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Abstract 

 
Following Hamilton (1989), estimation of Markov regime-switching regressions typically relies on the 

assumption that the latent state variable controlling regime change is exogenous.  We relax this 

assumption and develop a parsimonious model of endogenous Markov regime-switching.  Inference via 

maximum likelihood estimation is possible with relatively minor modifications to existing recursive 

filters.  The model nests the exogenous switching model, yielding straightforward tests for endogeneity.  

In Monte Carlo experiments, maximum likelihood estimates of the endogenous switching model 

parameters were quite accurate, even in the presence of certain model misspecifications.  As an 

application, we extend the volatility feedback model of equity returns given in Turner, Startz and 

Nelson (1989) to allow for endogenous switching. 
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 Recent decades have seen extensive interest in time-varying parameter models of 

macroeconomic and financial time series.  One notable set of models are regime-switching 

regressions, which date to at least Quandt (1958).  Goldfeld and Quandt (1973) introduced a 

particularly useful version of these models, referred to in the following as a Markov-switching 

model, in which the latent state variable controlling regime shifts follows a Markov-chain, and is 

thus serially dependent.  In an influential article, Hamilton (1989) extended Markov-switching 

models to the case of dependent data, specifically an autoregression.   

The vast literature generated by Hamilton (1989) typically assumes that the regime shifts 

are exogenous with respect to all realizations of the regression disturbance.  In this paper we 

work with Markov-switching regressions of the type considered by Hamilton (1989) and various 

extensions, but relax the exogenous switching assumption.  We develop a model of endogenous 

Markov regime-switching that is based on a probit specification for the realization of the latent 

state.  The model is quite parsimonious, and admits a test for endogenous switching as a simple 

parameter restriction.  The model parameters can be estimated via maximum likelihood with 

relatively minor modifications to the recursive filter in Hamilton (1989).   

Why are we motivated to investigate Markov-switching regressions with endogenous 

switching?  Many of the model’s applications are in macroeconomics or finance in situations 

where it is natural to assume the state is endogenous.  As an example, it is often the case that the 

estimated state variable has a strong business cycle correlation.  This can be seen in recent 

applications of the regime-switching model to identified monetary VARs, such as Sims and 

Zha (2002) and Owyang (2002).  It is not hard to imagine that the shocks to the regression, such 

as the macroeconomic shocks to the VAR, would be correlated with the business cycle.  As 

another example, some applications of the model contain parameters that represent the reaction 
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of agents to realization of the state (see for example Turner, Startz and Nelson, 1989).  However, 

it is likely that agents do not observe the state, but instead draw inference based on some 

information set, the contents of which are unknown to the econometrician.  Use of the actual 

state to proxy for this inference leads to a regression with measurement error in the explanatory 

variables, and thus endogeneity. 

In order to evaluate the performance of maximum likelihood estimates of the endogenous 

switching model parameters, as well as tests for endogenous switching, we conduct a battery of 

Monte Carlo experiments.  These experiments suggest that:  1) When the true Markov-switching 

process is endogenous, maximum likelihood estimation assuming exogenous switching yields 

biased parameter estimates,  2) Maximum likelihood estimates of the endogenous switching 

model were close to their true values, as were quasi-maximum likelihood estimates obtained 

from data generated by a non-Gaussian endogenous switching model, and 3) The likelihood ratio 

test for endogenous switching was close to having correct size. 

As an application, we extend the volatility feedback model of equity returns given in 

Turner, Startz and Nelson (1989) to allow for endogenous switching.  As discussed above, this 

model provides a setting in which we might reasonably expect the Markov-switching state 

variable to be endogenous.  We find strong statistical evidence for endogenous switching in the 

model and that allowing for endogeneity has substantial effects on parameter estimates.   

It should be noted that the model of endogenous switching developed in this paper has 

much in common with an earlier literature using switching regressions.  This earlier literature, 

such as Maddala and Nelson (1975), was often concerned with endogenous switching, as the 

primary applications were in limited dependent variable contexts such as self-selection and 

market disequilibrium settings.  The model we have presented here can be interpreted as an 
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extension of the Maddala and Nelson (1975) approach, which was a model of independent 

switching, to the Hamilton (1989) regime-switching model, in which the state process is serially 

dependent. 

In the next section we lay out a two-regime Markov-switching regression model with 

endogenous switching and discuss maximum likelihood estimation.  Section 3 generalizes this 

model to the N-regime case.  Section 4 gives the results of Monte Carlo experiments evaluating 

the performance of parameter inference and tests for endogenous switching.  In Section 5 we 

present an empirical example based on a model of volatility feedback in equity markets taken 

from Turner, Startz and Nelson (1989).  Section 6 concludes. 

 

2. A Two-Regime Endogenous Switching Model 

 2.1 Model Specification 

Consider the following Gaussian regime-switching model for the sample path of a time 

series, T

tty 1}{ = : 

 

tSStt tt
xy εσβ += ' ,  (2.1) 

)1,0(...~ Ndiitε , 

 

where ty  is scalar, 
t

x  is a (k ×  1) vector of observed exogenous or predetermined explanatory 

variables, which may include lagged values of ty , and iS t =  is the state variable.  Denote the 
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number of regimes by N, so that i = 1, 2, …., N.  We begin with the case where N = 2.  In 

addition to aiding intuition, the two-regime case is a popular specification in applied work.1   

The state variable is unobserved and is assumed to evolve according to a Markov chain 

with transition probabilities: 

 

)(),|( 1 tijttt zPzjSiSP === − .  (2.2) 

 

In (2.2), the transition probabilities are influenced by a (q ×  1) vector of observed exogenous or 

predetermined variables 
t

z , where 
t

z  may include elements of 
t

x .  The Markov chain is 

assumed to evolve independently of all observations of those elements of tx  not included in 
t

z .  

