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Fusion of Hyperspectral and LIDAR Remote Sensing
Data for Classification of Complex Forest Areas
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Abstract—In this paper, we propose an analysis on the joint
effect of hyperspectral and light detection and ranging (LIDAR)
data for the classification of complex forest areas. In greater detail,
we present: 1) an advanced system for the joint use of hyperspec-
tral and LIDAR data in complex classification problems; 2) an
investigation on the effectiveness of the very promising support
vector machines (SVMs) and Gaussian maximum likelihood with
leave-one-out-covariance algorithm classifiers for the analysis of
complex forest scenarios characterized from a high number of
species in a multisource framework; and 3) an analysis on the
effectiveness of different LIDAR returns and channels (elevation
and intensity) for increasing the classification accuracy obtained
with hyperspectral images, particularly in relation to the discrim-
ination of very similar classes. Several experiments carried out on
a complex forest area in Italy provide interesting conclusions on
the effectiveness and potentialities of the joint use of hyperspectral
and LIDAR data and on the accuracy of the different classification
techniques analyzed in the proposed system. In particular, the ele-
vation channel of the first LIDAR return was very effective for the
separation of species with similar spectral signatures but different
mean heights, and the SVM classifier proved to be very robust and
accurate in the exploitation of the considered multisource data.

Index Terms—Data fusion, forestry, hyperspectral images, light
detection and ranging (LIDAR) data, multisensor classification.

I. INTRODUCTION

OREST preservation and management are important and

complex processes, which have significant implications on
the environment (e.g., protection of biological diversity and
climate mitigation) and on the economy (e.g., estimation of tim-
ber volume for commercial usage). An efficient prevention and
management policy requires a detailed knowledge of species
composition, distribution, and density. However, the assessment
of the distribution of tree species in large forests by a ground in-
ventory is a difficult and time-consuming task. Remote sensing
is a very useful technology to perform such kind of study. This
technology, if properly integrated with automatic processing
techniques, allows the analysis of large areas in a fast and
accurate way. Several studies have been carried out in this field,
analyzing the potentialities of different remote sensing sensors,
including passive multispectral and hyperspectral sensors, as
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well as active light detection and ranging (LIDAR) and syn-
thetic aperture radar (SAR) systems (e.g., [1]-[36]). All these
sensors, with their different peculiarities and characteristics,
can provide different information about the analyzed forest,
allowing to reach different targets such as classification of tree
species or estimation of biophysical parameters.

Standard passive multispectral sensors (like the Thematic
Mapper of the Landsat satellites) have been widely used in the
past years for forest classification and analysis. In the literature,
several studies are present on both classification and estimation
of forest parameters (e.g., [1]-[4]). Regarding classification,
due to the different spectral and geometrical characteristics
of multispectral sensors available, it is possible to find works
that analyze the problem with different levels of geometrical
detail. Regarding low-resolution multispectral data, the analysis
is generally limited to the discrimination between forested
and nonforested areas (see, for example, [5]). With medium-
resolution sensors, the level of detail can be increased, and
thus, the analysis can be focused on more specific classes, like
in the study presented in [6] where, using Landsat Enhanced
Thematic Mapper Plus (ETM+) images, eight different vege-
tation classes are analyzed. High geometrical resolution multi-
spectral sensors (e.g., Quickbird, Ikonos, and SPOTS) allow a
more detailed geometrical analysis considering the high spatial
resolution, but due to the poor spectral information acquired
by these sensors, they do not allow a detailed analysis of tree
species. As an example, Kosaka et al. [7] analyze six forest
types using Quickbird images and Wang et al. [8] distinguish
three kinds of mangrove using Ikonos and Quickbird data.

However, although significant results in forest analysis can
be obtained with these kinds of data, in forest characterized by a
high number of similar tree species, these sensors do not allow a
detailed analysis of the different forest species, as they acquire
information in a relatively small number of bands with large
spectral intervals. The new generation of passive hyperspectral
sensors, due to their ability to make a dense sampling of the
spectral signature, can instead collect a valuable information
for a detailed classification and analysis of similar forest types.
In particular, these data can be used in a wide range of different
analyses of forest environments. Several studies have addressed
the capability of hyperspectral data to estimate particular bio-
physical parameters like chlorophyll concentration or biomass
volume (e.g., [9]-[11]). Concerning classification problems,
hyperspectral images have been used in a wide number of
forest applications, ranging from general cases focusing on
the discrimination between forest and other land covers, to
a more detailed analysis dealing with the distinction of dif-
ferent tree species (e.g., [6], [12]-[14]). In [6], for example,
Goodenough et al. present an interesting analysis comparing
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classification results on a forest area obtained with three
different sensors, two multispectral (i.e., the Landsat-7 ETM+
and the EO-1 ALI), and one hyperspectral (i.e., the EO-1
Hyperion). The results of this study confirmed that, with hyper-
spectral data, it is possible to reach much higher classification
accuracies than with multispectral images. In [13], Clark et al.
studied seven deciduous tree species with the HYDICE sensor,
using three different classifiers, reaching accuracies on the
order of 90%. In [14], Leckie et al. used CASI hyper-
spectral images to separate five different coniferous species,
demonstrating the high importance of these kinds of data in
classification of similar tree species. In [12], Martin et al
separated 11 forest classes using Airborne Visible/Infrared
Imaging Spectrometer data.

Active SAR and LIDAR remote sensing sensors are also
widely used in forest analysis. SAR system is an important
source of information for studies on forest environments. With
SAR data, it is possible to estimate a wide range of forest
parameters, ranging from structure to biophysical indexes, like
forest fuel load (e.g., [15]-[17]). In the classification domain,
SAR data are mainly used for the separation of forested from
nonforested areas [18] or in problems where classification is
connected with tree parameters. In this context, Lee ef al. [19]
classify different stages of the age of coniferous and decidu-
ous trees using L-band polarimetric interferometric SAR data.
Ranson et al. [20] present a similar work, studying Siberian
trees, dividing the vegetation in four classes: young deciduous,
old deciduous, young conifer, and old conifer. In [21], Saatchi
and Rignot classify seven different vegetation classes (out
of a total of eight) using Jet Propulsion Laboratory aircraft
SAR data.

