2vec , an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec , we
learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-
work neighborhoods of nodes. We define a flexible notion of node’s
network neighborhood and design a biased random walk proce-
dure, which efficiently explores diverse neighborhoods and leads to
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we
demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-
tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning
state-of-the-art task-independent node representations in complex
networks.

Categories and Subject Descriptors: H.2.8 [Database Manage-
ment]: Database applications—Data mining; I.2.6 [Artificial In-
telligence]: Learning
General Terms: Algorithms; Experimentation.
Keywords: Information networks, Feature learning, Node embed-
dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-



node2vec: Biased Walks
Two classic strategies to define a 
neighborhood 𝑁= 𝑢 of a given node 𝑢:

32

𝑁YZ[ 𝑢 = {	𝑠^, 𝑠_, 𝑠`}

𝑁bZ[ 𝑢 = {	𝑠c, 𝑠d, 𝑠e}
Local microscopic view
Global macroscopic view
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1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of
nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-
protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should
have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us
discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that
one has to construct a feature vector representation for the nodes
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Figure 1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if one discounts
the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different
prediction tasks.

An alternative approach is to use data to learn feature represen-
tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of
the spectrum, one could directly aim to find a feature representation
that optimizes performance of a downstream prediction task. While
this supervised procedure results in good accuracy, it comes at the
cost of high training time complexity due to a blowup in the number
of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-
stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-
tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in
predictive accuracy [25, 27].

However, current techniques fail to satisfactorily define and opti-
mize a reasonable objective required for scalable unsupervised fea-
ture learning in networks. Classic approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world
networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networks provide an alternative approach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns
unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in
other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,
42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to the same community exhibit homophily, while the hub nodes
u and s6 in the two communities are structurally equivalent. Real-
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Interpolate BFS and DFS
Biased random walk 𝑅 that given a node 
𝑢 generates neighborhood 𝑁= 𝑢
§ Two parameters:

§ Return parameter 𝑝:
§ Return back to the previous node

§ In-out parameter 𝑞:
§ Moving outwards (DFS) vs. inwards (BFS)

33Deep Learning for Network Biology -- snap.stanford.edu/deepnetbio-ismb -- ISMB 2018



Biased Random Walks
Biased 2nd-order random walks explore 
network neighborhoods:

§ Rnd. walk started at 𝑢 and is now at 𝑤
§ Insight: Neighbors of 𝑤 can only be:

Idea: Remember where that walk came from
34

s1

s2

w
s3

u
Closer to 𝒖

Same distance to 𝒖

Farther from 𝒖
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Biased Random Walks
§ Walker is at w. Where to go next?

§ 𝑝, 𝑞 model transition probabilities
§ 𝑝 … return parameter
§ 𝑞 … ”walk away” parameter

1

1/𝑞
1/𝑝

35

1/𝑝, 1/𝑞, 1 are 
unnormalized
probabilitiess1

s2

w
s3

u
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Biased Random Walks
§ Walker is at w. Where to go next?

§ BFS-like walk: Low value of 𝑝
§ DFS-like walk: Low value of 𝑞

𝑁[(𝑢) are the nodes visited by the 
walker

36

w →
s1
s2
s3

1/𝑝
1
1/𝑞

Unnormalized
transition prob.

1

1/𝑞
1/𝑝s1

s2

w
s3

u
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BFS vs. DFS

BFS:
Micro-view of 

neighbourhood

u

DFS:
Macro-view of 
neighbourhood
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Experiment: Micro vs. Macro
Interactions of characters in a novel:

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

p=1, q=2
Microscopic view of the 
network neighbourhood

p=1, q=0.5
Macroscopic view of the 
network neighbourhood
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Summary So Far
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§ Idea: Embed nodes so that distances in 
the embedding space reflect node 
similarities in the network

§ Different notions of node similarity:
§ Adjacency-based (i.e., similar if connected)
§ Random walk approaches:

§ Fixed-length, unbiased random walks starting from 
each node in the original network (Perozzi et al., 
2013)

§ Fixed-length, biased random walks on the original 
network (node2vec, Grover et al., 2016)



Summary So Far
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§ So what method should I use..?
§ No one method wins in all cases….

§ e.g., node2vec performs better on node classification 
while multi-hop methods performs better on link 
prediction (Goyal and Ferrara, 2017 survey).

§ Random walk approaches are generally 
more efficient (i.e., O(|E|)	vs. O(|V|2))

§ In general: Must choose def’n of node 
similarity that matches application!