We assume the Markov process is stationary, with unconditional probabilities 

)|()|( ziSPziSP t === , t ∀ .2 

 The transition probabilities (2.2) are constrained to be in [0,1] using a probit specification 

for tS :   

 

( )
( )⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+≥

+<
=

−−

−−

11

11

'

'

   if   2

   if   1

tt

tt

StSt

StSt

t
bza

bza
S

η

η
,        (2.3)  

                                                 
1 As the regime ordering is arbitrary, we assume that the model in 2.1 is appropriately normalized to achieve 
identification.  See Hamilton, Waggoner and Zha (2004) for detailed discussion of this issue. 
2 Several special cases of (2.2) are worth mentioning.  The unrestricted model is the time-varying transition 
probability Markov-switching model of Goldfeld and Quandt (1973), Diebold, Lee and Weinbach (1994) and 
Filardo (1994). When the transition probabilities are not influenced by 1−tS , we have the time-varying transition 

probability independent switching model of Goldfeld and Quandt (1972).  When the transition probabilities are not 
influenced by tz , we have the fixed transition probability Markov-switching model of Goldfeld and Quandt (1973) 

and Hamilton (1989).  When the transition probabilities are influenced by neither tz  or 1−tS , we have the fixed 

transition probability independent switching model of Quandt (1972).   
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( )1,0...~ Ndiitη . 

 

The transition probabilities are then: 

 

( ) ( )( ) ( )jtjjtjttj bzabzaPzp
''

1 +Φ=+<= η ,       (2.4) 

( ) ( )( ) ( )jtjjtjttj bzabzaPzp
''

2 1 +Φ−=+≥= η , 

 

where Φ  is the standard normal cumulative distribution function.   

 To model endogenous switching, assume that the joint density function of tε  and tη  is 

bivariate normal:  

 

⎥
⎦

⎤
⎢
⎣

⎡
=ΣΣ⎥

⎦

⎤
⎢
⎣

⎡
 

1

1
   ),,0(~

ρ
ρ

η
ε

N
t

t
,        (2.5) 

 

where tε  and ht−η  are uncorrelated 0 ≠∀ h .  Regime-switching models found in time-series 

applications nearly always make the assumption that tε  is independent of htS − , ∀  h, which 

corresponds to the restriction that 0=ρ  in the model presented here.
3
 

 

 

 

                                                 
3 In recent work, Chib and Dueker (2004) develop a non-Markov regime switching model in which observable 

variables are related to the sign of a Gaussian autoregressive latent state variable, the innovations to which are 

allowed to be correlated with the model residual through a bivariate normal specification as in (2.5).  The authors 

develop Bayesian procedures to estimate this model. 
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2.2 Maximum Likelihood Estimation 

Let ( )''
1

'
1

''
1

'
1

' ,...,,,,...,, zzzxxx ttttt −−=Ω  and ( )'

11 ,...,, yyy ttt −=ξ  be vectors containing 

observations observed through date t, and ( )'

22221111 ,,,,,,,, ρσβσβθ baba=  be the vector of 

model parameters.  The conditional likelihood function for the observed data tζ  is constructed as 

( ) ( )∏
=

−Ω=
T

t

tttyfL
1

1;,| θξθ , where: 

 

( )θξ ;,| 1−Ω tttyf   (2.6) 

( ) ( )∑∑ −−−− Ω==Ω===
i

tttt

j

ttttt jSiSjSiSyf θξθξ ;,|,Pr;,,,| 1111 . 

 

The weighting probability in (2.6) is computed recursively by applying Bayes’ Rule given the 

initial unconditional probabilities ( ) ( )ziSPziSP ||0 === : 

 

( ) ( ) ( )θξθξ ;,|Pr;,|,Pr 1111 −−−− Ω==Ω== ttttijtttt jSzPjSiS ,    (2.7) 

( ) ( )θξθξ ;,|Pr;,|Pr 1 tttttt iSiS Ω==Ω= +  

( ) ( ) ( )∑ −−−−
−

Ω==Ω==
Ω

=
j

ttttttttt

ttt

jSiSjSiSyf
yf

θξθξ
θξ

;,|,Pr;,,,|
;,|

1
1111

1

. 

 

 To complete the recursion in (2.6)-(2.7), we require the regime-dependent conditional 

density function, ( )θξ ;,,,| 11 −− Ω== ttttt jSiSyf .  For the exogenous switching case, when 

0=ρ , this density function is Gaussian: 
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( )θξ ;,,,| 11 −− Ω== ttttt jSiSyf = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

i

itt

i

xy

σ
β

φ
σ

'1
,      (2.8) 

where φ  is the standard normal probability density function.  However, for more general values 

of )1 ,1(−∈ρ , ( )θξ ;,,,| 11 −− Ω== ttttt jSiSyf  is:4  

 

( )θξ ;,,,1| 11 −− Ω== ttttt jSSyf =

( )

)(

1

11

2

1

1
'

'

1

1
'

tj

tt

jtj

tt

zp

xy
bza

xy

σ

ρ

σ
β

ρ

σ
β

φ

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−+

Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

,   (2.9) 

( )θξ ;,,,2| 11 −− Ω== ttttt jSSyf =

( )

)(

1

22

2

2

2
'

'

2

2
'

tj

tt
jtj

tt

zp

xy
bza

xy

σ

ρ

σ
βρ

σ
βφ

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
++−

Φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

. 

 

The appendix provides a derivation of (2.9).   

 When tS  is endogenous, maximum likelihood estimation assuming tS  is exogenous, and 

thus based on the distribution in (2.8), is inconsistent in general.  To see this, note that:  

 

( ) ( )( ) ( )
( )jtj

jtj

jtjttttt
bza

bza
bzaEjSSE

'

'

'
1 |;,1|

+Φ

+
−=+<=== −

φ
ρηεθε ,    (2.10) 

( ) ( )( ) ( )
( )jtj

jtj

jtjttttt
bza

bza
bzaEjSSE

'

'

'
1

1
|;,2|

+Φ−

+
=+≥=== −

φ
ρηεθε . 