The use of LIDAR sensors is increasing in the context of for-
est applications. LIDAR is an effective information source for
studies related to tree height, forest structure, biomass, and all
the parameters that are mainly related to the vertical dimension
of the scene under analysis (e.g., [22]-[25]). LIDAR potentially
allows a very precise and detailed analysis of different forest
parameters. For example, in [25], Andersen et al. study the
potentialities of LIDAR in the estimation of some forest canopy
fuel parameters, finding high correlation between LIDAR data
and biophysical parameters. Some studies have also been done
in using LIDAR data in classification problems, in particular in
cases where a reduced number of classes are investigated, such
as the case of discrimination between deciduous and conifer
trees (e.g., [26]-[28]). In [26], Brennan and Webster present a
study with nine classes, obtaining high classification accuracies
for all classes and emphasizing that LIDAR data can be very
effective in the distinction between coniferous and deciduous
trees. In [28], Holmgren and Persson identify species of indi-
vidual trees using high-density airborne laser scanner data char-
acterizing the structure and the shape of different tree species.

The high number of remote sensing sensors available in
these last years, as well as the possibility to have images
acquired by different sensors on the same area, has resulted in
several studies on the use of multisensor information for forest
applications. In this context, many papers have been published
on the joint use of multispectral (or hyperspectral) images
and SAR data (e.g., [29] and [30]). Recently, some works
have also addressed the joint use of LIDAR and other active
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and passive sensors in forest parameter estimation problems
(e.g., [31]-[34]). For example, in [34], Hyde et al. describe the
results of an analysis on forest structure using four different
sensors (i.e., LIDAR, SAR, Landsat ETM+, and Quickbird),
underlining that, for the estimation of forest parameters, the
combination of LIDAR and ETM+ data achieves good accu-
racy. Concerning classification problems, Simental et al. [35]
explore the joint use of hyperspectral and LIDAR data for the
separation of vegetation classes, underlining that LIDAR can be
very useful in the separation of shrubs from trees. In [36], Lemp
and Weidner exploit hyperspectral and LIDAR data for the
classification of urban areas, using LIDAR for the segmentation
of the scene, and then hyperspectral data for the classification of
the resulting regions. In [37], Mundt et al. present a study on the
joint use of hyperspectral and LIDAR data for the classification
of sagebrush distribution, reporting accuracies of about 80%. In
[38], Sugumaran and Voss address the joint use of hyperspectral
and LIDAR data for the identification of tree species in an
urban environment, showing the effectiveness of LIDAR bands
in the classification phase. Other studies exploit LIDAR data in
the preprocessing phase. For example, in [39], Perry et al. use
the digital terrain model (DTM) derived from LIDAR in the
phase of geometric correction of hyperspectral images.

All the aforementioned papers indicate a good complemen-
tary relationship between hyperspectral and LIDAR data, as
they contain very different information: hyperspectral images
provide a detailed description of the spectral signatures of
classes but no information on the height of ground covers,
whereas LIDAR data give detailed information about the height
but no information on the spectral signatures. However, most
of the studies do not approach the integration of LIDAR and
hyperspectral signals from a real data fusion perspective but
address the problem in terms of separate use of these informa-
tion sources in different processing phases. In this scenario, at
the present, only very few investigations have been carried out
on both the design of advanced classification systems capable
of properly exploiting the complementary information present
in these data and the possibility to jointly use LIDAR and
hyperspectral data for classification of complex forest areas in
presence of many tree species.

In this paper, we address the above issues by proposing
an advanced classification system for the joint exploitation of
LIDAR and hyperspectral data and by studying the importance
of LIDAR data when fused with hyperspectral images in solv-
ing complex forest classification problems. The main motiva-
tion of this paper is that, at the present time, it is becoming
more common to acquire both LIDAR and hyperspectral data
on forest areas. Generally, these data are used separately; in
particular, hyperspectral data are exploited for forest classifica-
tion and LIDAR data for forest parameter estimation. However,
the availability of both data can be properly exploited in a data
fusion framework both at the classification and the estimation
level. In this paper, we focus our attention on the classification
problem. The main contributions of this paper to the literature
are as follows.

1) Definition of an advanced system for the joint use of
hyperspectral and LIDAR data in classification of com-
plex forest areas. In particular, the proposed system
can properly manage: a) the hyperdimensionality of the
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TABLE 1
DISTRIBUTION OF GROUND TRUTH SAMPLES AMONG INVESTIGATED CLASSES
CLASS NAME GROUND TRUTH CLASS NAME GROUND TRUTH CrASS NAME GROUND TRUTH
SAMPLES SAMPLES SAMPLES

Acer campestris 170 Juglans regia 1573 Quercus rubra 1137

Acer negundo 48 Morus sp. 164 Robinia pseudoacacia 1008
Alnus glutinosa 507 Platanus hybrida 2048 Rubus 661
Carpinus betulus 910 Populus canescens 244 Shadows 290
Corylus avellana 58 Populus hybrida 211 Snags 205

Fraxinus angustifolia 787 Prunus avium 261 Tilia cordata 507
Grassland 496 Quercus cerris 1796 Ulmus minor 403
Juglans nigra 1283 Quercus robur 2049

feature vector intrinsic in hyperspectral data; b) the dif-
ferent statistical properties of hyperspectral and LIDAR
data; and c) the complementary role that LIDAR data can
play with respect to hyperspectral data for the discrimi-
nation of some important forest species.

2) Investigation on the effectiveness of the very promising
distribution-free support vector machines (SVMs) and
the parametric Gaussian maximum likelihood with leave-
one-out-covariance algorithm (GML-LOOC) classifiers
in the analysis of complex forest scenarios characterized
by a high number of species in a multisource framework.

3) Analysis on the effectiveness of different LIDAR returns
and channels (elevation and intensity) for increasing the
classification accuracy obtained with hyperspectral im-
ages, particularly in relation to the discrimination of very
similar classes.

The proposed system was tested on a dense forest area
characterized by a very high number of complex tree species
(i.e., 19 species). In the experiments, we considered airborne
hyperspectral images and LIDAR data with a very high geo-
metrical resolution (1 m) and a density higher than five points
per square meter, respectively. The results obtained confirm the
effectiveness of the proposed system and achieve interesting
conclusions on the importance of the joint use of LIDAR and
hyperspectral data in forest classification.