Outline of This Section
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1. Adjacency-based similarity

2. Random walk approaches

3. Biomedical applications
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Biomedical
Applications
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Material based on:
• Grover et al. 2016. node2vec: Scalable Feature Learning for Networks. KDD.
• Zitnik and Leskovec. 2017. Predicting Multicellular Function through 

Multilayer Tissue Networks. ISMB.
• Agrawal et al. 2018. Large-scale analysis of disease pathways in the human 

interactome. PSB.



Biomedical Applications
1. Disease pathway detection:

§ Identify proteins whose mutation is 
linked with a particular disease

§ Task: Multi-label node classification
2. Protein interaction prediction:

§ Identify protein pairs that physically 
interact in a cell

§ Task: Link prediction
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Human Interactome
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Human Interactome
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Key principle (Cowen et al., 2017):
Proteins that interact underlie similar 

phenotypes (e.g., diseases)
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Disease Pathways
§ Pathway: Subnetwork of interacting 

proteins associated with a disease
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Disease Pathways: Task
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Disease Pathway Dataset
§ Protein-protein interaction (PPI) network 

culled from 15 knowledge databases:
§ 350k physical interactions, e.g., metabolic 

enzyme-coupled interactions, signaling 
interactions, protein complexes

§ All protein-coding human genes (21k)
§ Protein-disease associations:

§ 21k associations split among 519 diseases
§ Multi-label node classification: every 

node (i.e., protein) can have 0, 1 or more 
labels (i.e., disease associations)
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Experimental Setup
§ Two main stages:

1. Take the PPI network and use node2vec 
to learn an embedding for every node

2. For each disease:
§ Fits a logistic regression classifier that predicts 

disease proteins based on the embeddings:
– Train the classifier using training proteins
– Predict disease proteins in the test test: 

probability that a particular protein is 
associated with the disease
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Pathways: Results
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§ Best performers:
§ node2vec embeddings
hits@100 = 0.40

§ DIAMOnD
hits@100 = 0.30

§ Matrix completion
hits@100 = 0.29

§ Worst performer:
§ Neighbor scoring 
hits@100 = 0.24
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node2vec embeddings

hits@100: fraction of all the disease proteins are
ranked within the first 100 predicted proteins



Biomedical Applications
1. Disease pathway detection:

§ Identify proteins whose mutation is 
linked with a particular disease

§ Task: Multi-label node classification
2. Protein interaction prediction:

§ Identify protein pairs that physically 
interact in a cell

§ Task: Link prediction
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Protein-Protein Interaction
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Image from: Perkins et al. Transient Protein-Protein Interactions: Structural, 
Functional, and Network Properties. Structure. 2010. 



Network Data
§ Human PPI network:

§ Experimentally validated physical protein-
protein interactions from the BioGRID

§ Link prediction: Given two proteins, 
predict probability that they interact
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Learning Edge Embeddings
§ So far: Methods learn embeddings for 

nodes:
§ Great for tasks involving individual nodes (e.g., 

node classification)
§ Question: How to address tasks involving 

pairs of nodes (e.g., link prediction)?
§ Idea: Given 𝑢 and 𝑣, define an operator 𝑔

that generates an embedding for pair (𝑢, 𝑣):
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𝒛(),w) = 𝑔(𝑢, 𝑣)



Learning Edge Embeddings
How to define operator 𝒈?

§ Desiderata: The operator needs to 
be defined for any pair of nodes, even 
if the nodes are not connected

§ We consider four choices for 𝑔:
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Experimental Setup
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§ We are given a PPI network with a certain 
fraction of edges removed:
§ Remove about 50% of edges
§ Randomly sample an equal number of node pairs 

at random which have no edge connecting them 
§ Explicitly removed edges and non-existent (or 

false) edges form a balanced test data set
§ Two main stages:

1. Use node2vec to learn an embedding 
for every node in the filtered PPI network

2. Predict a score for every protein pair in 
the test set based on the embeddings



PPI Prediction: Results
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§ Learned embeddings
drastically outperform 
heuristic scores 

§ Hadamard operator:
§ Highly stable
§ Best average performance

F1 – scores are in [0,1], higher is better



Biomedical Applications
1. Disease pathway detection:

§ Identify proteins whose mutation is 
linked with a particular disease

§ Task: Multi-label node classification
2. Protein interaction prediction:

§ Identify protein pairs that physically 
interact in a cell

§ Task: Link prediction
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Outline of This Section
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1. Adjacency-based similarity

2. Random walk approaches

3. Biomedical applications
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Many interesting high-impact projects 
in Machine Learning and Large Biomedical Data 

Applications: Precision Medicine & Health, Drug Repurposing, 
Drug Side Effect modeling, Network Biology, and many more
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