                                                 
4 The density (2.9) belongs to the “skew-normal” family of density functions, which are commonly credited to 
Azzalini (1985).  See Arnold and Beaver (2002) for a survey of this literature. 
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Thus, when 0≠ρ , the regime-dependent conditional mean of tε  is non-zero, implying that 

maximum likelihood estimates based on (2.8) suffer from the ordinary problem of omitted 

variables.  Another, less obvious, source of inconsistency arises because 

);,,,|( 11 θξ −− Ω== ttttt jSiSyf  is non-Gaussian when 0≠ρ , as is clear from (2.9).  In this 

case maximum likelihood estimation based on (2.8) is Quasi-maximum likelihood estimation, 

which, as pointed out in Campbell (2002), is inconsistent for regime-switching models in 

general. 

 

2.3 Testing for Endogeneity 

 In the model of endogenous switching presented above, the null hypothesis that tS  is 

exogenous is equivalent to the scalar restriction 0=ρ .  Thus, a test for exogeneity can be carried 

out by any suitable test of the restriction 0=ρ , such as a Wald or likelihood ratio test.   

 

3.  An N-Regime Endogenous Switching Model 

 In this section we generalize the two-regime Gaussian endogenous-switching model 

presented in Section 2 to N regimes.  We begin by modifying the probit specification of the 

transition probabilities given in (2.3).  Suppose the realization of tS  is now determined by the 

outcome of )1,0(...~ Ndiitη  as follows: 
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( )

( )
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( )
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N
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η

η
η

.    (3.1) 

 

The transition probabilities, )( tij zp , are then given as follows: 

 

( ) ( ) ( )
tjitjitij cczp ,,1,, −Φ−Φ= ,         (3.2) 

 

where −∞=tjc ,,0 , ∞=tjNc ,, , and ( )jitjitji bzac ,
'

,,, +=  for Ni <<0 . 

Again, to model endogenous switching, assume that the joint density of tε  and tη  is 

bivariate normal as in (2.5):  

 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
=ΣΣ⎥

⎦

⎤
⎢
⎣

⎡
1

1
   ,,0~

ρ
ρ

η
ε

N
t

t
,        (2.5) 

 

  where tε  and ht−η  are uncorrelated 0 ≠∀ h .  Let the vector of model parameters be 

( )'''
2

'
1 ,,...,, ρθθθθ N= , where ( )'

,,, iiiii baσβθ = . Given ( )θξ ;,,,| 11 −− Ω== ttttt jSiSyf , the 

likelihood function, ( )θL , can again be constructed using the recursion in (2.6)-(2.7).  It is 

shown in the appendix that: 
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( )θξ ;,,,| 11 −− Ω== ttttt jSiSyf  
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⎠
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.  (3.3) 

 

Finally, as with the two regime endogenous switching model, a test of the null hypothesis that tS  

is exogenous is equivalent to a test of the restriction 0=ρ .   

 

4. Monte Carlo Analysis 

In this section we provide Monte Carlo evidence regarding maximum likelihood 

estimation of the endogenous switching model and associated tests for endogeneity.  Given its 

prominence in the applied literature, we focus on the two-regime model with fixed, Markov-

switching transition probabilities, so that 021 == bb .  We begin by evaluating the performance 

of maximum likelihood estimation when the true model is the endogenous switching model 

presented in Section 2 with varying levels of ρ .  We then investigate the sensitivity of 

maximum likelihood estimation based on the joint normality assumption in (2.5) to departures 

from this Gaussian assumption in the data generating process.  Such a departure renders the 

estimator based on (2.5) a Quasi-maximum likelihood (QML) estimator, which is inconsistent 

for Markov-switching models in general.  Our Monte Carlo experiments then provide some 

limited evidence of how badly the QML estimator performs in practice.   

For each Monte Carlo experiment, 1000 simulated series are generated from the model 

given in (2.1)-(2.3).  We consider two sample sizes for the simulated series, T = 200 and T = 500.  
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For each simulation, we generate the vector of exogenous explanatory variables as [ ]*1 tt xx = , 

where ( )2,0...~*
Ndiixt , and fix the vector of regime switching parameters to ( )'1,11,01 ,βββ =  

( )'
0.1,0.1= , ( )'2,12,02 ,βββ = ')0.1,0.1( −−= , 33.01 =σ , 67.02 =σ .  We consider three different 

sets of transition probabilities corresponding to moderate persistence ( 7.011 =p , 7.022 =p ), high 

persistence ( 9.011 =p , 9.022 =p ), and differential persistence ( 7.011 =p , 9.022 =p ).  We also 

consider three different values for ρ , corresponding to high correlation 9.0=ρ , moderate 

correlation 5.0=ρ , and zero correlation 0=ρ . 

We consider two different joint density functions for tε  and tη , labeled DGP1 and 

DGP2.  DGP1 is the bivariate normal distribution in (2.5).  DGP2 relaxes this joint normality 

assumption.  Instead, tε  is generated as a standard normal random variable, while tη  is 

generated as a weighted sum of tε  and a t-distributed random variable with four degrees of 

freedom.  The weighting is calibrated so that ( )'
, tt ηε  has covariance matrix: 

 

⎥
⎦

⎤
⎢
⎣

⎡
=Σ

2

44

4
1

γργ
ργ

,  

 

where 22

4
=γ  is the variance of a t-distributed random variable with four degrees of freedom.  