This paper is organized into six sections. Section II describes
the data set used in our analysis, whereas Section III presents
the problem definition and the architecture of the proposed
system, as well as the main preprocessing techniques adopted.
The classification methods investigated in the proposed system
are analyzed in Section IV. Section V describes and discusses
the experimental results obtained. Finally, Section VI draws the
conclusion of this paper.

II. DATA SET DESCRIPTION

The study area selected is a complex forest scene that corre-
sponds to the natural reserve of the “Bosco della Fontana” in
the Po Plain near the city of Mantua, Italy. The central point of
the area has the following coordinates: 45° 12’ 1.68” N, 10° 44’
35.53"” E. The topography of this area is almost perfectly flat,
and it extends across an area of approximately 230 ha. This
area represents one of the best preserved forest relicts on the Po
Plain. Due to the absence of a significant human impact in the
last century, this area has the following interesting properties:
1) it contains a high number of vegetation species (more than
20); 2) it consists of several similar tree species, including

Quercus cerris, Quercus robur, and Quercus rubra; and 3) it
does not exhibit a preordered spatial tree distribution.

We investigated 19 different tree species, to which we added
a further four classes to have an exhaustive representation of
land covers of the whole area analyzed. In total, 23 classes
were represented (see Table I for a complete description of the
classes investigated). It is worth noting that among the 19 tree
species under analysis, there are classes belonging to the same
family, which have very similar spectral signatures. Another
important consideration with respect to this data set is that, from
the analyzed area, not all the vegetation classes have the same
relative frequency, and that there are some dominant species
(e.g., Carpinus betulus, Quercus cerris, Quercus robur, and
Quercus rubra).

The hyperspectral and LIDAR data (see Fig. 1) were ac-
quired simultaneously on June 28, 2006 between 9:04 A.M. and
9:36 A.M. The hyperspectral data consist of six partially over-
lapping images acquired by an AISA Eagle sensor in 126
spectral bands, ranging from 400 to 990 nm, with a spectral
resolution of about 4.5 nm and a spatial resolution of 1 m.
The flight direction of the plane was the same for all the six
images (from East to West), and the flight height was consistent,
at approximately 750 m. The LIDAR data were acquired by a
sensor Optech ALTM 3100, with a mean density of 5.6 points
per square meter. The laser pulse wavelength and the laser
repetition rate were 1064 nm and 100 kHz, respectively. The
data used in our investigation refer to the first four LIDAR
returns, in particular, the elevation and the intensity channels
of each return. The total number of LIDAR points per return is
as follows: 20271 067 points for the first return, 5096 256 for
the second, 1 110 799 for the third, and 85 741 for the fourth. A
DTM of the investigated area with a spatial resolution of 1 m
was extracted from the LIDAR data.

The ground truth samples (approximately 550 points) were
collected with a ground survey in autumn 2006. Samples were
collated on a laptop within an orthophoto (with a geometrical
resolution of 20 cm) of the area analyzed according to ground
observations. We extracted these points from the entire study
area, thus, ensuring a precise matching between the ground
observations and the aerial ones (e.g., we considered trees
near roads and grassland). The samples were collected on the
basis: 1) of the species (the ground truth is exhaustive, i.e.,
it represents all the species present in the area; furthermore,
it takes into account the relative frequency of each class)
and 2) of the spatial distribution (samples have a uniform
distribution all over the scene). All points were then con-
verted to region of interests on the coregistered hyperspec-
tral and LIDAR data and used for the generation of the
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(a)

Example of images used in the experiments. (a) Channel 34 (550 nm) of the hyperspectral image. (b) DCM of the analyzed area.

Fig. 1.

training and test sets. The total number of ground truth samples
(16816 pixels) represents about 0.7% of the whole investi-
gated area.

III. PROBLEM DEFINITION AND SYSTEM ARCHITECTURE
A. Problem Definition

Generally, the analysis of large forest areas with hyperspec-
tral scanners (usually characterized from a relatively small
field of view) requires the acquisition of different images that
are then integrated according to a mosaic procedure. In this
context, let us consider a series of M hyperspectral images X ;
(# =1,..., M) acquired in partially overlapping portions of the
investigated area, and a LIDAR image L taken simultaneously
with the hyperspectral ones. Let H be the radiometric normal-
ized mosaic of these images, and H ,,. be the corresponding
noise-reduced hyperspectral image. X; (:=1,..., M), H,
and H,, are n-dimensional images, where n is the total
number of spectral bands. Let L denote the LIDAR interpolated
image that consists of the elevation and the intensity channels of
the first m LIDAR returns. The total number of bands of L is 2
m, due to the fact that for each return, we have both elevation
FE and intensity I image (i.e., L = E U I). Thus, E and I are
m-dimensional images, representing the elevation and the in-
tensity of the first m LIDAR returns, respectively. Let x,, be the
g-dimensional feature vector that represents the pth pattern in
input to the classifier. Finally, let Q = {w1,wa, . ..,wk } be the
set of the K land-cover classes in the considered classification
problem, with w; the ¢th class.

As stated in Section I, we focus on a specific problem: the
fusion of hyperspectral and LIDAR data for classification of
trees species. To reach this objective, we propose a system
based on an architecture that processes both hyperspectral and
LIDAR data, exploiting the complementary role that these data
can play. The architecture of the proposed system (with the
aforementioned notation) is shown in Fig. 2. In the following,
we present, in detail, the different parts of the system.

B. System Architecture

The analysis of two different kinds of data (hyperspectral
and LIDAR) requires the use of two different preprocessing

(b)

schemes. For hyperspectral data, according to what was pre-
viously described, it is necessary to mosaic various images to
achieve coverage of the whole site. Before this phase, a relative
radiometric normalization should be applied to the single im-
ages to obtain a uniform mosaic image. Several normalization
algorithms have been proposed in literature (e.g., [40] and [41]).
Since the investigated area is almost perfectly flat, and the data
were acquired in a reduced interval of time (about 30 min), it
is reasonable to assume that all six hyperspectral images were
taken under the same illumination conditions. Therefore, and
taking into account that in the classification phase we use a su-
pervised classification system, we applied a relative radiometric
normalization to the images without any specific atmospheric
correction. In greater detail, we adopted a simple linear normal-
ization based on the mean-standard deviation algorithm [40].

After creating the mosaic, we coregistered the hyperspectral
data to the LIDAR images, using approximately 75 ground
control points distributed across the entire image. In particular,
to warp the image, we selected a polynomial transformation of
third order and a nearest-neighbor resampling of the pixels. The
root-mean-square error resulting after the coregistration phase
was 0.76. The hyperspectral data were then denoised with a
simple low-pass filter with a window size of 3 x 3 pixels. In
the previously published literature, several studies pointed out
the usefulness of this operation (e.g., [42] and [43]). In our case,
given the high geometrical resolution of the images, the spatial
degradation involved by the filter is acceptable with respect to
both the reduction of the noise present in the images and the
expected increase in class separability [42].

From a methodological viewpoint, the automatic analysis
of hyperspectral data in the presence of a high number of
forest classes is not a trivial task. In particular, the complexity
can be attributed to: 1) the high computational cost; 2) the
need of advanced classification systems capable of adequately
modeling the nonlinear hyperdimensional discrimination func-
tions associated with the presence of many tree species; and
3) the curse of dimensionality. In the context of a supervised
classification, one of the main difficulties is related to the
usually small ratio between the number of available training
samples and the number of features (Hughes phenomenon [44])
that makes it difficult (or impossible) to estimate the parameters
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Fig. 2. Architecture of the system developed.

of the classifier [e.g., with the Gaussian maximum-likelihood
(GML) algorithm].

A possible solution to this problem is to use a feature
selection technique. The rationale of this approach is to reduce
the number of features by selecting a representative subset of
the original spectral channels. A feature selection technique
is made up of a search strategy and of a separability crite-
rion. In the literature, several algorithms have been proposed
for both these tasks. Concerning the search strategy, we can
find optimal procedures (e.g., branch and bound [43]), which
allow us to identify the subset of features that maximizes
the separability criterion, or suboptimal ones (e.g., sequential
forward floating selection (SFFS) [45], steepest ascent [46]),
which find a suboptimal solution with a reduced computational
cost. For our study, we adopted the SFFS algorithm, which
is widely used in the literature as it provides solutions rea-
sonably close to the optimal one. Regarding the separability
criterion, several measures have been presented in the literature,
including the Bhattacharyya distance, the Jeffreys—Matusita
distance, and transformed divergence [43], [47]. We selected
the Jeffreys—Matusita distance, which is associated to the
Chernoff upper bound to the Bayesian error also in the mul-
ticlass case [48].

For the LIDAR analysis, we rasterized the raw data (corre-
sponding to the LAS format) of all the returns. The elevation
and the intensity channels were converted into a raster image
with a spatial resolution of 1 m, assigning to each pixel the
mean value of points within the corresponding area on the
ground. The few pixels with missing data in the first return were
replaced by a linear interpolation, whereas no interpolation was
applied to the other returns. After this phase, to determine the
height of vegetation with respect to the ground, we extracted
the digital canopy model (DCM) by subtracting the DTM to

Ground
Truth
y

L

Automatic
Classification

DCM
Calculation

f

Thematic Maps

DEM

the elevation channel of the LIDAR return. This procedure was
applied to the elevation band of all four LIDAR returns.

IV. CLASSIFICATION TECHNIQUES

In the definition of the proposed system, we analyzed and
compared two advanced classification techniques, specifically
suitable to the analysis of hyperdimensional feature spaces,
to evaluate their effectiveness in classifying complex forest
areas in a multisource framework. The first technique is a
parametric regularized GML classifier that applies the leave-
one-out-covariance (LOOC) procedure [48] to the estimation
of the statistics of the classifier. The second technique is a
distribution-free machine learning classifier based on the SVM
[49], [50]. The main motivations for this choice are: 1) GML-
LOOC and SVM have been widely used in previous studies
on classification of hyperspectral data (e.g., [48]-[50]), proving
their effectiveness in hyperdimensional feature spaces; 2) both
techniques are intrinsically able to solve ill-posed classification
problems, in which the ratio between the number of avail-
able training samples and the number of features is relatively
small (this is a typical situation with hyperspectral data); and
3) despite the aforementioned common properties, GML-
LOOC and SVM represent a good sampling of two differ-
ent categories of classification algorithms. GML-LOOC is a
parametric classifier based on the Gaussian model for the ap-
proximation of the class distributions. It represents an effective
version of the widely used standard ML classifier for the analy-
sis of hyperspectral data. The SVM classifier is a distribution-
free complex classifier, which is based on machine learning
and, thus, on a completely different theoretical background with
respect to GML-LOOC. SVM proved to be very effective for
classification of hyperspectral data (e.g., [49] and [50]).
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In the following, we briefly recall the main properties of these
classifiers.

A. GML-LOOC

This algorithm belongs to the family of parametric tech-
niques and is based on the GML classifier. The standard GML
procedure is effective when the ratio between the number of
training samples and the dimension of the feature space is
relatively high, but its performance degrades when this ratio
decreases (Hughes phenomenon [43]). In particular, when the
number of training samples is smaller than the number of
features, the covariance matrix used in the decision rule be-
come singular, and thus, the GML cannot be used. To avoid
this problem, several algorithms have been developed for the
estimation of a nonsingular covariance matrix (e.g., [48]-[54]).
In our study, we chose the algorithm proposed in [48], called
LOOC algorithm. In the following, we give more details on this
classifier.

Let x,, be the pth pattern to be classified, and ; and X; (with
1 =1,..., K) be the mean value and the covariance matrix of
the ¢th investigated class, respectively. The decision rule is as
follows:

Xp € wj & dj(xp) > di(xp) Vi ] ey
where d;(x,) is computed as
di(xp) = (%p — 1) 35 (xp — i) + I [Bi. - (2)

Usually, the true values of the mean vectors and of the covari-
ance matrices are not known, and they should be estimated from
the training samples. When a reduced number of samples is
available, the covariance matrices can be replaced with the com-
mon covariance matrix, defined as S = (1/K) > | 5, [48].
The LOOC algorithm proposes a more refined way to estimate
the covariance matrices for classes characterized by a reduced
number of training samples. In particular, the covariance matrix

YLOOC of the ith class is estimated as follows:
(1 — a;)diag(3;) + a; 3, 0<a; <1
E%OOC(O@) = (2 — ai)Zi + (Oti — I)S, 1<a; <2
(3 —;)S + (o — 2)diag(S), 2<a; <3
3)

where «a; is a mixing parameter, whose value is selected ac-
cording to the following procedure: 1) removing one sample;
2) computing the mean and covariance from the remaining
samples; and 3) computing the likelihood of the sample which
was left out, given the mean and covariance estimates. Each
sample is removed in turn, and the average log likelihood is
computed. The value that maximizes the average log likelihood
is selected [55]. This implementation has proved to be particu-
larly effective in hyperspectral data classification.!