For each simulated time series, two maximum likelihood estimates and associated 

standard errors are computed.
5
  The first, which we label the “exogenous” estimator, assumes 

that 0=ρ , and is thus based on the recursion in (2.6)-(2.7), using (2.8) to measure 

                                                 
5 All computations were performed in GAUSS 6.0 using the OPTMUM numerical optimization package.  Standard 

errors were based on second derivatives of the log-likelihood function. 
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);,,,|( 11 θξ −− Ω== ttttt jSiSyf .  The second, which we label the “endogenous” estimator, 

allows for 0≠ρ , and is thus based on the recursion in (2.6)-(2.7), using (2.9) to measure 

);,,,|( 11 θξ −− Ω== ttttt jSiSyf .  Finally, we also record the outcome of 5% nominal size Wald 

and likelihood ratio tests of the null hypothesis 0=ρ .  For those cases where 0=ρ  in the data 

generating process, these tests document the empirical size of the 5% nominal size tests.  For 

those cases where 0≠ρ , we use size-adjusted critical values, taken from the Monte Carlo 

simulations generated with 0=ρ , to measure the power of the tests.   

Tables 1-5 show the results of the Monte Carlo experiments investigating maximum 

likelihood estimation of the endogenous switching model.  Each table shows the mean of the 

1000 maximum likelihood point estimates of 1β , 2β , 1σ , 2σ , the mean of the standard errors for 

these parameter estimates, and the rejection rate of the tests of 0=ρ .6  Table 1 gives results 

when the data generating process has exogenous switching, that is 0=ρ .  In this case, both the 

exogenous and endogenous estimator are exact maximum likelihood estimators, but the 

endogenous estimator is inefficient, as it does not restrict 0=ρ .  As is clear from the table, for 

both sample sizes and all values of the transition probabilities, the exogenous and endogenous 

estimators produce estimates of the model parameters that are very close to their true values.  As 

would be expected, the endogenous estimator is less efficient than the exogenous estimator, with 

the average standard error of the estimates consistently higher for the endogenous estimator.   

Tables 2 and 3 give results when the true data generating process includes endogenous 

switching of the form in DGP1.  The tables demonstrate the estimation bias that occurs when the 

endogenous state variable is treated as exogenous in estimation.  When the exogenous estimator 
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is used, the mean estimates of 1,0β  and 2,0β  are far from their true values, with the bias larger for 

higher values of ρ .  The mean estimates of 1σ  and 2σ  are also biased downward.  Note that the 

mean estimates are nearly identical in the T = 200 and T = 500 cases, suggesting the bias is not a 

small sample phenomenon.  Also note that the estimates of 1,1β  and 2,1β  are close to their true 

values.  The accuracy of these parameter estimates can be traced to the model assumption, 

maintained in the Monte Carlo samples, that *

t
x  is independent of the endogenous state variable 

t
S .  Finally, Tables 2 and 3 also demonstrate that the endogenous estimator produces very 

accurate estimates of the endogenous switching model.  Indeed, for both sample sizes and all 

values of the transition probabilities and ρ  considered, the mean parameter estimates are nearly 

identical to their true values. 

Tables 4 and 5 present results for DGP2, that is when the joint density between tε  and tη  is 

non-normal.  For the particular joint density function considered, the approximation provided by 

the normality assumption is quite good.  Again, for both sample sizes and all values of the 

transition probabilities and ρ  considered, the mean parameter estimates from the endogenous 

estimator are very close to their true values.  While this result may not generalize to non-normal 

distributions more generally, it is suggestive that the quality of the endogenous estimator 

procedure is not hyper-sensitive to the joint-normality assumption.  Not surprisingly, the 

exogenous estimator, which ignores the potential for the state variable to be endogenous all 

together, continues to produce biased parameter estimates under DGP2.   

                                                                                                                                                             
6 Model estimation also produces estimates of the transition probabilities, and, in the case of the endogenous 

estimator, the correlation parameter ρ .  Although not reported, results for these parameter estimates are qualitatively 

similar to those for the conditional mean and variance parameters of the regression model. 
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 Tables 6 and 7 report the empirical size and size-adjusted power of the Wald and 

likelihood ratio test of 0=ρ .  From Table 6, the 5% Wald test is somewhat oversized, with 

rejection rates as high as 12% when T = 200.  However, the 5% likelihood ratio test has roughly 

correct size for both sample sizes considered.  Table 7 demonstrates that the likelihood ratio and 

Wald test have similar size-adjusted power against the alternatives considered. 

 Overall, the Monte Carlo experiments confirm that maximum likelihood estimates using 

the endogenous estimator are quite good for the examples considered, while the exogenous 

estimator produces substantially biased parameter estimates when the true process has 

endogenous switching.  Also, the likelihood ratio test appears to be a fairly reliable test for 

endogenous switching.  In the next section we turn to an empirical application of the endogenous 

switching model. 

 

5. Application:  Measurement Error and Estimation of the Volatility Feedback Effect 

A stylized fact of U.S. equity return data is that the volatility of realized returns is time-

varying and predictable.  Given this, classic portfolio theory would imply that the equity risk 

premium should also be time-varying and respond positively to the expectation of future 

volatility.  However, the data suggest that realized returns and realized volatility, as measured by 

squared returns, are negatively correlated.
7
 

One explanation for the observed data is that while investors do require an increase in 

expected return in exchange for expected future volatility, they are often surprised by news about 

realized volatility.  This “volatility feedback effect” creates a reduction in prices in the period in 

which the increase in volatility is realized.  If the volatility feedback effect is strong enough, it 

                                                 
7 For a recent discussion of this result, see Brandt and Kang (2004).  
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may create a negative contemporaneous correlation between realized returns and volatility in the 

data.  The volatility feedback effect has been investigated extensively in the literature, see for 

example French, Schwert and Stambaugh (1987), Turner, Startz and Nelson (1989), Campbell 

and Hentschell (1992), Bekaert and Wu (2000) and Kim, Morley and Nelson (2002). 