It is worth noting that since this classifier models the class
distributions according to a Gaussian function, its application
to multisensor data implies a Gaussian approximation of the

'In this paper, we used the implementation contained in the MultiSpec
software [55].
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distribution of classes on the stacked feature vector. This ap-
proximation is reasonable from an application viewpoint, but it
is not rigorous from a theoretical prospective.

B. SVM

SVMs are distribution-free classifiers that overcome the
aforementioned approximation of the GML-LOOC classifier.
Developed by Vapnik [56], SVM classifiers have undergone
great development in the last ten years and have been suc-
cessfully applied to several remote sensing problems (e.g., [49]
and [50]). Their success is justified from four main properties:
1) their relatively high classification accuracy and very good
generalization capability with respect to other classifiers; 2) the
limited effort required for architecture design and training
phase if compared to other machine learning algorithms (such
as multilayer perceptron neural networks); 3) the convexity
of the cost function that always finds the optimum solution;
and 4) their effectiveness in ill-posed classification problems
(problems with a low ratio between number of training samples
and number of features) [50]. In the following, we briefly relate
the main concepts and the mathematical formulation of SVMs.?

Let us consider a binary classification problem. Let us
assume that the training set consists of Q) vectors x, € R,
with the corresponding target y, € {—1;+1}, where “+1”
and “—1” denote the labels of the considered classes. The
nonlinear SVM approach consists of mapping the data into a
higher dimensional feature space, i.e., ®(x,) € R? (¢ > q),
where it looks for a separation between the two classes by
means of an optimal hyperplane defined by a weight vector
w € RY and a bias b€ R. In particular, w is a vector or-
thogonal to the separating hyperplane, b is a scalar value such
that the ratio b/||w|| represents the distance of the hyperplane
from the origin, and the function ® represents a nonlinear
transformation. The membership decision rule is defined ac-
cording to sign[f(x)], where f(x) represents the discriminant
function associated with the hyperplane and is written as

f(x)=w-®(x)+b. 4

The optimal hyperplane is the one that minimizes a cost func-
tion, which expresses a combination of two criteria: margin
maximization and error minimization. It is defined as

Q
1
U(w,€) = S [|[wl* +C D& 5)

p=1

This cost function minimization is subject to the following
constraints:

Vp- (W-xp,+b) >1-¢,
& =0

Vp=1,...,Q (6
Vp=1....Q (7

where £, are the so-called slack variables and are defined as
follows:

E((xp,yp)s (W, b)) = &§ = max (0,1 —y, (W 2(x;) + b))
3)

2We used our own implementation of SVM, which is based on the sequential
minimal optimization procedure.
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and they are introduced to take into account nonseparable
data. The constant C' represents a regularization parameter that
controls the shape of the discriminant function, and conse-
quently, the decision boundary when data are nonseparable.
The above optimization problem can be reformulated through
a Lagrange functional for which the Lagrange multipliers can
be found by means of a dual optimization leading to a quadratic
programming solution [56]. The final result is a discriminant
function conveniently expressed as a function of the data in the
original (lower) dimensional feature space, i.e.,

Fx) =) cuyi®(xi,x) +b ©)

icS

where ®(-, -) is a kernel function, and .S is the subset of training
samples corresponding to the nonzero Lagrange multipliers.
It is worth noting that the Lagrange multipliers «; effectively
weight each training sample according to its importance in
determining the discriminant function. The training samples
associated with nonzero weights are termed support vectors
[50]. In particular, the support vectors, where a; = C, are
referred to as bound support vector, and support vectors with
0 < a; < C are called nonbound support vectors. The kernel
®(-,-) must satisfy the condition of Mercer’s theorem so that it
corresponds to some type of inner product in the transformed
(higher) dimensional feature space [56].

The SVM classifier was developed to solve binary classi-
fication problems, but it can be easily extended to multiclass
problems. The two main strategies used for K class problems
are as follows. 1) One-Against-One—the K-class problem is
decomposed into K (K — 1)/2 binary problems, each focused
on the recognition of a pair of classes. A generic pattern is asso-
ciated with the class that receives the majority of the votes from
the ensemble of binary classifiers. 2) One-Against-All—the
K -class problem is decomposed into K binary problems, each
focused on the recognition of one class against all the oth-
ers. The “winner-takes-all” rule is used for the final decision,
i.e., the winning class is the one corresponding to the SVM with
the highest output (discriminant function value). We refer the
reader to [50] for greater details on SVM classifiers and on the
related multiclass strategies.

V. EXPERIMENTAL ANALYSIS AND DISCUSSION
A. Experimental Design

To assess the effectiveness of the proposed system and to
achieve the goals of this paper, we defined three different
experiments: 1) analysis of the importance of the joint use of
hyperspectral images and the first LIDAR return on the classifi-
cation of complex forest areas; 2) analysis on the usefulness
of multiple LIDAR returns and of the different information
contained in elevation and intensity channels; and 3) analysis
on the generalization capability of the proposed system.

For the first two experiments, we carried out the learning of
the classifier (with the model selection) and the accuracy as-
sessment according to a k-fold cross-validation procedure. This
allowed us to analyze, from a rigorous statistical perspective,
the potential of the proposed system, and of the hyperspectral
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and LIDAR sensors, in the considered scenario. We randomly
divided the available ground truth data into five subsets, and
we then adopted a fivefold cross-validation procedure, with
training samples (pixels) distributed all over the scene. The
samples of ground truth data available were used as follows:
20% in the training set (about 3300 samples) and 80% in the
test set (about 13 500 samples). It is worth noting that the use
of only 20% of the ground truth samples for learning tends
to result in minority classes with very few training samples.
However, this choice is reasonable as it represents a typical
condition of real operational applications.

With regard to the last experiment, we defined the training
and the test sets by considering samples from different spatially
disjoint areas to analyze the generalization capability of the
system with respect to the variability and the nonstationary
behavior of the spectral signatures of the classes. In further
detail, for this experiment, the training and test samples were
selected purposefully avoiding that they share pixels belonging
to the same tree crown (i.e., all the pixels of a tree crown are
completely included in only one of the two sets).

The performances of the system were assessed by using
error matrices. We derived the overall kappa coefficients from
these matrices, as described by Congalton and Green [57], and
analyzed the statistic significance of results according to the
Zeta test [57].

In our experiments, we used also the k-Nearest Neighbor
(k-NN) classifier to compare the accuracy provided by the
advanced classifiers included in the proposed system with a
simple distribution-free classification technique. For the model
selection of the SVM classifier, we chose a Gaussian kernel
function and applied a grid search strategy in a range between
50 and 240 for C and in a range between 1 and 1000 for . For
the k-NN classifier, the value of k varied from 1 to 29.

B. Experiment 1: Analysis of the Effectiveness of the Proposed
Multisensor Classification System

Let us consider the noise-reduced hyperspectral data, as well
as the intensity and the corrected elevation of the first LIDAR
return. In this experiment, we analyze the effectiveness of
the first LIDAR return channels, at first, considering only the
global kappa accuracy, and then analyzing in greater detail the
class-by-class accuracies. Experiments were conducted with
three classifiers: SVM, GML-LOOC, and k-Nearest Neigh-
bor (k-NN). We carried out different trials using 126, 40,
and 25 spectral channels derived according to the feature se-
lection algorithm. Fig. 3 shows the behavior of the average
Jeffreys—Matusita distance versus the number of hyperspectral
channels selected with the SFFS search strategy. It is worth
noting that the typical trend of this distance, which reaches
saturation when the number of features used do not change the
separability among information classes. We reached saturation
with about 25 features but, in this experiment and in the fol-
lowing, we also analyzed what occurred with 40 hyperspectral
features. This was done for consideration of some margin on the
minimum number of input channels derived from the feature
selection phase. This is reasonable to better consider also the
accuracy of minority classes that less affect the behavior of the
average Jeffreys—Matusita distance.
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Fig. 3. Behavior of the average Jeffreys—Matusita distance versus the number
of selected features.

TABLE 1I
KAPPA ACCURACIES OBTAINED ON THE TEST SET WITH DIFFERENT
SPECTRAL FEATURES AND CLASSIFIERS

FEATURES KAPPA ACCURACY

SVM | GML-LOOC | K-NN

25 HYPERSPECTRAL | ) 075 0.778 0.649
BANDS

AOHYPERSPECTRAL | ) g9 0.782 0.666
BANDS

126 HYPERSPECTRAL 0881 0.823 0676
BANDS

Table II illustrates the kappa accuracies obtained with differ-
ent classifiers when varying the features used. From the analysis
of these accuracies, we can infer some important points. For
the SVM classifier, the accuracies obtained are particularly
high considering the number of classes (23) and the number
of training samples per class (as shown in Table I, for some
classes in the training phase, we have only ten samples). In
particular, it is possible to observe that the SVM classifier
always provided significantly higher accuracy than both the k-
NN and the GML-LOOC techniques. In greater detail, due to its
strongly nonlinear properties, the SVM classifier obtained with
25 features a kappa accuracy that is higher than that obtained
by the GML-LOOC technique with all the 126 channels. These
results confirm the superior performances of the SVM tech-
nique, which also involves an intrinsically better generalization
ability. The higher potentialities of the SVM classifier can be
explained by the fact that it is a distribution-free technique
that does not approximate the distribution of classes with any
predefined statistical model (the GML-LOOC assume Gaussian
approximation) but models the decision boundary on the basis
of the available training data. This results in the capability to
model also strongly nonlinear decision boundaries. Another
important issue to note is that both SVM and GML-LOOC do
not seem significantly affected by the Hughes phenomenon,
since the classification accuracies increase with the increase
of the number of features. In the case of k-NN, the kappa
accuracies for all the experiments were much smaller than those
obtained by the other classifiers. This confirms that k-NN is
not able to manage hyperdimensional feature spaces. This is
particularly true when classes with very few training samples
are considered. The small kappa accuracies also illustrate the
importance of using specific classifiers that exhibit a high
generalization ability.

Let us now analyze the effect of the first LIDAR return
channels on the classification accuracy. Table III shows the
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TABLE III
KAPPA ACCURACIES OBTAINED ON THE TEST SET WITH DIFFERENT
SPECTRAL AND LIDAR FEATURES AND CLASSIFIERS

KApPPA ACCURACY
GML-LOOC

FEATURES

SVM K-NN

25 HYPERSPECTRAL
BANDS + ELEVATION AND
INTENSITY OF THE FIRST
LIDAR RETURN
40 HYPERSPECTRAL
BANDS + ELEVATION AND
INTENSITY OF THE FIRST
LIDAR RETURN
126 HYPERSPECTRAL
BANDS + ELEVATION AND
INTENSITY OF THE FIRST
LIDAR RETURN

0.885 0.809 0.698

0.890 0.809 0.714

0.892 0.840 0.714

accuracies obtained adding to different spectral feature subsets
the elevation and intensity channels of the first LIDAR return.
Comparing the results in Tables II and III reveals an increase in
kappa accuracy from 1% to 4%, which is less relevant for the
SVM and GML-LOOC classifiers and more significant for the
k-NN technique (which, however, does not obtain acceptable
accuracies). From these results, it seems that LIDAR chan-
nels provide relatively sparse information for discriminating
between tree species. However, if we analyze the class-by-class
accuracies, with and without LIDAR channels, the conclusions
are quite different. Table IV shows class-by-class accuracies
obtained with the SVM classifier, adding the two LIDAR
channels to different spectral band subsets (25 and 40). From
the analysis of the table, we observe that, in general, very high
accuracies were reached for very similar tree species, including
Quercus cerris, Quercus robur, and Quercus rubra. Concerning
the role of LIDAR channels, we have different classification
behaviors varying the number of spectral bands used. When
40 bands were used, an increase in the classification accuracy
occurs for classes characterized by a low height. In particular,
for four of the classes, the increment was higher than 5%. The
increase in the classification accuracy becomes more relevant
when reducing the number of hyperspectral bands used. With
25 hyperspectral channels, the accuracy increased by more
than 10% for two classes and more than 5% for seven classes.
For example, Acer negundo increased in accuracy by 13.56%,
adding LIDAR bands to 25 hyperspectral channels. Analyzing
the confusion matrices, this class increases its separability with
respect to Carpinus betulus, Platanus hybrida, and Quercus
robur (which are characterized by a very different mean height
with respect to Acer negundo). It is possible to draw similar
conclusions also for others classes that have relevant increase
in the classification accuracy. It is worth noting that the classes
that significantly increase their accuracy by introducing LIDAR
features are the underrepresented classes. This is the motivation
for the relatively small impact of this improvement on the
overall classification accuracy.