Turner, Startz and Nelson (1989), hereafter TSN, model the volatility feedback effect 

with a Markov-switching model: 

 

( ) ( ) ( )( ) tStStStSt tttt
EEEr εσσσθσθ +Ψ−Ψ+Ψ= −− 1

2*2
21

2
1 ||| ,    (5.1) 

( )1,0...~ Ndiitε ,  

 

where tS  is a discrete Markov-switching variable taking on values 1 or 2, with transition 

probabilities ijp  parameterized as in equation (2.4).  For normalization we assume 2
1

2
2 σσ > , so 

that 2=tS  is the high volatility state. 

 The model in (5.1) is motivated as follows. At the beginning of period t, the risk 

premium, ( )1
2

1 | −ΨtSt
E σθ , is determined based on the expectation of period t volatility formed 

with information available at  the end of period t-1.  During period t additional information 

regarding volatility is observed.  By the end of period t, this information is collected in the 

information set *
tΨ .  When ( )≠Ψ*2 | tSt

E σ  ( )1
2 | −ΨtSt

E σ , information about volatility revealed 

during the period has surprised agents.  If 02 <θ , surprises that reveal greater probability of the 

high-variance state are viewed negatively by investors, and thus reduce the contemporaneous 

return. 
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 One estimation difficulty with the model in (5.1) is that there exists a discrepancy 

between the investors’ and the econometrician’s data set.  In particular, while 1−Ψ
t

 may be 

summarized by all data up to t-1, that is }{ ...,, 21 −−=Ψ
ttt

rr , the information set *
t

Ψ  includes 

information that is not summarized in the researcher’s data set on observed returns.  This is 

because, while the researcher’s data set is collected discretely at the beginning of each period, 

the market participants continuously observe trades that occur during the period.   

To handle this estimation difficulty, TSN use the actual volatility, 2

t
S

σ , as a proxy for 

( )*2 |
tS

t

E Ψσ .  That is, they estimate: 

 

( ) ( )( )
tStSStSt

uEEr
tttt

σσσθσθ +Ψ−+Ψ= −− 1
22

21
2

1 ||      (5.2) 

( )1,0~ Nu
t

  

In essence, this approximation replaces the estimated probability of the state, ( )*|
tt

iSP Ψ= , with 

one if iS
t
=  and zero otherwise.  Assuming these differ, this introduces classical measurement 

error into the state variable in the estimated equation, thus rendering it endogenous.  

 The existing literature estimates (5.2) assuming the state variable is exogenous.  

However, the techniques developed in Section 2 can be used to estimate the volatility feedback 

model allowing for endogeneity, as well as to test for endogeneity.  Here we estimate (5.2) using 

monthly returns for a value-weighted portfolio of all NYSE-listed stocks in excess of the one-

month Treasury Bill rate over the sample period 1952-1999, the same data as used in Kim, 

Morley and Nelson (2002).  Table 8 summarizes the results. 
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The first panel of Table 8 shows estimates when endogeneity is ignored.  These 

estimates, which are similar to those in TSN, are consistent with both a positive relationship 

between the risk premium and expected future volatility ( 01 >θ ) and a substantial volatility 

feedback effect ( 02 <<θ ).  The estimates also suggest a dominant volatility feedback effect, that 

is 1θ  is very small relative to 2θ .  The second panel shows the estimates when endogeneity is 

allowed, so that the correlation parameter ρ  is estimated.  The estimate of ρ  is substantial, 

equaling -0.40.  Both the Wald and likelihood ratio test reject the null hypothesis that ρ  = 0 at 

the 10% level (the p-values are 0.026 and 0.081 respectively).  The primary difference in the 

parameter estimates is for the volatility feedback coefficient 2θ , which is estimated to be about 

one-third smaller when endogeneity is allowed than when it is ignored.  Thus, while there is still 

evidence of a strong volatility feedback effect, it is substantially smaller than that implied by the 

model with no allowance for endogeneity.  

  

6. Conclusion 

We have developed a model of Markov-switching in which the latent state variable 

controlling the regime shifts is endogenously determined.  The model is quite parsimonious, and 

admits a test for endogenous switching as a simple parameter restriction.  The model parameters 

can be estimated via maximum likelihood with relatively small modifications to the recursive 

filter in Hamilton (1989).  Monte Carlo experiments suggest that maximum likelihood estimation 

of the endogenous switching model and the likelihood ratio test for endogeneity performed quite 

well for the data generating processes considered.  We apply the model to test for endogenous 

switching in the volatility feedback model of equity returns given in Turner, Startz and 

Nelson (1989). 
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Appendix 

Derivation of (2.9) and (3.3):  

We proceed by generalizing the derivation of the univariate skew-normal density 

function given in Arnold and Beaver (2002).  The random variables described in (2.5) can be 

written as:  

 

⎥
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⎡
=⎥

⎦

⎤
⎢
⎣

⎡

t
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t
A
ω
ε

η
ε

 ,          (A.1) 

 

where )1,0(...~ Ndiitω , and ⎥
⎦

⎤
⎢
⎣

⎡
−

= 21

01

ρρ
A  is the Cholesky decomposition of Σ , so that 

Σ='
AA .  From (A.1): 

 

ttt ωρρεη 21−+= .          (A.2) 

 

We can then write, suppressing 1, −Ω tt ξ , and θ  from the conditioning set for 

convenience: 

 

),|( 1 jSiSyf ttt == −  
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where tjic ,,1−  and tjic ,,  are defined in Section 3.  Consider the cumulative probability distribution 

function: 
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The denominator of (A.4) is: 
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The numerator of (A.4) is: 
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Combining (A.5)-(A.6) and differentiating with respect to g yields: 
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which is the density function (3.3).  In the case where 2=N , we have: 
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which, upon renaming jj aa =,1  and jj bb =,1 , is the density function in (2.9).  
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Table 1 

Monte Carlo Results:  Estimation 

DGP 1, 0=ρ  (exogenous switching) 

 

T = 200 0.1
1,0
=β  0.1

2,0
−=β  0.1

1,1
=β  0.1

2,1
−=β  33.01 =σ  67.02 =σ  

7.0
11
=p  7.0

22
=p        

  Exog. Estimator 1.00 (0.04) -1.00 (0.07) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.66 (0.05) 

  Endog. Estimator 0.99 (0.08) -0.99 (0.16) 1.00 (0.02) -1.00 (0.03) 0.34 (0.03) 0.68 (0.06) 

       

7.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.00 (0.05) -1.00 (0.06) 1.00 (0.03) -1.00 (0.03) 0.32 (0.04) 0.66 (0.04) 

  Endog. Estimator 1.00 (0.09) -1.00 (0.07) 1.00 (0.03) -1.00 (0.03) 0.32 (0.04) 0.67 (0.04) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.00 (0.04) -1.00 (0.07) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.66 (0.05) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.08) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.66 (0.05) 

       

T = 500 0.11,0 =β  0.12,0 −=β  0.11,1 =β  0.12,1 −=β  33.01 =σ  67.02 =σ  

7.011 =p  7.022 =p        

  Exog. Estimator 1.00 (0.02) -1.00 (0.04) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

  Endog. Estimator 1.00 (0.05) -1.00 (0.10) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

       

7.011 =p  9.022 =p        

  Exog. Estimator 1.00 (0.03) -1.00 (0.04) 1.00 (0.02) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

  Endog. Estimator 1.00 (0.06) -1.00 (0.05) 1.00 (0.02) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.00 (0.02) -1.00 (0.04) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

  Endog. Estimator 1.00 (0.03) -1.00 (0.05) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

 
Notes:  Each cell contains the mean of the maximum likelihood point estimates and the mean of the standard 

errors of these estimates from the Monte Carlo experiment.  Exog. estimator refers to the maximum 

likelihood estimator assuming the state process is exogenous, so that 0=ρ . Endog. estimator refers to the 

maximum likelihood estimator allowing the state process to be endogenous, so that )1 ,1(−∈ρ . 
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Table 2 

Monte Carlo Results:  Estimation 

DGP 1, 5.0=ρ  (endogenous switching) 

 

T = 200 0.1
1,0
=β  0.1

2,0
−=β  0.1

1,1
=β  0.1

2,1
−=β  33.01 =σ  67.02 =σ  

7.0
11
=p  7.0

22
=p        

  Exog. Estimator 1.11 (0.03) -1.23 (0.07) 1.00 (0.02) -1.00 (0.03) 0.30 (0.02) 0.62 (0.05) 

  Endog. Estimator 1.00 (0.07) -1.00 (0.13) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.67 (0.07) 

       

7.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.15 (0.05) -1.10 (0.05) 1.00 (0.03) -1.00 (0.03) 0.31 (0.04) 0.65 (0.04) 

  Endog. Estimator 1.00 (0.08) -1.00 (0.07) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.67 (0.05) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.06 (0.03) -1.11 (0.07) 1.00 (0.02) -1.00 (0.03) 0.32 (0.02) 0.65 (0.05) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.08) 1.00 (0.02) -1.00 (0.03) 0.33 (0.04) 0.66 (0.05) 

       

T = 500 0.11,0 =β  0.12,0 −=β  0.11,1 =β  0.12,1 −=β  33.01 =σ  67.02 =σ  

7.011 =p  7.022 =p        

  Exog. Estimator 1.11 (0.02) -1.23 (0.04) 1.00 (0.01) -1.00 (0.02) 0.31 (0.02) 0.63 (0.03) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.09) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.04) 

       

7.011 =p  9.022 =p        

  Exog. Estimator 1.14 (0.03) -1.09 (0.03) 1.00 (0.02) -1.00 (0.02) 0.31 (0.02) 0.65 (0.02) 

  Endog. Estimator 1.00 (0.05) -1.00 (0.04) 1.00 (0.02) -1.00 (0.02) 0.33 (0.03) 0.67 (0.03) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.05 (0.02) -1.11 (0.04) 1.00 (0.01) -1.00 (0.02) 0.32 (0.02) 0.66 (0.03) 

  Endog. Estimator 1.00 (0.02) -1.00 (0.05) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

 
Notes:  Each cell contains the mean of the maximum likelihood point estimates and the mean of the standard 

errors of these estimates from the Monte Carlo experiment.  Exog. estimator refers to the maximum 

likelihood estimator assuming the state process is exogenous, so that 0=ρ . Endog. estimator refers to the 

maximum likelihood estimator allowing the state process to be endogenous, so that )1 ,1(−∈ρ . 
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Table 3 

Monte Carlo Results:  Estimation 

DGP 1, 9.0=ρ  (endogenous switching) 

 

T = 200 0.1
1,0
=β  0.1

2,0
−=β  0.1

1,1
=β  0.1

2,1
−=β  33.01 =σ  67.02 =σ  

7.0
11
=p  7.0

22
=p        

  Exog. Estimator 1.21 (0.03) -1.42 (0.05) 1.00 (0.01) -1.00 (0.03) 0.25 (0.02) 0.52 (0.04) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.08) 1.00 (0.01) -1.00 (0.02) 0.33 (0.03) 0.67 (0.06) 

       

7.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.26 (0.05) -1.17 (0.05) 1.00 (0.02) -1.00 (0.03) 0.29 (0.03) 0.60 (0.04) 