The Zeta test [57] was computed between kappa accuracies
obtained with 40 hyperspectral bands, with and without LIDAR
channels, using SVM and GML-LOOC classifiers. All the
differences in accuracy were statistically significant at 95% of
the confidence interval.
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TABLE 1V
CLASS-BY-CLASS ACCURACY OBTAINED BY THE SVM CLASSIFIER WITH LIDAR AND
WITHOUT LIDAR WITH A DIFFERENT NUMBER OF HYPERSPECTRAL CHANNELS

From these results, it is possible to conclude that the first
LIDAR return can be very useful in the discrimination of spe-
cific tree species. In addition, if LIDAR channels are available,
it is convenient to use a reduced number of spectral channels
and to add to these channels the LIDAR information. In this
perspective, on the one hand, the LIDAR channels compensate
the minor lost of information due to the reduced number of
spectral channels; on the other hand, the resulting smaller
number of features allows both a reduction of computation
time and an increase in the generalization capability of the
system.

C. Experiment 2: Detailed Analysis of the Complementary
Information Contained in LIDAR Returns

In the first part of this experiment, we considered 40 hyper-
spectral bands and the two channels of the first LIDAR return.
From the results of the previous experiment, it is clear that these
channels are useful in classification of complex forest areas,
particularly for discriminating between specific tree species.
The next step is to understand the amount of information
present in each channel (i.e., elevation and intensity).

Table V presents the kappa accuracies obtained with the
SVM, with: 1) 40 hyperspectral bands; 2) 40 hyperspectral
bands plus elevation and intensity of the first LIDAR return;
3) 40 hyperspectral bands plus elevation of the first LIDAR
return; and 4) 40 hyperspectral bands plus intensity of the first
LIDAR return. As it is clear from the table, the increase in the
classification accuracy obtained with LIDAR data is mainly
due to the elevation channel, whereas the intensity channel
does not give any relevant information for the classification
of the considered forest area (it slightly decreases the overall
kappa accuracy).

25 HYPERSPECTRAL FEATURES 40 HYPERSPECTRAL FEATURES
CLASS NAME ACCURACY (% ACCURACY (%
LIDAR N(O [),IDAR A (%) LIDAR (NO) LIDAR A (%)
Acer campestris 76.76 70.29 6.47 75.59 71.03 4.56
Acer negundo 85.45 71.89 13.56 87.53 80.19 7.34
Alnus glutinosa 90.63 91.12 -0.49 91.02 90.73 0.30
Carpinus betulus 92.39 91.54 0.85 92.31 91.68 0.63
Corylus avellana 45.19 38.75 6.44 45.62 38.34 7.28
Fraxinus angustifolia 90.34 90.82 -0.48 90.25 89.83 0.41
Grassland 100.00 98.64 1.36 100.00 99.09 0.91
Juglans nigra 86.57 84.32 2.26 88.25 85.19 3.06
Juglans regia 89.67 90.40 -0.73 90.67 90.69 -0.02
Morus sp. 87.34 75.92 11.42 87.34 78.67 8.67
Platanus hybrida 89.99 90.23 -0.24 90.20 90.93 -0.73
Populus canescens 87.29 84.84 2.46 89.04 87.19 1.84
Populus hybrida 89.10 85.66 3.44 89.92 87.31 2.61
Prunus avium 79.79 72.89 6.90 80.65 76.53 4.12
Quercus cerris 92.87 93.07 -0.19 93.35 92.80 0.54
Quercus robur 86.49 8691 -0.41 88.25 88.24 0.01
Quercus rubra 92.22 93.42 -1.21 91.93 93.36 -1.43
Robinia pseudacacia 88.54 85.05 3.50 88.22 84.90 3.32
Rubus 93.72 86.46 7.26 93.19 87.75 5.45
Shadows 98.02 97.93 0.09 98.28 97.84 0.43
Snags 86.34 85.98 0.37 85.61 85.85 -0.24
Tilia cordata 89.69 84.07 5.62 89.30 86.04 3.26
Ulmus minor 70.22 65.81 4.40 71.65 69.17 2.48
TABLE V

KAPPA ACCURACIES OBTAINED WITH SVM VARYING THE
FIRST LIDAR RETURN CHANNELS USED

FEATURES USED KAPPA ACCURACY
40 HYPERSPECTRAL FEATURES 0.879
40 HYPERSPECTRAL FEATURES +
ELEVATION AND INTENSITY OF THE FIRST 0.890
LIDAR RETURN
40 HYPERSPECTRAL FEATURES +
ELEVATION OF THE FIRST LIDAR 0.888
RETURN
40 HYPERSPECTRAL FEATURES + 0.876
INTENSITY OF THE FIRST LIDAR RETURN o

TABLE VI
KAPPA ACCURACIES OBTAINED WITH SVM VARYING THE
NUMBER OF LIDAR RETURNS JOINTLY USED WITH
THE 40 HYPERSPECTRAL FEATURES SELECTED

LIDAR FEATURES USED KAPPA ACCURACY
1*" RETURN CHANNELS 0.890
15T+ 2™ RETURN CHANNELS 0.878
13"+ 2" + 3"” RETURN CHANNELS 0.872
1°7+ 2% + 30 + 4" RETURN CHANNELS 0.872

The second part of this experiment was focused on multiple
LIDAR returns available in the data set used for this paper.
To analyze the information contained in these channels for the
classification process, we carried out a series of trials incremen-
tally adding the first, the second, the third, and the fourth return
channels (elevation and intensity) to the 40 hyperspectral bands.