  Endog. Estimator 1.00 (0.06) -1.00 (0.06) 1.00 (0.02) -1.00 (0.02) 0.33 (0.04) 0.67 (0.04) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.10 (0.03) -1.20 (0.07) 1.00 (0.02) -1.00 (0.03) 0.31 (0.02) 0.63 (0.05) 

  Endog. Estimator 0.99 (0.04) -1.00 (0.07) 1.00 (0.01) -1.00 (0.03) 0.33 (0.02) 0.67 (0.05) 

       

T = 500 0.11,0 =β  0.12,0 −=β  0.11,1 =β  0.12,1 −=β  33.01 =σ  67.02 =σ  

7.011 =p  7.022 =p        

  Exog. Estimator 1.21 (0.02) -1.42 (0.03) 1.00 (0.01) -1.00 (0.02) 0.25 (0.01) 0.52 (0.02) 

  Endog. Estimator 1.00 (0.03) -1.00 (0.05) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.04) 

       

7.011 =p  9.022 =p        

  Exog. Estimator 1.26 (0.03) -1.17 (0.03) 1.00 (0.01) -1.00 (0.02) 0.29 (0.02) 0.60 (0.02) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.04) 1.00 (0.01) -1.00 (0.01) 0.33 (0.02) 0.67 (0.03) 

       

9.011 =p  9.022 =p        

  Exog. Estimator 1.10 (0.02) -1.20 (0.04) 1.00 (0.01) -1.00 (0.02) 0.31 (0.02) 0.64 (0.03) 

  Endog. Estimator 1.00 (0.02) -1.00 (0.04) 1.00 (0.01) -1.00 (0.02) 0.33 (0.03) 0.67 (0.03) 

 
Notes:  Each cell contains the mean of the maximum likelihood point estimates and the mean of the standard 

errors of these estimates from the Monte Carlo experiment.  Exog. estimator refers to the maximum 

likelihood estimator assuming the state process is exogenous, so that 0=ρ . Endog. estimator refers to the 

maximum likelihood estimator allowing the state process to be endogenous, so that )1 ,1(−∈ρ . 
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Table 4 

Monte Carlo Results:  Estimation 

DGP 2, 5.0=ρ  (endogenous switching) 

 

T = 200 0.1
1,0
=β  0.1

2,0
−=β  0.1

1,1
=β  0.1

2,1
−=β  33.01 =σ  67.02 =σ  

7.0
11
=p  7.0

22
=p        

  Exog. Estimator 1.13 (0.03) -1.26 (0.06) 1.00 (0.02) -1.00 (0.03) 0.30 (0.02) 0.61 (0.05) 

  Endog. Estimator 1.00 (0.06) -1.00 (0.13) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.67 (0.07) 

       

7.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.15 (0.05) -1.10 (0.05) 1.00 (0.02) -1.00 (0.03) 0.31 (0.03) 0.64 (0.04) 

  Endog. Estimator 1.00 (0.08) -1.00 (0.07) 1.00 (0.02) -1.00 (0.03) 0.32 (0.04) 0.67 (0.04) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.06 (0.03) -1.11 (0.07) 1.00 (0.02) -1.00 (0.03) 0.32 (0.02) 0.65 (0.05) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.08) 1.00 (0.02) -1.00 (0.03) 0.33 (0.03) 0.66 (0.05) 

       

T = 500 0.11,0 =β  0.12,0 −=β  0.11,1 =β  0.12,1 −=β  33.01 =σ  67.02 =σ  

7.011 =p  7.022 =p        

  Exog. Estimator 1.13 (0.02) -1.26 (0.04) 1.00 (0.01) -1.00 (0.02) 0.30 (0.02) 0.61 (0.03) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.08) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.04) 

       

7.011 =p  9.022 =p        

  Exog. Estimator 1.15 (0.03) -1.10 (0.03) 1.00 (0.02) -1.00 (0.02) 0.31 (0.02) 0.65 (0.02) 

  Endog. Estimator 1.00 (0.05) -1.00 (0.04) 1.00 (0.01) -1.00 (0.02) 0.33 (0.03) 0.67 (0.03) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.06 (0.02) -1.11 (0.04) 1.00 (0.01) -1.00 (0.02) 0.32 (0.02) 0.66 (0.03) 

  Endog. Estimator 1.00 (0.02) -1.00 (0.05) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

 
Notes:  Each cell contains the mean of the maximum likelihood point estimates and the mean of the standard 

errors of these estimates from the Monte Carlo experiment.  Exog. estimator refers to the maximum 

likelihood estimator assuming the state process is exogenous, so that 0=ρ . Endog. estimator refers to the 

maximum likelihood estimator allowing the state process to be endogenous, so that )1 ,1(−∈ρ . 
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Table 5 

Monte Carlo Results:  Estimation 

DGP 2, 9.0=ρ  (endogenous switching) 

 

T = 200 0.1
1,0
=β  0.1

2,0
−=β  0.1

1,1
=β  0.1

2,1
−=β  33.01 =σ  67.02 =σ  

7.0
11
=p  7.0

22
=p        

  Exog. Estimator 1.21 (0.03) -1.42 (0.05) 1.00 (0.01) -1.00 (0.03) 0.25 (0.02) 0.52 (0.04) 

  Endog. Estimator 1.01 (0.04) -1.01 (0.08) 1.00 (0.01) -1.00 (0.02) 0.32 (0.03) 0.66 (0.06) 

       

7.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.26 (0.04) -1.17 (0.05) 1.00 (0.02) -1.00 (0.03) 0.28 (0.03) 0.59 (0.04) 

  Endog. Estimator 1.00 (0.06) -1.00 (0.06) 1.00 (0.02) -1.00 (0.02) 0.33 (0.04) 0.66 (0.04) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.10 (0.03) -1.20 (0.07) 1.00 (0.02) -1.00 (0.03) 0.31 (0.02) 0.63 (0.05) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.07) 1.00 (0.01) -1.00 (0.03) 0.33 (0.02) 0.67 (0.05) 

       

T = 500 0.11,0 =β  0.12,0 −=β  0.11,1 =β  0.12,1 −=β  33.01 =σ  67.02 =σ  

7.011 =p  7.022 =p        

  Exog. Estimator 1.20 (0.02) -1.43 (0.03) 1.00 (0.01) -1.00 (0.02) 0.25 (0.01) 0.52 (0.02) 

  Endog. Estimator 1.01 (0.02) -1.01 (0.05) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.66 (0.04) 

       

7.011 =p  9.022 =p        

  Exog. Estimator 1.25 (0.03) -1.17 (0.03) 1.00 (0.01) -1.00 (0.02) 0.29 (0.02) 0.60 (0.02) 

  Endog. Estimator 1.00 (0.04) -1.00 (0.04) 1.00 (0.01) -1.00 (0.01) 0.33 (0.03) 0.67 (0.03) 

       

9.0
11
=p  9.0

22
=p        

  Exog. Estimator 1.10 (0.02) -1.20 (0.04) 1.00 (0.01) -1.00 (0.02) 0.31 (0.02) 0.63 (0.03) 

  Endog. Estimator 1.00 (0.02) -1.00 (0.04) 1.00 (0.01) -1.00 (0.02) 0.33 (0.02) 0.67 (0.03) 

 
Notes:  Each cell contains the mean of the maximum likelihood point estimates and the mean of the standard 

errors of these estimates from the Monte Carlo experiment.  Exog. estimator refers to the maximum 

likelihood estimator assuming the state process is exogenous, so that 0=ρ . Endog. estimator refers to the 

maximum likelihood estimator allowing the state process to be endogenous, so that )1 ,1(−∈ρ . 



28 

Table 6 

Monte Carlo Results:  

Empirical Size of 5% Nominal Size Test of 0=ρ  

 

 
T = 200 Empirical Size:  Wald Test Empirical Size: LR Test 

7.0
11
=p  7.0

22
=p  11.8% 6.8% 

7.011 =p  9.022 =p  9.6% 5.5% 

9.011 =p  9.022 =p  7.4% 5.5% 

   

T = 500   

7.011 =p  7.022 =p  6.4% 4.6% 

7.0
11
=p  9.0

22
=p  7.3% 6.7% 

9.011 =p  9.022 =p  5.2% 4.9% 
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Table 7 

Monte Carlo Results: Empirical Size-Adjusted Power of 5% Nominal Size Test of 0=ρ  

 

 
T = 200 Empirical Power: Wald Test Empirical Power: LR Test 

DGP 1, 5.0=ρ    

7.0
11
=p  7.0

22
=p  39.9% 46.3% 

7.011 =p  9.022 =p  65.4% 67.0% 

9.0
11
=p  9.0

22
=p  86.3% 85.8% 

   

DGP 1, 9.0=ρ    

7.0
11
=p  7.0

22
=p  99.8% 100.0% 

7.011 =p  9.022 =p  100.0% 99.9% 

9.011 =p  9.022 =p  100.0% 100.0% 

   

DGP 2, 5.0=ρ    

7.011 =p  7.022 =p  65.9% 68.1% 

7.0
11
=p  9.0

22
=p  67.0% 69.2% 

9.011 =p  9.022 =p  79.4% 79.7% 

   

DGP 2, 9.0=ρ    

7.011 =p  7.022 =p  100.0% 100.0% 

7.0
11
=p  9.0

22
=p  99.8% 99.8% 

9.011 =p  9.022 =p  99.9% 99.9% 
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Table 7 (cont.) 

Monte Carlo Results: Empirical Size-Adjusted Power of 5% Nominal Size Test for 0=ρ  

 

 
T = 500 Empirical Power: Wald Test Empirical Power: LR Test 

DGP 1, 5.0=ρ    

7.0
11
=p  7.0

22
=p  87.9% 88.4% 

7.011 =p  9.022 =p  96.4% 96.6% 

9.0
11
=p  9.0

22
=p  99.9% 99.9% 

   

DGP 1, 9.0=ρ    

7.0
11
=p  7.0

22
=p  100.0% 100.0% 

7.011 =p  9.022 =p  100.0% 100.0% 

9.011 =p  9.022 =p  100.0% 100.0% 

   

DGP 2, 5.0=ρ    

7.011 =p  7.022 =p  96.5% 96.9% 

7.0
11
=p  9.0

22
=p  99.0% 99.0% 

9.011 =p  9.022 =p  99.9% 99.9% 

   

DGP 2, 9.0=ρ    

7.011 =p  7.022 =p  100% 100% 

7.0
11
=p  9.0

22
=p  100% 100% 

9.011 =p  9.022 =p  100% 100% 
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Table 8 

Maximum Likelihood Estimates of the Turner, Startz, and Nelson (1989)  

Volatility-Feedback Model 

 
Parameter Ignoring Endogeneity Accounting for Endogeneity 

1θ  
0.31 

(0.10) 

0.36 

(0.10) 

2θ  
-1.55 

(0.45) 

-1.07 

(0.45) 

1σ  
0.40 

(0.02) 

0.40 

(0.02) 

2σ  
0.75 

(0.07) 

0.74 

(0.07) 

1a  
2.05 

(0.20) 

2.05 

(0.17) 

2a  
-1.09 

(0.21) 

-1.16 

(0.22) 

ρ  --- 

 

-0.40 

(0.18) 

Log 

Likelihood 
-372.41 -370.89 

 
 

Notes: Maximum likelihood estimates computed in GAUSS 6.0 using the OPTMUM numerical optimization 

package.  Standard errors, reported in parentheses, were based on second derivatives of the log-likelihood 

function.  