Table VI shows the overall kappa accuracies obtained in
these trials. From these results, it seems that returns different
from the first do not increase kappa accuracy. On the contrary,
they result in a slight decrease of the accuracy with respect to
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TABLE VII
KAPPA ACCURACIES OBTAINED ON TEST SET WITH DIFFERENT
CLASSIFIERS USING DISJOINT TRAINING AND TEST SETS

FEATURES USED KAPPA ACCURACY
’ o SVM GML-LOOC K-NN
AOHYPERSPECIRAL | 59 0.629 0.468
BANDS
40 HYPERSPECTRAL
BANDS + ELEVATION 0717 0.658 0.484
AND INTENSITY OF THE
FIRST LIDAR RETURN

that yielded using hyperspectral features plus the first LIDAR
return channels. These results depend on the properties of
available multiple LIDAR returns. As described in Section II,
the number of pulses is different for each return, and, in partic-
ular, it decreases by increasing the return number. This can be
explained by the fact that the analyzed area is characterized by a
very dense tree crown coverage that precludes the generation of
secondary returns in many portions of the scene. For this reason,
during the rasterization phase of the LIDAR data, not all the
pixels were associated with a value. In particular, for returns 3
and 4, we have many pixels with no data points. This introduces
a noise in the classification process, thus, balancing possible
advantages in the characterization of the canopy of different
species. In general, we expect that this issue should be better
investigated using data with a higher number of representative
samples from multiple returns.

D. Experiment 3: Generalization Capability of the System

As described in Section V-A, with this last experiment, we
simulate a borderline case, in which training and test samples
are as disjoined as possible. This allows us to verify the
behavior of the proposed system when test samples belong to
a significantly different area from the one considered for the
training of the system. It is worth noting that, in this specific
case, we have some classes with a reduced number of ground
truth samples; this means that only few (three or four) trees
in the whole scene were available for these classes. Thus, the
exclusive assignment of a tree to the training or the test set
makes ground truth for minority classes unrepresentative of the
variability of the spectral signature over the scene, resulting in
a very difficult classification problem.

In Table VII, one can see that the kappa accuracies decrease
with respect to the previous experiments for all the three
classifiers considered. On the contrary, the differences in
accuracies between the two subsets of features (with and
without LIDAR) remain almost the same. The kappa accuracy
of SVM was still significantly higher than those provided by
other classifiers (i.e., 0.717 versus 0.658 and 0.484), but there
was a large decrease with respect to those yielded in previous
experiments. In addition, the GML-LOOC significantly
decreased the kappa accuracy. However, as expected, the more
relevant degradation was associated with the k-NN classifier,
that resulted in a kappa accuracy lower than 50%. Analyzing
the SVM class-by-class accuracies, we observed that for some
dominant classes, including Carpinus betulus, Juglans regia,
Platanus hypbrida, and Quercus rubra, the accuracies are still
on the order of 85%-90% (88.41%, 87.43%, 84.35%, and
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93.47%, respectively), whereas, for the minority classes, we
have a dramatic decrease of accuracies. For example, for Acer
campestris, Populus hybrida, Prunus avium, and Ulmus minor,
the accuracies were lower than 50% (42.86%, 30.56%, 32.39%,
and 24.31%, respectively). These results were expected in this
very critical scenario (see [58]) that should be addressed by
using semisupervised classification techniques (like semisuper-
vised SVM [59]) particularly developed for strongly ill-posed
problems.

The differences in kappa accuracy between trials with and
without LIDAR channels, with SVM and GML-LOOC classi-
fiers, were also tested with the Z-test [S7]. All the differences
resulted to be statistically significant at 95% of the confidence
interval.

VI. CONCLUSION

In this paper, we investigated the joint use of hyperspectral
and LIDAR remote sensing data for the classification of com-
plex forest areas. We analyzed this issue by proposing a novel
classification system, based on different possible classifiers that
were able to properly integrate multisensor information. From
an analysis of the results of all the experiments carried out
using the proposed system, we can conclude that, in general,
it provided high accuracies, managing in an effective way
the complementary information contained in hyperspectral and
LIDAR data. In greater detail, we verified the following.

1) The presented system is very effective for classifying
hyperspectral and LIDAR data, providing high accuracy
on almost all the considered forest classes (it yielded
accuracies of over 90% for certain classes).

2) The distribution-free SVM classifier provided much
higher accuracies than the other classifiers investigated.
The parametric GML-LOOC, even if less effective than
SVM, yielded acceptable accuracies, whereas the k-NN
technique (used for comparison) was unsuitable for the
solution of hyperdimensional problems.

3) The elevation channel of the first LIDAR return data
played the most important role for increasing the discrim-
inability (and, thus, the accuracy) of the forest classes by
having similar spectral signatures. This was due to the
different average elevation of some forest classes.

4) LIDAR returns that are different from the first return do
not seem capable of improving the kappa accuracy when
used jointly with hyperspectral channels. However, this
issue should be better analyzed on other data sets by
considering a more complex feature extraction phase.

5) In critical cases, with a large difference between training
and test samples, the system based on the SVM classifier
should provide an acceptable accuracy. However, in this
extreme case, the performances were degraded signifi-
cantly, and it is recommended to use specific classifica-
tion techniques developed for ill-posed problems (e.g.,
semisupervised [59]).

As a final remark, it is important to observe that the proposed
system and study seem particularly relevant when considering
that, in several forest areas, both hyperspectral and LIDAR data
are acquired for species classification and parameter estimation,
respectively. In these situations, it is important to properly
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integrate LIDAR data in the classification process because:
1) the use of hyperspectral and LIDAR data increases the
separability of tree species having similar spectral signatures
but different height and 2) the introduction of the first LIDAR
return elevation channel produces, with a limited number of
spectral features, accuracies similar to those yielded with a
significantly higher number of features. This results in a lower
computational time and in an increase of the generalization
capability of the system.

In terms of future developments of this paper, we are plan-
ning to: 1) introduce, in the classification phase, semisupervised
classifiers to increase the generalization ability of the system
and improve the modeling of the nonstationarity of the spectral
signatures of classes in the scene [58] and 2) jointly exploit
hyperspectral images and LIDAR data for the estimation of
biophysical forest parameters (e.g., biomass and structure).
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